tbResList Print — PTS Pterostilbene

Filters: qv=139, qv2=%, rfv=%

Product

PTS Pterostilbene
Description: <b>Antioxidant</b> found in blueberries, cranberries and grapes.<br>
Pterostilbene (trans-3,5-dimethoxy-40-hydroxystilbene) is a naturally occurring stilbene, found mainly in blueberries and grapes. It is a dimethylated derivative of resveratrol with comparable antioxidant, anti-inflammatory and anticarcinogenic properties [26].<br>
-more bioavailable than resveratrol<br>
-Antioxidant activity: Reduces reactive oxygen species and lipid peroxidation<br>
-Anti-inflammatory: Downregulates pro-inflammatory cytokines- IL-1β, TNF-α, NF-κB<br>
-Amyloid pathology:inhibits Aβ aggregation and promotes clearance- Aβ, APP, BACE1<br>
-Reduces hyperphosphorylation of tau protein<br>
-Inhibits histone deacetylases (HDACs)<br>
-Increases acetylcholine by inhibiting acetylcholinesterase<br>
-Sirtuin activation<br>
<br>

<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>SIRT1 / AMPK metabolic sensing</td>
<td>↑ AMPK; context-dependent SIRT1 modulation</td>
<td>↑ SIRT1 / ↑ AMPK</td>
<td>Driver</td>
<td>Energy-stress signaling</td>
<td>Pterostilbene strongly engages energy-sensing pathways due to high bioavailability</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR</td>
<td>↔ adaptive suppression</td>
<td>Driver</td>
<td>Growth and survival inhibition</td>
<td>AKT/mTOR suppression explains cytostatic and pro-apoptotic effects in cancer cells</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (mild, dose-dependent)</td>
<td>↓ ROS / buffered</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>More balanced redox profile than resveratrol; weaker pro-oxidant behavior</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Secondary</td>
<td>Execution of apoptosis</td>
<td>Mitochondrial apoptosis follows metabolic and redox stress</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of inflammatory survival programs</td>
<td>NF-κB inhibition contributes to anti-invasive and chemosensitizing effects</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↑ G1 or G2/M arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects upstream metabolic and signaling effects</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Redox compensation</td>
<td>NRF2 activation contributes to stress buffering rather than primary cytotoxicity</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

ACTH↓, 1,  

Redox & Oxidative Stress

GSH/GSSG↓, 1,   H2O2↑, 1,   MDA↑, 1,   NRF2↓, 2,   NRF2↑, 1,   ROS↑, 7,   SOD2↓, 1,   SOD2↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MEK↑, 1,   MMP↓, 1,  

Core Metabolism/Glycolysis

AMPK↓, 1,   p‑AMPK↑, 1,   cMyc↓, 2,   FASN↓, 1,   GlucoseCon↓, 2,   Glycolysis↓, 1,   lactateProd↓, 2,   PKM1↑, 1,   PKM2↓, 2,   p‑S6K↓, 1,   SREBP1↓, 1,  

Cell Death

p‑Akt↓, 1,   Akt↓, 2,   Apoptosis↑, 5,   BAX↑, 2,   Bcl-2↓, 1,   Casp↑, 1,   Casp3↑, 2,   Cyt‑c↑, 1,   Diablo↑, 1,   GSDMC↑, 1,   HGF/c-Met↓, 1,   iNOS↓, 1,   Pyro↑, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

p‑TSC2↑, 1,  

Transcription & Epigenetics

miR-205↑, 1,   other↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 2,   GRP78/BiP↓, 1,   PERK↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

P53↑, 1,   p‑P53↑, 1,  

Cell Cycle & Senescence

TumCCA↑, 6,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   CD133↓, 4,   CD24↓, 1,   CD44↓, 3,   CSCs↓, 10,   EMT↓, 4,   ERK↑, 1,   HDAC1↓, 1,   miR-448↑, 1,   p‑mTOR↓, 1,   mTOR↓, 3,   Nanog↓, 2,   NOTCH↓, 1,   OCT4↓, 2,   P70S6K↓, 1,   PI3K↓, 2,   PTEN↑, 3,   SOX2↓, 2,   Src↓, 1,   STAT3↓, 5,   TumCG↓, 8,  

Migration

Ca+2↝, 1,   E-cadherin↑, 6,   FAK↓, 1,   Ki-67↓, 1,   miR-19b↓, 1,   MMP2↓, 3,   MMP9↓, 4,   MMPs↓, 1,   PKA↓, 1,   Slug↓, 1,   Snail↓, 2,   TIMP1↑, 1,   TumCI↓, 5,   TumCMig↓, 4,   TumCP↓, 3,   TumMeta↓, 6,   TumMeta↑, 1,   Twist↓, 3,   Vim↓, 4,   Zeb1↓, 1,   Zeb1↑, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   ATF4↑, 1,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 1,   JAK2↓, 1,   NF-kB↓, 6,  

