tbResList Print — QC Quercetin

Filters: qv=140, qv2=%, rfv=%

Product

QC Quercetin
Description: </b>Plant pigment</b> (flavonoid) found in red wine, onions, green tea, apples and berries.<br>
Quercetin is thought to contribute to anticancer effects through several mechanisms:<br>
-Antioxidant Activity:<br>
-Induction of Apoptosis:modify Bax:Bcl-2 ratio<br>
-Anti-inflammatory Effects:<br>
-Cell Cycle Arrest:<br>
-Inhibition of Angiogenesis and Metastasis: (VEGF)<br>
<br>
Cellular Pathways:<br>
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.<br>
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.<br>
-NF-κB Pathway: downregulate NF-κB <br>
-JAK/STAT Pathway: interfere with the activation of STAT3<br>
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways<br>
<br>
Quercetin has been used at doses around 500–1000 mg per day<br>
Quercetin’s bioavailability from foods or standard supplements can be low.<br>

<br>
-Note <a href="tbResList.php?qv=140&tsv=1109&wNotes=on&exSp=open">half-life</a> 11 to 28 hours.<br>
<a href="tbResList.php?qv=140&tsv=792&wNotes=on&exSp=open">BioAv</a> low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=140&tsv=275&wNotes=on">ROS</a> production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"<br>
- ROS↑ related:
<a href="tbResList.php?qv=140&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=140&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=140&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=140&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=140&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=140&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=140&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=140&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Confusing info about Lowering AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=140&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>(some contrary),
<a href="tbResList.php?qv=140&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<a href="tbResList.php?qv=140&tsv=298&wNotes=on&word=SOD">SOD↓</a>(contrary),
<a href="tbResList.php?qv=140&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=140&tsv=46&wNotes=on">Catalase↓</a>(contrary),
<a href="tbResList.php?qv=140&tsv=597&wNotes=on">HO1↓</a>(some contrary),
<a href="tbResList.php?qv=140&wNotes=on&word=GPx">GPx↓</a>(some contrary)


<br>

- Raises
<a href="tbResList.php?qv=140&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=140&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=140&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=140&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=140&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=140&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=140&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=140&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=140&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=140&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=140&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=140&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=140&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=140&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=140&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=140&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=140&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=140&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=140&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=140&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=140&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=140&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=140&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=140&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=140&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=140&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=140&tsv=110&wNotes=on">FAK↓</a>,
<!-- <a href="tbResList.php?qv=140&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=140&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=140&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=140&tsv=1247&wNotes=on">SDF1↓</a>,
<a href="tbResList.php?qv=140&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=140&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=140&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=140&tsv=1178&wNotes=on">MARK4↓</a> --><!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=140&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=140&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=140&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=140&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=TET">TET↑</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=140&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=140&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=140&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=140&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=140&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=140&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=140&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=140&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=140&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=140&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=140&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=140&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=TOP">TOP1↓</a>,
<a href="tbResList.php?qv=140&tsv=657&wNotes=on">TET1</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=140&tsv=129&wNotes=on">glycolysis</a>
<!-- /<a href="tbResList.php?qv=140&tsv=947&wNotes=on">Warburg Effect</a> --> and
<a href="tbResList.php?qv=140&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=140&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=140&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=140&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=140&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=140&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=140&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=140&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=140&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=140&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=140&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=140&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=140&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=140&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=140&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=140&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=140&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<!-- <a href="tbResList.php?qv=140&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- some indication of inhibiting Cancer Stem Cells :
<a href="tbResList.php?qv=140&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=140&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=140&tsv=141&wNotes=on">Hh↓</a>,
<!-- <a href="tbResList.php?qv=140&tsv=434&wNotes=on">GLi↓</a>, -->
<!-- <a href="tbResList.php?qv=140&tsv=124&wNotes=on">GLi1↓</a>, -->
<!-- <a href="tbResList.php?qv=140&tsv=677&wNotes=on">CD133↓</a>, -->
<a href="tbResList.php?qv=140&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=140&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=140&tsv=357&wNotes=on">n-myc↓</a>, -->
<!-- <a href="tbResList.php?qv=140&tsv=656&wNotes=on">sox2↓</a>, -->
<a href="tbResList.php?qv=140&wNotes=on&word=NOTCH">Notch2↓</a>,
<!-- <a href="tbResList.php?qv=140&tsv=1024&wNotes=on">nestin↓</a>, -->
<!-- <a href="tbResList.php?qv=140&tsv=508&wNotes=on">OCT4↓</a>, -->
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=140&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=140&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=140&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=140&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=140&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=140&tsv=9&wNotes=on">AMPK</a>,
<a href="tbResList.php?qv=140&tsv=475&wNotes=on">α↓</a>,
<a href="tbResList.php?qv=140&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=140&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=140&tsv=168&wNotes=on">JNK</a>,


- <a href="tbResList.php?qv=140&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=140&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=140&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=140&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=140&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=140&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=140&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=140&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=140&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=140&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=140&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=140&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (dose-, metal-, context-dependent)</td>
<td>↓ ROS</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>Quercetin exhibits pro-oxidant behavior in cancer cells while protecting normal cells</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Driver</td>
<td>Execution of intrinsic apoptosis</td>
<td>Mitochondrial dysfunction is a central apoptosis route in cancer cells</td>
</tr>

<tr>
<td>3</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR</td>
<td>↔ adaptive suppression</td>
<td>Driver</td>
<td>Growth and survival inhibition</td>
<td>AKT/mTOR suppression is a consistently reported upstream effect in cancer models</td>
</tr>

<tr>
<td>4</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Reduced survival and inflammatory transcription</td>
<td>NF-κB inhibition contributes to chemosensitization and apoptosis susceptibility</td>
</tr>

<tr>
<td>5</td>
<td>MAPK signaling (JNK / p38)</td>
<td>↑ JNK / ↑ p38</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Stress-mediated apoptosis signaling</td>
<td>MAPK activation supports apoptosis downstream of redox stress</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↑ G1/S or G2/M arrest</td>
<td>↔ largely spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects disruption of growth signaling</td>
</tr>

<tr>
<td>7</td>
<td>HIF-1α hypoxia signaling</td>
<td>↓ HIF-1α</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Reduced hypoxia tolerance</td>
<td>Quercetin interferes with hypoxia-driven transcriptional programs</td>
</tr>

<tr>
<td>8</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive, context-dependent)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Stress compensation</td>
<td>NRF2 induction reflects redox buffering rather than primary cytotoxicity</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

