tbResList Print — PG Propyl gallate

Filters: qv=138, qv2=%, rfv=%

Product

PG Propyl gallate
Description: <b>An ester</b> formed by the condensation of gallic acid and propanol.<br>
Propyl gallate (PG), chemically known as propyl-3,4,5-trihydroxybenzoate, is widely present in processed food and cosmetics, hair products, and lubricants.<br>
PG alone demonstrated antioxidative and cytoprotective properties against cellular damage and gained a pro-oxidative property in combination with copper (II). It was reported that PG was one of the most active compounds capable of generating H2O2 in DMEM media<br>

<pre>
Main cancer-relevant pathways modulated by propyl gallate
A. Redox imbalance & oxidative stress (dominant)
-↑ Intracellular ROS (context- and dose-dependent)
-Pro-oxidant in cancer cells with high basal ROS
-Mitochondrial superoxide accumulation
-Thiol depletion (↓ GSH, ↓ Trx buffering capacity)
Importance: ★★★★★ (Primary mechanism)

B. Mitochondrial dysfunction & intrinsic apoptosis
-↑ MOMP → caspase cascade
-Loss of mitochondrial membrane potential (ΔΨm)
-Cytochrome-c release
-Caspase-9 → caspase-3 activation
-↑ Bax / ↓ Bcl-2 ratio
Importance: ★★★★☆

C. ER stress & unfolded protein response (UPR)
-↑ PERK–eIF2α–ATF4–CHOP
-ROS-linked protein misfolding
-Pro-apoptotic UPR signaling dominates over adaptive UPR
Importance: ★★★☆☆

D. Cell cycle disruption
-G1 or G2/M arrest (cell-type dependent)
-↓ Cyclin D1, Cyclin B1
-↑ p21, p27
Importance: ★★☆☆☆

E. MAPK stress signaling
-↑ JNK / p38
-Stress-activated apoptosis signaling
-Often precedes mitochondrial failure
Importance: ★★☆☆☆

F. Inflammation & survival pathways (secondary)
-↓ NF-κB, ↓ STAT3 (indirect)
-Suppression is largely ROS-mediated, not direct inhibition
-Reduced anti-apoptotic gene transcription
Importance: ★★☆☆☆

G. NRF2–ARE signaling (dual role)
-Low dose: NRF2 activation → cytoprotection
-High dose / cancer cells: NRF2 overwhelmed → apoptosis
Importance: ★★☆☆☆
(Highly context dependent; double-edged)


</pre>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Glutathione (GSH) redox buffering</td>
<td>↓ GSH (depletion)</td>
<td>Upstream redox vulnerability</td>
<td>Leukemia and HeLa models report GSH depletion as an early, causal event in PG-induced cytotoxicity</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21112369/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Nrf2 antioxidant-response axis</td>
<td>↓ Nrf2 nuclear translocation → ↓ γ-GCS</td>
<td>Impaired antioxidant capacity</td>
<td>PG inhibits Nrf2 nuclear translocation and downstream glutathione-synthesis control, linking to GSH depletion and apoptosis in leukemia cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21112369/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS) balance (context-dependent)</td>
<td>↑ ROS (tumor models) / ↓ ROS (TMZ-combo migration model)</td>
<td>Oxidative-stress modulation</td>
<td>PG increases ROS in hepatocellular carcinoma (HCC) with autophagy/apoptosis; in TMZ-treated glioma, PG inhibits TMZ-induced ROS linked to reduced migration</td>
<td>
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210513">(ref)</a>
</td>
</tr>

<tr>
<td>4</td>
<td>MAPK stress signaling (ERK/JNK/p38)</td>
<td>↑ MAPK activation</td>
<td>Stress-to-death signaling</td>
<td>PG activates MAPKs; authors position MAPKs/Nrf2-mediated GSH depletion as an early driver of apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21112369/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Autophagy program (LC3 conversion)</td>
<td>↑ autophagy</td>
<td>Stress response contributing to growth inhibition</td>
<td>HCC study: PG induces ROS and activates autophagy (LC3-I→LC3-II), with associated apoptosis markers</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210513">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis (caspase cascade; intrinsic/extrinsic components)</td>
<td>↑ caspase activation / ↑ apoptosis</td>
<td>Programmed cell death</td>
<td>Leukemia: caspases-3/8/9 activation with p53/Bax/Fas/FasL changes; lung cancer: caspase-dependent apoptosis with PARP cleavage</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21112369/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>Cell-cycle regulation</td>
<td>↑ G1 arrest (e.g., ↑ p27)</td>
<td>Proliferation blockade</td>
<td>HeLa and lung cancer models report PG-induced G1 phase arrest with cell-cycle regulator changes</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20204304/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Lung cancer growth suppression</td>
<td>↓ proliferation / ↓ viability</td>
<td>Anti-growth effect</td>
<td>PG reduces growth of Calu-6 and A549 lung cancer cells with G1 arrest and caspase-dependent apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/33125113/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Migration / invasion phenotype (TMZ-combination glioma model)</td>
<td>↓ migration (via ↓ TMZ-induced ROS; NF-κB pathway implicated in full paper title)</td>
<td>Anti-migratory effect (combination context)</td>
<td>TMZ + PG enhances inhibition of U87MG glioma migration; abstract states PG inhibits TMZ-induced ROS and implicates mitochondrial complex III / NADPH oxidase as ROS sources</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/29062841/">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>In vivo anti-tumor effect (HCC; zebrafish model)</td>
<td>↓ tumor growth / ↓ proliferation</td>
<td>Demonstrated in vivo activity</td>
<td>HCC study includes in vivo suppression (zebrafish) alongside ROS increase and autophagy activation</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210513">(ref)</a></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   GSH↓, 5,   HO-1↓, 1,   NRF2↓, 1,   ROS↑, 4,   ROS⇅, 1,  