Hormonal & Nuclear Receptors

GR↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 7,   BioAv↓, 1,   ChemoSen↑, 7,   eff↑, 4,   Half-Life↑, 1,   Half-Life↝, 1,   Half-Life↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

BP↓, 1,   E6↓, 1,   Ki-67↓, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 1,   toxicity∅, 1,   toxicity↝, 1,   toxicity↓, 1,   TumVol↓, 1,   TumW↓, 1,   Weight∅, 1,  
Total Targets: 119

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 4,   Catalase↑, 3,   GPx↑, 2,   GSH↑, 3,   GSR↑, 2,   H2O2↓, 1,   HNE↓, 1,   HO-1↑, 4,   lipid-P↓, 3,   MDA↓, 1,   NQO1↑, 2,   NRF2↑, 5,   ROS↑, 1,   ROS↓, 8,   SOD↑, 5,   SOD2↑, 1,  

Core Metabolism/Glycolysis

p‑CREB↑, 1,   CREB↑, 1,   CRM↑, 1,   LDL↓, 1,   NAD↑, 1,   NADPH↓, 1,   PPARα↑, 2,   SIRT1∅, 1,  

Cell Death

iNOS↓, 2,   JNK↓, 1,   MAPK↓, 1,   MAPK↝, 1,  

DNA Damage & Repair

PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   RB1↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   IGF-1↑, 1,  

Migration

Cartilage↑, 1,   E-sel↓, 1,   MMP13↓, 1,   MMPs↓, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Barriers & Transport

BBB↑, 2,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL1β↓, 2,   IL4↓, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 10,   MCP1↓, 1,   Neut↓, 1,   NF-kB↓, 1,   TNF-α↓, 3,  

Synaptic & Neurotransmission

BDNF↑, 1,   GABA↑, 1,   PSD95↑, 1,   p‑tau↓, 1,  

Protein Aggregation

NLRP3↓, 3,  

Drug Metabolism & Resistance

BioAv↑, 6,   Dose↝, 1,   eff↑, 1,   Half-Life↑, 2,  

Clinical Biomarkers

BP↓, 1,   GutMicro↑, 3,   IL6↓, 3,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 1,   cardioP↑, 2,   cognitive↑, 3,   hepatoP↑, 1,   memory↑, 2,   neuroP↑, 4,   toxicity∅, 1,   toxicity↓, 3,  
Total Targets: 74