NA?, 1,  

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 2,   Ferroptosis↑, 1,   GPx↑, 1,   GPx↓, 1,   GPx4↓, 1,   GSH↓, 2,   GSH↑, 3,   GSH∅, 1,   GSR↑, 1,   GSR↓, 1,   i-H2O2↓, 1,   H2O2↓, 1,   H2O2↑, 1,   HO-1↑, 2,   HO-1↓, 1,   Iron↓, 1,   lipid-P↓, 2,   MDA↓, 1,   NQO1↑, 1,   NQO1↓, 1,   NRF2↑, 3,   NRF2↓, 5,   NRF2⇅, 1,   p‑NRF2↓, 1,   OXPHOS↝, 1,   p66Shc↓, 1,   PrxI∅, 1,   PrxII∅, 1,   PrxII↑, 1,   ROS↑, 15,   ROS⇅, 1,   ROS↓, 1,   ROS∅, 1,   mt-ROS↑, 1,   SOD↑, 4,   TAC↑, 2,   TrxR↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 3,   ATP↓, 3,   ATP↝, 1,   BCR↓, 1,   CDC16↓, 1,   EGF↓, 2,   FGFR1↓, 1,   p‑MEK↓, 1,   MEK↓, 1,   mitResp↓, 1,   MMP↓, 1,   OCR↓, 1,   p‑p42↑, 1,   Raf↓, 4,   XIAP↓, 3,   XIAP↝, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   AKT1↓, 1,   AMACR↓, 1,   AMPK↑, 1,   cMyc↓, 10,   ECAR↓, 1,   FAO↓, 1,   FASN↓, 1,   GlucoseCon↓, 5,   Glycolysis↓, 7,   HK2↓, 6,   lactateProd↓, 7,   LDH↑, 2,   LDHA↓, 3,   NADPH↓, 1,   PDK3↓, 1,   PFKP?, 1,   PI3K/Akt⇅, 1,   PI3K/Akt↓, 9,   PI3k/Akt/mTOR↓, 3,   PKM2↓, 4,   PPARγ↑, 1,   SLC1A5↓, 1,   SREBP1↓, 2,  

Cell Death

Akt↓, 17,   p‑Akt↓, 7,   APAF1↑, 1,   Apoptosis↑, 2,   Apoptosis↓, 1,   ASK1↑, 1,   aSmase↝, 1,   BAD↓, 3,   BAD↑, 1,   Bak↑, 1,   BAX↑, 25,   BAX↓, 1,   Bax:Bcl2↑, 4,   Bcl-2↓, 21,   Bcl-2↑, 1,   Bcl-xL↓, 4,   Bcl-xL↑, 1,   BIM↑, 1,   Casp↑, 2,   Casp1↑, 1,   Casp10↑, 3,   Casp12↑, 1,   Casp3↑, 29,   Casp3↓, 2,   cl‑Casp3↑, 2,   Casp7↑, 5,   Casp8↑, 8,   Casp9↑, 18,   cl‑Casp9↑, 2,   CBP↑, 1,   cFLIP↓, 5,   Chk2↑, 1,   CK2↓, 1,   CSR1↑, 1,   Cyt‑c↑, 12,   Diablo↑, 2,   DR4↑, 1,   DR5↑, 7,   DR5↓, 1,   Endon↑, 2,   Fas↑, 2,   Fas↓, 1,   FasL↑, 1,   Ferroptosis↑, 1,   IAP1↓, 1,   iNOS↓, 4,   p‑JNK↓, 1,   JNK↓, 1,   MAPK↑, 4,   MAPK↓, 4,   MAPK↝, 1,   Mcl-1↓, 3,   MDM2↓, 1,   p27↑, 1,   p38↓, 3,   p38↑, 3,   PDCD4↑, 1,   PUMA⇅, 1,   survivin↓, 7,   TNFR 1↑, 2,   TRAIL↑, 3,   TRAILR↑, 2,   TumCD↑, 4,  

Kinase & Signal Transduction

AMPKα↓, 1,   AMPKα↑, 1,   CDC7↓, 1,   HER2/EBBR2↓, 2,   RET↓, 1,   Sp1/3/4↓, 2,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↑, 1,   cJun↓, 2,   EZH2↓, 2,   H3↓, 1,   ac‑H3↑, 2,   ac‑H4↑, 2,   miR-21↓, 3,   miR-21↑, 1,   miR-27a-3p↓, 1,   other↓, 2,   other↑, 2,   pRB↓, 1,   p‑pRB↓, 1,   Shc↓, 1,   SPP1↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

c-ATF6↑, 1,   ATFs↑, 1,   CHOP↑, 7,   CHOP↓, 1,   p‑eIF2α↓, 1,   ER Stress↑, 6,   GRP78/BiP↑, 7,   Hsc70↓, 1,   HSP27↓, 3,   HSP70/HSPA5↓, 3,   HSP72↑, 1,   HSP72↓, 1,   HSP90↓, 3,   HSPs↓, 2,   p‑IRE1↓, 1,   IRE1↑, 1,   NQO2↑, 1,   p‑PERK↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   BNIP3↑, 1,   LC3B-II↑, 2,   SESN2↑, 1,   TumAuto↑, 4,  

DNA Damage & Repair

ATM↓, 1,   BRCA1↑, 1,   CUL4B↑, 1,   DFF45↑, 2,   DNA-PK↓, 1,   DNAdam↑, 1,   DNAdamC↑, 1,   DNMT1↓, 2,   DNMT3A↓, 2,   DNMTs↓, 6,   G9a↓, 1,   MGMT↓, 1,   NKX3.1↓, 2,   NKX3.1↑, 1,   P53↑, 1,   P53↓, 1,   cl‑PARP↑, 8,   PARP↑, 3,   PARP↓, 1,   PARP1↓, 1,   PARP1↑, 1,   PCNA↓, 4,   γH2AX↑, 2,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 4,   CDK2↑, 1,   CDK4↓, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↑, 2,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 20,   cycE/CCNE↓, 5,   cycF↓, 1,   E2Fs↓, 3,   P21↑, 1,   P21↓, 2,   RB1↑, 1,   p‑RB1↓, 1,   TAp63α↑, 1,   TumCCA↑, 1,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 2,   AR-FL↓, 1,   AR-V7↑, 1,   CD133↓, 4,   CD24↓, 2,   CD44↓, 4,   cDC2↓, 2,   cFos↓, 1,   cMET↓, 1,   CSCs↓, 14,   Diff↓, 1,   EMT↓, 15,   EP300↑, 1,   EpCAM↓, 2,   ERK↑, 3,   ERK↓, 5,   ERK↝, 1,   p‑ERK↓, 5,   FBXW7↝, 1,   FGF↓, 2,   FGFR2↓, 1,   FLT3↓, 1,   FOXO3↑, 1,   Gli1↓, 1,   GSK‐3β↓, 3,   H3K27ac↓, 1,   HDAC↓, 4,   HDAC1↓, 1,   HDAC11↓, 1,   HDAC2↓, 1,   HDAC4↓, 2,   HDAC6↓, 1,   HH↓, 2,   HMTs↓, 2,   IGF-1↓, 2,   IGF-1R↓, 5,   IGF-2↓, 2,   IGFBP3↑, 4,   Jun↓, 1,   Let-7↑, 1,   mTOR↓, 1,   p‑mTOR↓, 1,   Nanog↓, 2,   NF2↑, 1,   NOTCH↓, 2,   NOTCH1↓, 3,   NRAS↓, 1,   OCT4↓, 1,   P70S6K↓, 2,   p‑PI3K↓, 1,   PI3K↓, 12,   PTEN↑, 5,   RAS↓, 5,   SCF↓, 1,   Shh↓, 2,   STAT↓, 2,   STAT3↓, 9,   STAT3↑, 1,   p‑STAT3↓, 2,   STAT4↓, 1,   TCF↓, 1,   TOP2↓, 2,   TumCG↓, 2,   Wnt↓, 1,   Wnt/(β-catenin)↓, 3,  