Mitochondria & Bioenergetics

MMP↓, 4,  

Cell Death

Apoptosis↑, 2,   BAD↑, 1,   BAX↑, 2,   Bcl-2↓, 2,   Casp3↑, 3,   cl‑Casp3↑, 1,   Casp8↑, 3,   Casp9↑, 1,   Fas↑, 1,   FasL↑, 1,   MAPK↑, 1,   p27↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   P53↑, 1,   cl‑PARP↑, 3,  

Cell Cycle & Senescence

TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

TumCG↓, 3,  

Migration

MMP2↓, 1,   MMP9↓, 1,   TumCMig↓, 1,   TumCP↓, 3,  

Immune & Inflammatory Signaling

Inflam↓, 1,   NF-kB↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,   Dose∅, 3,   eff↑, 3,   eff↓, 1,   selectivity↑, 1,  

Functional Outcomes

hepatoP↑, 1,   toxicity↓, 1,  
Total Targets: 40

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↓, 1,   GSH↓, 1,   ROS↓, 1,   ROS↑, 3,   SOD↓, 1,  

DNA Damage & Repair

DNAdam↑, 1,   DNAdam∅, 1,  

Drug Metabolism & Resistance

Dose∅, 1,  

Functional Outcomes

toxicity∅, 1,  
Total Targets: 10

Research papers

Year Title Authors PMID Link Flag
2024Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer TreatmentTaufeeque AliPMC11201821https://pmc.ncbi.nlm.nih.gov/articles/PMC11201821/0
2024Propyl gallate induces human pulmonary fibroblast cell death through the regulation of Bax and caspase-3Woo Hyun ParkPMC10878342https://pmc.ncbi.nlm.nih.gov/articles/PMC10878342/0
2024Propyl gallate induces cell death in human pulmonary fibroblast through increasing reactive oxygen species levels and depleting glutathioneWoo Hyun ParkPMC10912098https://pmc.ncbi.nlm.nih.gov/articles/PMC10912098/0
2023Pharmacokinetic and toxicological overview of propyl gallate food additiveFatemeh Javaheri-Ghezeldizajhttps://www.sciencedirect.com/science/article/abs/pii/S03088146220318180
2022The Anti-Apoptotic Effects of Caspase Inhibitors in Propyl Gallate-Treated Lung Cancer Cells Are Related to Changes in Reactive Oxygen Species and Glutathione LevelsWoo hyun ParkPMC9321184https://pmc.ncbi.nlm.nih.gov/articles/PMC9321184/0
2021Enhanced cell death effects of MAP kinase inhibitors in propyl gallate-treated lung cancer cells are related to increased ROS levels and GSH depletionWoo Hyun Park33865947https://pubmed.ncbi.nlm.nih.gov/33865947/0
2021Propyl gallate decreases the proliferation of Calu-6 and A549 lung cancer cells via affecting reactive oxygen species and glutathione levelsWoo Hyun Parkhttps://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jat.42310
2020Propyl gallate reduces the growth of lung cancer cells through caspase‑dependent apoptosis and G1 phase arrest of the cell cycleWoo Hyun Park33125113https://pubmed.ncbi.nlm.nih.gov/33125113/0
2019Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagyPo-Li Weihttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.02105130
2017Propyl Gallate Exerts an Antimigration Effect on Temozolomide-Treated Malignant Glioma Cells through Inhibition of ROS and the NF- κ B PathwayJen-Tsung YangPMC5618759https://pmc.ncbi.nlm.nih.gov/articles/PMC5618759/0
2016Propyl gallate sensitizes human lung cancer cells to cisplatin-induced apoptosis by targeting heme oxygenase-1 for TRC8-mediated degradationEun Ji Jo27375080https://pubmed.ncbi.nlm.nih.gov/27375080/0
2013Geno- and cytotoxicity of propyl gallate food additiveHamed Hamishehkar24160552https://pubmed.ncbi.nlm.nih.gov/24160552/0
2011Role of redox signaling regulation in propyl gallate-induced apoptosis of human leukemia cellsChing-Hsein Chen21112369https://pubmed.ncbi.nlm.nih.gov/21112369/0
2010Propyl gallate inhibits the growth of HeLa cells via caspase-dependent apoptosis as well as a G1 phase arrest of the cell cycleYong Hwan Han20204304https://pubmed.ncbi.nlm.nih.gov/20204304/0
1998DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper(II)H Jacobi9607607https://pubmed.ncbi.nlm.nih.gov/9607607/0