Research papers

Year Title Authors PMID Link Flag
2025Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping reviewRaveena Vaidheswary MuralitharanPMC12022656https://pmc.ncbi.nlm.nih.gov/articles/PMC12022656/0
2025Pterostilbene in Cancer Therapy: Enhancing Treatment Efficacy and Overcoming Resistancehttps://www.nbinno.com/article/pharmaceutical-intermediates/pterostilbene-cancer-therapy-treatment-efficacy-resistance0
2025Pterostilbene as a Multifaceted Anticancer Agent: Molecular Mechanisms, Therapeutic Potential and Future DirectionsMuhammad Asif Ali40411697https://pubmed.ncbi.nlm.nih.gov/40411697/0
2024Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic interventionPengzhan He38518635https://pubmed.ncbi.nlm.nih.gov/38518635/0
2024Pterostilbene suppresses the growth of esophageal squamous cell carcinoma by inhibiting glycolysis and PKM2/STAT3/c-MYC signaling pathwayYi Yang39321706https://pubmed.ncbi.nlm.nih.gov/39321706/0
2024Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling PathwayTingting PanPMC11476961https://pmc.ncbi.nlm.nih.gov/articles/PMC11476961/0
2024Pterostilbene in the treatment of inflammatory and oncological diseasesPeijun Liuhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1323377/full0
2024Pterostilbene Protects against Osteoarthritis through NLRP3 Inflammasome Inactivation and Improves Gut Microbiota as Evidenced by In Vivo and In Vitro StudiesYen-Chien LeePMC11046483https://pmc.ncbi.nlm.nih.gov/articles/PMC11046483/0
2024Effects of Pterostilbene on Cardiovascular Health and DiseaseRui TianPMC11430207https://pmc.ncbi.nlm.nih.gov/articles/PMC11430207/0
2022Pterostilbene inhibits the metastasis of TNBC via suppression of β-catenin-mediated epithelial to mesenchymal transition and stemnessKang Mahttps://www.sciencedirect.com/science/article/pii/S17564646220028940
2022New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion EffectsSanjushree NagarajanPMC9571692https://pmc.ncbi.nlm.nih.gov/articles/PMC9571692/0
2022Pterostilbene exert an anti-arthritic effect by attenuating inflammation, oxidative stress, and alteration of gut microbiotaZe Rui35060152https://pubmed.ncbi.nlm.nih.gov/35060152/0
2021Pterostilbene in Cancer TherapyElena Obradorhttps://www.mdpi.com/2076-3921/10/3/4920
2021Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascadeAttalla El-Kotthttps://www.sciencedirect.com/org/science/article/pii/S03279545210011580
2020Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRASYi-Ting ChenPMC7650649https://pmc.ncbi.nlm.nih.gov/articles/PMC7650649/0
2020Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to ResveratrolHee Jeong ShinPMC6982958https://pmc.ncbi.nlm.nih.gov/articles/PMC6982958/0
2020Pterostilbene as a Potent Chemopreventive Agent in CancerAnait S. Levensonhttps://link.springer.com/chapter/10.1007/978-3-030-39855-2_30
2020Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to ResveratrolHee Jeong Shinhttps://www.mdpi.com/1420-3049/25/1/2280
2019Pterostilbene Supplement Benefits: Longevity Miracle or Hoaxhttps://superfoodly.com/pterostilbene-supplement-benefits-longevity-miracle-or-hoax/0
2019Pterostilbene attenuates amyloid-β induced neurotoxicity with regulating PDE4A-CREB-BDNF pathwayJiao MengPMC6834512https://pmc.ncbi.nlm.nih.gov/articles/PMC6834512/0
2019Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studiesZhiqiang Mahttps://www.sciencedirect.com/science/article/abs/pii/S10436618193023000
2018Effect of resveratrol and pterostilbene on aging and longevityYi-Rong Li29210129https://pubmed.ncbi.nlm.nih.gov/29210129/0
2018Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathwayQiushi Li29737568https://pubmed.ncbi.nlm.nih.gov/29737568/0
2018Resveratrol, pterostilbene, and dementiaKlaus W Lange29168580https://pubmed.ncbi.nlm.nih.gov/29168580/0
2017Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbeneLingling Zhanghttps://orbi.uliege.be/bitstream/2268/316054/1/BioFactors%20-%202017%20-%20Zhang%20-%20Targeting%20cancer%20stem%20cells%20and%20signaling%20pathways%20by%20resveratrol%20and%20pterostilbene.pdf0
2016Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent MechanismMaría BenllochPMC4921902https://pmc.ncbi.nlm.nih.gov/articles/PMC4921902/0
2015Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transitionChih-Ming Suhttps://www.sciencedirect.com/science/article/abs/pii/S09552863150003880
2014Involvement of the Nrf2 Pathway in the Regulation of Pterostilbene-Induced Apoptosis in HeLa Cells via ER StressBo Zhanghttps://www.sciencedirect.com/science/article/pii/S13478613193007630
2013A Review of Pterostilbene Antioxidant Activity and Disease ModificationDenise McCormackPMC3649683https://pmc.ncbi.nlm.nih.gov/articles/PMC3649683/0
2013BlueBerry Isolate, Pterostilbene, Functions as a Potential Anticancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem CellsChi-Ming Leehttps://www.researchgate.net/publication/251235463_BlueBerry_Isolate_Pterostilbene_Functions_as_a_Potential_Anticancer_Stem_Cell_Agent_in_Suppressing_Irradiation-Mediated_Enrichment_of_Hepatoma_Stem_Cells0
2013Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF ‐κ B /microRNA 448 circuitMak KaKithttps://pubmed.ncbi.nlm.nih.gov/23504987/0
2013Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuitKa Kit Makhttps://www.researchwithrutgers.com/en/publications/pterostilbene-a-bioactive-component-of-blueberries-suppresses-the/0
2013The effects of pterostilbene on neutrophil activity in experimental model of arthritisTomas PereckoPMC3806327https://pmc.ncbi.nlm.nih.gov/articles/PMC3806327/0
2013Analysis of Safety from a Human Clinical Trial with PterostilbeneDaniel M RichePMC3575612https://pmc.ncbi.nlm.nih.gov/articles/PMC3575612/0
2012Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's diseaseJaewon Chang21982274https://pubmed.ncbi.nlm.nih.gov/21982274/0
2011Pterostilbene and cancer: current reviewDenise McCormack22099605https://pubmed.ncbi.nlm.nih.gov/22099605/0
2010Pterostilbene Inhibits Pancreatic Cancer In VitroPatrick W. Mannalhttps://www.sciencedirect.com/science/article/abs/pii/S1091255X2307587X0
2018Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer CellsKaushiki ChatterjeePMC5852819https://pmc.ncbi.nlm.nih.gov/articles/PMC5852819/0