Migration

5LO↓, 1,   ACTA2↓, 1,   AntiAg↓, 1,   Ca+2↑, 5,   Ca+2↝, 1,   CDK4/6↓, 1,   CLDN2↓, 1,   COL1↓, 1,   COL3A1↓, 1,   CXCL12↓, 2,   E-cadherin↑, 6,   E-cadherin↓, 1,   EphB4↓, 1,   FAK↓, 2,   GnT-V↝, 1,   heparanase↝, 1,   hnRNPA1↓, 2,   Ki-67↓, 5,   KRAS↓, 1,   LEF1↓, 3,   MALAT1↓, 1,   MET↓, 1,   miR-133a-3p↑, 1,   miR-148a↓, 1,   miR-19b↓, 1,   miR-206↑, 1,   MMP-10↓, 1,   MMP2↓, 13,   MMP3↓, 1,   MMP7↓, 3,   MMP9↓, 8,   MMP9:TIMP1↓, 1,   MMPs↓, 9,   MSH2↑, 1,   MUC1↓, 1,   N-cadherin↓, 5,   NM23↑, 1,   p‑p44↓, 1,   p‑p44↑, 1,   PDGF↓, 3,   PKA↓, 1,   PKCδ↓, 2,   Rac1↓, 1,   RAGE↓, 2,   ROCK1↑, 1,   Slug↓, 6,   Snail↓, 7,   TET1↑, 2,   TGF-β↓, 5,   TIMP1↑, 1,   TIMP2↑, 2,   TIMP3↑, 1,   TSC1↑, 1,   TSP-1↑, 4,   TumCI↓, 13,   TumCMig↓, 13,   TumCP↓, 1,   TumCP↑, 1,   TumMeta↓, 8,   Twist↓, 5,   uPA↓, 4,   uPAR↓, 2,   Vim↓, 8,   α-SMA↓, 1,   α-SMA↑, 1,   β-catenin/ZEB1↓, 10,  

Angiogenesis & Vasculature

angioG↓, 5,   EGFR↓, 10,   FLT4↓, 1,   HIF-1↓, 1,   HIF-1↑, 1,   Hif1a↓, 6,   NO↓, 2,   VEGF↓, 9,   VEGFR2↓, 4,   ZBTB10↑, 1,  

Barriers & Transport

BBB↑, 1,   GLUT1↓, 4,   NHE1↓, 1,   P-gp↓, 5,  

Immune & Inflammatory Signaling

COX2↓, 11,   CRP↓, 3,   CXCR4↓, 4,   IFN-γ↓, 2,   IKKα↓, 2,   IL10↓, 4,   IL1β↓, 2,   IL6↓, 7,   IL8↓, 2,   Inflam↓, 3,   IκB↓, 1,   JAK↓, 2,   JAK2↓, 2,   JAK3↓, 1,   Macrophages↓, 1,   Neut↓, 1,   NF-kB↓, 10,   p65↓, 1,   PSA↓, 4,   SOCS1↑, 1,   T-Cell↑, 1,   TLR4↓, 1,   TNF-α↓, 7,  

Cellular Microenvironment

PLC↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 9,   AR↑, 1,   CDK6↓, 2,   COMT↓, 1,   CYP19↓, 1,   ER(estro)↑, 1,   FKBP5↓, 1,  

Drug Metabolism & Resistance

ABCG2↓, 1,   BioAv↝, 1,   BioAv↓, 3,   BioAv↑, 3,   BioEnh↑, 7,   ChemoSen↑, 12,   ChemoSen↝, 1,   eff↑, 23,   eff↓, 3,   MDR1↓, 1,   MRP1↓, 1,   P450↓, 1,   RadioS↑, 2,   selectivity↑, 8,  

Clinical Biomarkers

AR↓, 9,   AR↑, 1,   BRCA1↑, 1,   CRP↓, 3,   EGFR↓, 10,   EZH2↓, 2,   HEC1↓, 1,   HemoG↓, 1,   HER2/EBBR2↓, 2,   IL6↓, 7,   Ki-67↓, 5,   KRAS↓, 1,   LDH↑, 2,   NOS2↓, 1,   PSA↓, 4,   RAGE↓, 2,  

Functional Outcomes

AntiCan↑, 3,   AntiTum↑, 3,   cardioP↑, 1,   chemoP↑, 4,   chemoPv↑, 6,   hepatoP↑, 1,   IMPDH1↓, 1,   IMPDH2↓, 1,   OS↑, 2,   OS?, 1,   PRAS40↓, 1,   Risk↓, 1,   TGFβR1↑, 1,   toxicity↓, 2,   TumVol↓, 2,   UBE2C↓, 1,  
Total Targets: 451

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

4-HNE↓, 1,   antiOx↑, 20,   antiOx↓, 2,   Catalase↑, 8,   Copper↓, 1,   Fenton↓, 1,   GPx↑, 6,   GSH⇅, 1,   GSH↑, 8,   H2O2↓, 1,   HO-1↑, 7,   Iron↓, 1,   Keap1↓, 3,   lipid-P↓, 11,   MDA↓, 10,   MDA↑, 1,   MPO↓, 1,   NOX4↓, 1,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↑, 16,   NRF2↓, 1,   ROS↓, 31,   ROS⇅, 1,   ROS↑, 1,   SOD↑, 10,   SOD2↑, 1,   TAC∅, 1,   TAC↑, 1,   Trx↑, 1,  

Metal & Cofactor Biology

IronCh↑, 3,   IronCh↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   MMP↑, 4,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   ALDOA↑, 1,   AMP↓, 1,   AMPK↑, 3,   CREB↑, 1,   FASN↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 1,   GPI↑, 1,   HK2↓, 1,   HK2↑, 1,   lactateProd↓, 1,   LDH↓, 2,   LDHA↑, 1,   LDL↓, 1,   NADPH↓, 2,   PFKL↑, 1,   PFKP↓, 1,   PKM1↑, 1,   PKM2↓, 3,   PONs↑, 1,   PPARα↑, 1,   SIRT1↑, 6,   SIRT1↓, 1,  

Cell Death

Akt↑, 4,   Akt↓, 1,   p‑Akt↑, 1,   Apoptosis↓, 5,   BAX↓, 1,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Bcl-2↓, 1,   Casp12↓, 1,   Casp3↓, 1,   GRP58↓, 1,   iNOS↓, 5,   p‑JNK↓, 1,   MAPK↑, 1,   MAPK↓, 3,   p38↑, 1,   p38↓, 1,  

Transcription & Epigenetics

Ach↑, 1,   other↓, 1,  

Protein Folding & ER Stress

ATF6↓, 2,   CHOP↓, 2,   ER Stress↓, 6,   GRP78/BiP↓, 5,   IRE1↓, 2,   PERK↓, 1,   p‑PERK↓, 1,   UPR↓, 1,   XBP-1↓, 1,  

Autophagy & Lysosomes

MitoP↑, 1,  

DNA Damage & Repair

P53↝, 1,  

Proliferation, Differentiation & Cell State

GSK‐3β↓, 1,   PI3K↑, 4,   PI3K↓, 1,   STAT3?, 1,   p‑STAT3↓, 1,  

Migration

5LO↓, 1,   AntiAg↑, 2,   AP-1↓, 2,   Ca+2↓, 2,   CDK5↓, 1,   PKCδ↓, 1,   p‑SMAD2↓, 1,   SPARC↓, 1,   TXNIP↓, 1,   ZO-1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   angioG↑, 1,   CLDN5↑, 1,   EGFR↓, 1,   Hif1a↑, 2,   NO↓, 1,   PDI↓, 1,   VEGF↓, 1,  

Barriers & Transport

BBB↝, 1,   BBB↑, 2,  

Immune & Inflammatory Signaling

COX2↓, 8,   CRP↓, 1,   CXCL1↓, 1,   HMGB1↓, 2,   ICAM-1↓, 1,   IFN-γ↑, 1,   IKKα↓, 1,   IL10↓, 1,   IL17↓, 1,   IL1β↓, 7,   IL6↓, 8,   IL8↓, 2,   Inflam↓, 26,   JAK2↑, 1,   MCP1↓, 1,   NF-kB↓, 12,   p65↓, 1,   TLR4↑, 1,   TNF-α↓, 10,  

Synaptic & Neurotransmission

AChE↓, 6,   BChE↓, 1,   BDNF↑, 2,   p‑tau↓, 2,   tau↓, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 6,   BACE↓, 2,   NLRP3↓, 4,  

Drug Metabolism & Resistance

BioAv↑, 10,   BioAv↓, 3,   BioAv↝, 1,   BioEnh↑, 3,   Dose↑, 1,   eff↝, 2,   eff↑, 4,   eff↓, 1,   Half-Life↑, 2,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BG↓, 1,   BP↓, 3,   CRP↓, 1,   EGFR↓, 1,   GutMicro↑, 1,   IL6↓, 8,   LDH↓, 2,  

Functional Outcomes

AntiCan↑, 2,   AntiDiabetic↑, 1,   cardioP↑, 10,   cognitive↑, 8,   hepatoP↑, 3,   memory↑, 4,   motorD↑, 2,   neuroP↑, 17,   Pain↓, 2,   radioP↑, 1,   RenoP↑, 1,   toxicity↓, 1,   Weight↓, 1,  

Infection & Microbiome

Bacteria↓, 1,   Sepsis↓, 3,  
Total Targets: 175

Research papers

Year Title Authors PMID Link Flag
2023Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activitiesAkif Hakan KurtPMC10043739https://pmc.ncbi.nlm.nih.gov/articles/PMC10043739/0
2010Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate CancerAnna SlusarzPMC4546096https://aacrjournals.org/cancerres/article/70/8/3382/562551/Common-Botanical-Compounds-Inhibit-the-Hedgehog0
2018Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease TherapyThaiane Coelho dos SantosPMC6201143https://pmc.ncbi.nlm.nih.gov/articles/PMC6201143/0
2022Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studiesAsifa Khan34176437https://pubmed.ncbi.nlm.nih.gov/34176437/0
2016Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapyPiwen Wanghttps://www.researchgate.net/publication/301933430_Green_tea_and_quercetin_sensitize_PC-3_xenograft_prostate_tumors_to_docetaxel_chemotherapy0
2012Quercetin Increased the Antiproliferative Activity of Green Tea Polyphenol (-)-Epigallocatechin Gallate in Prostate Cancer CellsPiwen Wanghttps://www.tandfonline.com/doi/abs/10.1080/01635581.2012.6615140
2009Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetinHsieh, T.-CPMC3641843https://pmc.ncbi.nlm.nih.gov/articles/PMC3641843/0
2022In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil TypeYanping Lin36580279https://pubmed.ncbi.nlm.nih.gov/36580279/0
2016Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer CellsPEI-HSUN TSAIhttps://ar.iiarjournals.org/content/36/12/63670
2006Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activityJun Lu16618767https://pubmed.ncbi.nlm.nih.gov/16618767/0
2021Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancerDina M El-KershPMC8007834https://pmc.ncbi.nlm.nih.gov/articles/PMC8007834/0
2025Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cellsSukannika Tubtimsrihttps://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-025-04782-50
2025Quercetin suppresses endometrial cancer stem cells via ERα-mediated inhibition of STAT3 signalingOu Tanghttps://link.springer.com/article/10.1007/s12672-025-03863-80
2025Quercetin-derived microbial metabolite DOPAC potentiates CD8+ T cell anti-tumor immunity via NRF2-mediated mitophagyPenghu Hanhttps://www.sciencedirect.com/science/article/abs/pii/S155041312500395X0
2025Biomarker discovery and phytochemical interventions in Alzheimer's disease: A path to therapeutic advancesMithila Debnathhttps://www.sciencedirect.com/science/article/pii/S26670313250002590
2025Quercetin: A natural solution with the potential to combat liver fibrosisAssociation of Basic Medical Sciences of FBIHhttps://medicalxpress.com/news/2025-03-quercetin-natural-solution-potential-combat.html#google_vignette0
2025Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasisMohamed J SaadhPMC11854426https://pmc.ncbi.nlm.nih.gov/articles/PMC11854426/0
2024The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli CellsJun MaPMC11355056https://pmc.ncbi.nlm.nih.gov/articles/PMC11355056/0
2024Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 ActivationYeter Topçu-TarladaçalışırPMC10767780https://pmc.ncbi.nlm.nih.gov/articles/PMC10767780/0
2024Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophagesJingyi Xuhttps://www.nature.com/articles/s41598-024-71569-y0
2024Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomasRafia A. Babahttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1318797/full0
2024Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated reviewQin Wanghttps://pubs.rsc.org/en/content/articlelanding/2024/fo/d3fo03831a0
2024The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 PathwayYu Ning37259219https://pubmed.ncbi.nlm.nih.gov/37259219/0
2024Targeting DNA methyltransferases for cancer therapyKaiyue Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00452068240055710
2024Quercetin exhibits cytotoxicity in cancer cells by inducing two-ended DNA double-strand breaksYuduki Someyahttps://www.sciencedirect.com/science/article/pii/S0006291X240151340
2024Quercetin: A Flavonoid with Potential for Treating Acute Lung InjuryMa HuangPMC11630707https://pmc.ncbi.nlm.nih.gov/articles/PMC11630707/0
2024Quercetin, a Flavonoid with Great Pharmacological CapacityEber Josue Carrillo-Martinezhttps://www.mdpi.com/1420-3049/29/5/10000
2024Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 AxesLixian Ding38190923https://pubmed.ncbi.nlm.nih.gov/38190923/0
2024Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAsFarhad Sheikhnia38889494https://pubmed.ncbi.nlm.nih.gov/38889494/0
2024The multifaceted role of quercetin derived from its mitochondrial mechanismAndres Carrillo-Garmendia37656383https://pubmed.ncbi.nlm.nih.gov/37656383/0
2024New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammationLi ZhangPMC11245930https://pmc.ncbi.nlm.nih.gov/articles/PMC11245930/0
2023Recent Advances in Potential Health Benefits of QuercetinFatemeh Aghababaeihttps://www.mdpi.com/1424-8247/16/7/10200
2023Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developmentsMohammad Yasin Zamanian37259891https://pubmed.ncbi.nlm.nih.gov/37259891/0
2023The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An updateNoushin LotfiPMC10011078https://pmc.ncbi.nlm.nih.gov/articles/PMC10011078/0
2023Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathwaysWanyu Wanghttps://www.sciencedirect.com/science/article/abs/pii/S09447113230029450
2023Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)Chien-Yi ChanPMC9818869https://pmc.ncbi.nlm.nih.gov/articles/PMC9818869/0
2023A Comprehensive Study on the Anti-cancer Effects of Quercetin and Its Epigenetic Modifications in Arresting Progression of Colon Cancer Cell ProliferationMeenu BhatiyaPMC9941246https://pmc.ncbi.nlm.nih.gov/articles/PMC9941246/0
2022Recent advances on the improvement of quercetin bioavailabilityKevser Kandemirhttps://www.sciencedirect.com/science/article/abs/pii/S09242244210065060
2022Endoplasmic Reticulum Stress-Relieving Effect of Quercetin in Thapsigargin-Treated HepatocytesOk-Kyung Kimhttps://e-fsbh.org/Synapse/Data/PDFData/9983FSBH/fsbh-2-e16.pdf0
2022Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of ToxipathyWeidong QiPMC9571766https://pmc.ncbi.nlm.nih.gov/articles/PMC9571766/0
2022Pharmacological Activity of Quercetin: An Updated ReviewGuanzhen WangPMC9731755https://pmc.ncbi.nlm.nih.gov/articles/PMC9731755/0
2022Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulationLing-Li Chen36309049https://pubmed.ncbi.nlm.nih.gov/36309049/0
2022Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1Bhuban Ruidas35511410https://pubmed.ncbi.nlm.nih.gov/35511410/0
2022A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem CellsPartha BiswasPMC9569933https://pmc.ncbi.nlm.nih.gov/articles/PMC9569933/0
2022Synthetic Pathways and the Therapeutic Potential of Quercetin and CurcuminAseel Ali HasanPMC9696847https://pmc.ncbi.nlm.nih.gov/articles/PMC9696847/0
2022Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer CellsSerpil Özsoyhttps://cyprusjmedsci.com/articles/quercetin-a-phytochemical-with-pro-apoptotic-effects-in-colon-cancer-cells/cjms.2021.2021-1470
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290
2022A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System DisordersDagmara Wróbel-BiedrawaPMC9027262https://pmc.ncbi.nlm.nih.gov/articles/PMC9027262/0
2022Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cellsXuan ChenPMC9593281https://pmc.ncbi.nlm.nih.gov/articles/PMC9593281/0
2022Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/AMPK pathwaysAming Sang35644425https://pubmed.ncbi.nlm.nih.gov/35644425/0
2022Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseasesHamidreza ZalpoorPMC9327369https://pmc.ncbi.nlm.nih.gov/articles/PMC9327369/0
2022Quercetin Mediated TET1 Expression Through MicroRNA-17 Induced Cell Apoptosis in Melanoma CellsYongjian Gaohttps://link.springer.com/article/10.1007/s10528-022-10286-50
2021Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expressionFen Lihttps://www.sciencedirect.com/science/article/pii/S00651281210014100
2021The interplay between reactive oxygen species and antioxidants in cancer progression and therapy: a narrative reviewOsama Hussein BekhetPMC8799102https://pmc.ncbi.nlm.nih.gov/articles/PMC8799102/0
2021Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitusGuoxiu ZuPMC8617296https://pmc.ncbi.nlm.nih.gov/articles/PMC8617296/0
2021Flavonoids Targeting HIF-1: Implications on Cancer MetabolismMarek SamecPMC7794792https://pmc.ncbi.nlm.nih.gov/articles/PMC7794792/0
2021The Effect of Quercetin Nanosuspension on Prostate Cancer Cell Line LNCaP via Hedgehog Signaling PathwayNadia MousaviPMC8279718https://pmc.ncbi.nlm.nih.gov/articles/PMC8279718/0
2021Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck CancersRobert Kubina https://www.mdpi.com/2072-6643/13/3/8450
2021Quercetin Protects Human Thyroid Cells against Cadmium ToxicityFrancesca Capriglionehttps://www.researchgate.net/publication/352759382_Quercetin_Protects_Human_Thyroid_Cells_against_Cadmium_Toxicity0
2021The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and ReoxygenationMeng-Ting Lihttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.732874/full0
2021The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of actionChunxiao HePMC8205781https://pmc.ncbi.nlm.nih.gov/articles/PMC8205781/0
2021Emerging impact of quercetin in the treatment of prostate cancerSoudeh Ghafouri-Fardhttps://www.sciencedirect.com/science/article/pii/S0753332221003334?via%3Dihub0
2021Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic ratsDi WangPMC8977087https://pmc.ncbi.nlm.nih.gov/articles/PMC8977087/0
2021Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and TherapyNishat Fatimahttps://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.758733/full0
2020Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer TherapyMohd YousufPMC7594119https://pmc.ncbi.nlm.nih.gov/articles/PMC7594119/0
2020Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effectsSi-Min Tanghttps://www.sciencedirect.com/science/article/pii/S07533322210033340
2020New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancerLuisa Alban32204090https://www.sciencedirect.com/science/article/pii/S0928493119317850?via%3Dihub0
2020Antioxidant vs. pro-oxidant activities of quercetin in aqueous phase: A Density Functional Theory studyTran Hoang Dieu Thaohttps://onlinelibrary.wiley.com/doi/abs/10.1002/vjch.2019000850
2020Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical MedicineDengyu YangPMC7790550https://pmc.ncbi.nlm.nih.gov/articles/PMC7790550/0
2020Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cellsAsma Vafadarhttps://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-020-00397-00
2020Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathwaysXinxing LuPMC7053318https://pmc.ncbi.nlm.nih.gov/articles/PMC7053318/0
2020Quercetin Enhanced Paclitaxel Therapeutic Effects Towards PC-3 Prostate Cancer Through ER Stress Induction and ROS ProductionXiangyu Zhang32021294https://pubmed.ncbi.nlm.nih.gov/32021294/0
2020Quercetin Inhibits Epithelial-to-Mesenchymal Transition (EMT) Process and Promotes Apoptosis in Prostate Cancer via Downregulating lncRNA MALAT1PMC7069588https://pmc.ncbi.nlm.nih.gov/articles/PMC7069588/0
2020Prospective randomized trial evaluating blood and prostate tissue concentrations of green tea polyphenols and quercetin in men with prostate cancerSusanne M. Henninghttps://pubs.rsc.org/en/content/articlelanding/2020/fo/d0fo00565g0
2019Theoretical Study of the Antioxidant Activity of Quercetin Oxidation ProductsAlejandro Vásquez-Espinalhttps://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2019.00818/full0
2019The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer MetabolismMarjorie Reyes-FariasPMC6651418https://pmc.ncbi.nlm.nih.gov/articles/PMC6651418/0
2019Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human healthRafiq A. Ratherhttps://onlinelibrary.wiley.com/doi/full/10.1002/cam4.14110
2019Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR PathwayHongyan WuPMC6572074https://pmc.ncbi.nlm.nih.gov/articles/PMC6572074/0
2019Neuroprotective Effects of Quercetin in Alzheimer’s DiseaseHaroon KhanPMC7023116https://pmc.ncbi.nlm.nih.gov/articles/PMC7023116/0
2019Antioxidant Activities of Quercetin and Its Complexes for Medicinal ApplicationDong Xu https://www.mdpi.com/1420-3049/24/6/11230
2019Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2Ji-Sook Jeonhttps://www.researchgate.net/publication/330505114_Regulation_of_the_Intracellular_ROS_Level_Is_Critical_for_the_Antiproliferative_Effect_of_Quercetin_in_the_Hepatocellular_Carcinoma_Cell_Line_HepG20
2019Quercetin Exerted Protective Effects in a Rat Model of Sepsis via Inhibition of Reactive Oxygen Species (ROS) and Downregulation of High Mobility Group Box 1 (HMGB1) Protein ExpressionWenjuan Cuihttps://www.researchgate.net/publication/334960432_Quercetin_Exerted_Protective_Effects_in_a_Rat_Model_of_Sepsis_via_Inhibition_of_Reactive_Oxygen_Species_ROS_and_Downregulation_of_High_Mobility_Group_Box_1_HMGB1_Protein_Expression0
2019Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cellsMadhumitha Kedhari Sundaramhttps://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.291470
2019Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cellsChieh-Yu LanPMC9306979https://pmc.ncbi.nlm.nih.gov/articles/PMC9306979/0
2019PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTHRobert SotlerPMC7314298https://pmc.ncbi.nlm.nih.gov/articles/PMC7314298/0
2019NRF2 Is Targeted By the Polyphenol Quercetin and Induces Apoptosis, in Part, through up Regulation of Pro Apoptotic MirsMarisa Claudia Alvarez De Prax PhDhttps://www.sciencedirect.com/science/article/pii/S00064971186045860
2019Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cellsAldo F Clemente-SotoPMC6390007https://pmc.ncbi.nlm.nih.gov/articles/PMC6390007/0
2018Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cellsVirginia Rubiohttps://www.sciencedirect.com/science/article/abs/pii/S00092797183061000
2018The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genesMarisa Claudia Alvarezhttps://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-018-0563-30
2018Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathwaySuat Erdogan30142541https://pubmed.ncbi.nlm.nih.gov/30142541/0
2018Quercetin and iron metabolism: What we know and what we need to knowLin Xiaohttps://www.sciencedirect.com/science/article/abs/pii/S02786915183008750
2018Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM)Rong WangPMC5788241https://pmc.ncbi.nlm.nih.gov/articles/PMC5788241/0
2018Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathwaysLongbin Caohttps://www.spandidos-publications.com/ijmm/42/3/16250
2018Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinaseAkhtar AliPMC6318463https://pmc.ncbi.nlm.nih.gov/articles/PMC6318463/0
2018Quercetin enrich diet during the early-middle not middle-late stage of alzheimer’s disease ameliorates cognitive dysfunctionYaqin LuPMC5934583https://pmc.ncbi.nlm.nih.gov/articles/PMC5934583/0
2018Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy inductionLijun Jia30025823https://pubmed.ncbi.nlm.nih.gov/30025823/0
2018Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathwaysAshley B WardPMC6001031https://pmc.ncbi.nlm.nih.gov/articles/PMC6001031/0
2018Chronic diseases, inflammation, and spices: how are they linked?Ajaikumar B KunnumakkaraPMC5785894https://pmc.ncbi.nlm.nih.gov/articles/PMC5785894/0
2018Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathwaysAshley B WardPMC6001031https://pmc.ncbi.nlm.nih.gov/articles/PMC6001031/0
2018Chapter 9 - Quercetin: Prooxidant Effect and Apoptosis in CancerPaola G. Mateushttps://www.sciencedirect.com/science/article/abs/pii/B978044464056700009X0
2018Quercetin: Prooxidant Effect and Apoptosis in CancerPaola G. Mateushttps://www.researchgate.net/publication/326802723_Quercetin_Prooxidant_Effect_and_Apoptosis_in_Cancer0
2017Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cellsRamakumar TummalaPMC5716891https://pmc.ncbi.nlm.nih.gov/articles/PMC5716891/0
2017Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cellsDinglai YuPMC5626388https://pmc.ncbi.nlm.nih.gov/articles/PMC5626388/0
2017Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-metYan ShuPMC5777119https://pmc.ncbi.nlm.nih.gov/articles/PMC5777119/0
2017CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemiaMaria RussoPMC5522089https://pmc.ncbi.nlm.nih.gov/articles/PMC5522089/0
2017Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231)Solaimuthu Balakrishnan28498520https://pubmed.ncbi.nlm.nih.gov/28498520/0
2017Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of MitochondriaJuan A Godoyhttps://www.researchgate.net/publication/309521810_Quercetin_Exerts_Differential_Neuroprotective_Effects_Against_H2O2_and_Ab_Aggregates_in_Hippocampal_Neurons_the_Role_of_Mitochondria0
2017The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled TrialFatemeh Javadi27710596https://pubmed.ncbi.nlm.nih.gov/27710596/0
2017Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular functionJunji Terao28377278https://pubmed.ncbi.nlm.nih.gov/28377278/0
2017Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivoJin ZhouPMC5338765https://pmc.ncbi.nlm.nih.gov/articles/PMC5338765/0
2016Quercetin and the mitochondria: A mechanistic viewMarcos Roberto de Oliveirahttps://www.sciencedirect.com/science/article/abs/pii/S07349750153006900
2016Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cellsPiwen WangPMC4314369https://pmc.ncbi.nlm.nih.gov/articles/PMC4314369/0
2016Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cellsSo-Yeon KimPMC5630304https://pmc.ncbi.nlm.nih.gov/articles/PMC5630304/0
2016Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathwayJunjun Chenhttps://www.sciencedirect.com/science/article/abs/pii/S17564646160003960
2016Molecular mechanisms of action of quercetin in cancer: recent advancesDharambir Kashyaphttps://link.springer.com/article/10.1007/s13277-016-5184-x0
2016Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signalingXinsheng Shenhttps://www.spandidos-publications.com/ijmm/38/2/6190
2016Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancerAsha Srinivasan25968914https://pubmed.ncbi.nlm.nih.gov/25968914/0
2016Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activitiesElena de BlasPMC5015235https://pmc.ncbi.nlm.nih.gov/articles/PMC5015235/0
2016Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcuminVikas Sharma27132804https://pubmed.ncbi.nlm.nih.gov/27132804/0
2016Molecular Targets Underlying the Anticancer Effects of Quercetin: An UpdateFazlullah KhanPMC5037516https://pmc.ncbi.nlm.nih.gov/articles/PMC5037516/0
2016Quercetin and ovarian cancer: An evaluation based on a systematic reviewArefe ParvareshPMC5122222https://pmc.ncbi.nlm.nih.gov/articles/PMC5122222/0
2016Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and MoreLucio G CostaPMC4745323https://pmc.ncbi.nlm.nih.gov/articles/PMC4745323/0
2015Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograftWei-Jiunn Lee25138434https://pubmed.ncbi.nlm.nih.gov/25138434/0
2015Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in MiceLina M RuizPMC4464588https://pmc.ncbi.nlm.nih.gov/articles/PMC4464588/0
2015The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model miceSabogal-Guáqueta Angélica MariaPMC4387064https://pmc.ncbi.nlm.nih.gov/articles/PMC4387064/0
2015Overviews of Biological Importance of Quercetin: A Bioactive FlavonoidAlexander Victor Anand DavidPMC5214562https://pmc.ncbi.nlm.nih.gov/articles/PMC5214562/?report=reader0
2015Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell LinesDaniela Catanzaro26434118https://pubmed.ncbi.nlm.nih.gov/26434118/0
2015Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicinShekoufeh AtashpourPMC4556754https://pmc.ncbi.nlm.nih.gov/articles/PMC4556754/0
2015Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivoFeiya Yanghttps://www.spandidos-publications.com/or/35/3/16020
2015Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell LinesDaniela Catanzaro26434118https://pubmed.ncbi.nlm.nih.gov/26434118/0
2014Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal AbsorptionKaleb C. Lund, PhDhttps://restorativemedicine.org/wp-content/uploads/2014/04/Combination-Effects-of-Quercetin-Resveratrol-and-Curcumin.pdf0
2014Quercetin, a natural dietary flavonoid, acts as a chemopreventive agentSharmila Govindarajhttps://www.researchgate.net/publication/265134173_Quercetin_a_natural_dietary_flavonoid_acts_as_a_chemopreventive_agent_against_prostate_cancer_in_an_in_vivo_model_by_inhibiting_the_EGFR_signaling_pathway0
2014Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trialVladimir J LozanovskiPMC4059031https://pmc.ncbi.nlm.nih.gov/articles/PMC4059031/0
2014Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells — up regulation of Nrf2 expression and down regulation of NF-κB and COX-2Periasamy Ramyaahttps://www.sciencedirect.com/science/article/abs/pii/S03044165130046490
2014Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrowRuiqing ChenPMC5598249https://pmc.ncbi.nlm.nih.gov/articles/PMC5598249/0
2014Dietary Quercetin Exacerbates the Development of Estrogen-Induced Breast Tumors in Female ACI RatsBhupendra SinghPMC4006967https://pmc.ncbi.nlm.nih.gov/articles/PMC4006967/0
2014Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathwayFirdous Ahmad Bhathttps://www.sciencedirect.com/science/article/abs/pii/S09552863140014910
2014Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA‑21Feng‑Qiang Yanghttps://www.spandidos-publications.com/mmr/11/2/10850
2014The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cellsKuo-Ching Liu22431435https://pubmed.ncbi.nlm.nih.gov/22431435/0
2014Chemical Proteomics Identifies Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1 as the Molecular Target of Quercetin in Its Anti-cancer Effects in PC-3 CellsChia-Chen KoPMC4139222https://pmc.ncbi.nlm.nih.gov/articles/PMC4139222/0
2013Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathwayY WangPMC3854307https://pmc.ncbi.nlm.nih.gov/articles/PMC3854307/0
2013Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer CellsGuen Tae KimPMC4189461https://pmc.ncbi.nlm.nih.gov/articles/PMC4189461/0
2013Quercetin Potentiates Apoptosis by Inhibiting Nuclear Factor-kappaB Signaling in H460 Lung Cancer CellsHyeSook Younhttps://www.jstage.jst.go.jp/article/bpb/36/6/36_b12-01004/_article0
2013Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green teaPiwen WangPMC3858726https://pmc.ncbi.nlm.nih.gov/articles/PMC3858726/0
2013Bioavailability of quercetin: problems and promisesX Cai23514412https://pubmed.ncbi.nlm.nih.gov/23514412/0
2013Antioxidant/prooxidant effects of α-tocopherol, quercetin and isorhamnetin on linoleic acid peroxidation induced by Cu(II) and H2O2Temelkan Bakırhttps://www.tandfonline.com/doi/full/10.3109/09637486.2013.8456540
2013Quercetin and vitamin C supplementation: effects on lipid profile and muscle damage in male athletesGholamreza AskariPMC3665028https://pmc.ncbi.nlm.nih.gov/articles/PMC3665028/0
2013Chemopreventive Effect of Quercetin in MNU and Testosterone Induced Prostate Cancer of Sprague-Dawley RatsSharmila Govindarajhttps://www.researchgate.net/publication/259250552_Chemopreventive_Effect_of_Quercetin_in_MNU_and_Testosterone_Induced_Prostate_Cancer_of_Sprague-Dawley_Rats0
2012Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling PathwaysPoyil Pratheeshkumarhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00475160
2012Prooxidant activities of quercetin, p-courmaric acid and their derivatives analysed by quantitative structure–activity relationshipBao Yanghttps://www.sciencedirect.com/science/article/abs/pii/S03088146110127020
2012Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancerXiang Gao23044718https://pubmed.ncbi.nlm.nih.gov/23044718/0
2012A review of quercetin: Antioxidant and anticancer propertiesSatyendra Singh Baghelhttps://www.researchgate.net/publication/267333748_A_review_of_quercetin_Antioxidant_and_anticancer_properties0
2012Pharmacokinetics of Quercetin Absorption from Apples and Onions in Healthy HumansJihyun Leehttps://mitchell.ucdavis.edu/sites/g/files/dgvnsk916/files/2017-05/2012%20QUercetin%20pharmacokinetics%20Lee.pdf0
2012Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathwayRui-Qin Yao22936120https://pubmed.ncbi.nlm.nih.gov/22936120/0
2011Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3)Kalimuthu Senthilkumar21308698https://pubmed.ncbi.nlm.nih.gov/21308698/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2011Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cellsShu-Lan Yeh21267808https://pubmed.ncbi.nlm.nih.gov/21267808/0
2011Quercetin and Cancer ChemopreventionLara GibelliniPMC3136711https://pmc.ncbi.nlm.nih.gov/articles/PMC3136711/0
2011Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κBLi WeiPMC3262214https://pmc.ncbi.nlm.nih.gov/articles/PMC3262214/0
2010Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cellsGuomin Niu21173056https://pubmed.ncbi.nlm.nih.gov/21173056/0
2010Interfering with ROS Metabolism in Cancer Cells: The Potential Role of QuercetinLara GibelliniPMC3835130https://pmc.ncbi.nlm.nih.gov/articles/PMC3835130/0
2010Quercetin inhibits a large panel of kinases implicated in cancer cell biologyRainatou Boly21206969https://pubmed.ncbi.nlm.nih.gov/21206969/0
2010Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and managementAshley J Vargashttps://academic.oup.com/nutritionreviews/article-abstract/68/7/418/1821581?redirectedFrom=fulltext&login=false0
2010Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cellsGangjun Du19466611https://pubmed.ncbi.nlm.nih.gov/19466611/0
2010Preclinical Colorectal Cancer Chemopreventive Efficacy and p53-Modulating Activity of 3′,4′,5′-Trimethoxyflavonol, a Quercetin AnalogLynne M HowellsPMC2917785https://pmc.ncbi.nlm.nih.gov/articles/PMC2917785/0
2010The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transitionSu-Ni TangPMC2933702https://pmc.ncbi.nlm.nih.gov/articles/PMC2933702/0
2010Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapyMohammad R. Noori-Daloiihttps://link.springer.com/article/10.1007/s12032-010-9603-30
2010The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transitionSu-Ni Tanghttps://link.springer.com/article/10.1186/1750-2187-5-140
2010Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)Kalimuthu Senthilkumar20658310https://pubmed.ncbi.nlm.nih.gov/20658310/0
2010Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5Young-Hwa Junghttps://www.sciencedirect.com/science/article/abs/pii/S00243205100002630
2009Protective effect of quercetin in primary neurons against Aβ(1–42): relevance to Alzheimer's diseaseMubeen Ahmad Ansarihttps://www.sciencedirect.com/science/article/abs/pii/S09552863080008060
2009Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progressionJae-Hoon JeongPMC2736626https://pmc.ncbi.nlm.nih.gov/articles/PMC2736626/0
2009Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/β-Catenin Signaling PathwayBao-En Shan19440933https://pubmed.ncbi.nlm.nih.gov/19440933/0
2008Role of Bax in quercetin-induced apoptosis in human prostate cancer cellsDae-Hee LeePMC3266687https://pmc.ncbi.nlm.nih.gov/articles/PMC3266687/0
2008The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90Ravikumar Aalinkeel, Bhttps://onlinelibrary.wiley.com/doi/10.1002/pros.208450
2007Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell linesAmit Chaudharyhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X060050590
2007Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cellsWenshu Chen17548900https://pubmed.ncbi.nlm.nih.gov/17548900/0
2007Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenaseE V Schmalhausen17559999https://pubmed.ncbi.nlm.nih.gov/17559999/0
2007Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid raftsFaiy H Psahoulia17876056https://pubmed.ncbi.nlm.nih.gov/17876056/0
2007Quercetin: A Versatile FlavonoidParul Lakhanpahttps://www.researchgate.net/publication/26502595_Quercetin_A_Versatile_Flavonoid0
2006Quercetin, but Not Its Glycosidated Conjugate Rutin, Inhibits Azoxymethane-Induced Colorectal Carcinogenesis in F344 RatsDihal Ashwin A.https://www.sciencedirect.com/science/article/pii/S0022316622085388?via%3Dihub0
2006Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3Marati R Vijayababu16898267https://pubmed.ncbi.nlm.nih.gov/16898267/0
2006Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cellsMarati R VijayababuPMC1482693https://pmc.ncbi.nlm.nih.gov/articles/PMC1482693/0
2006Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period methodSeiichiro Fujisawa16433026https://pubmed.ncbi.nlm.nih.gov/16433026/0
2006Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activityJonathan D.H. Morrishttps://www.sciencedirect.com/science/article/abs/pii/S0304383505007433?via%3Dihub0
2006Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3)M R Vijayababu16645725https://pubmed.ncbi.nlm.nih.gov/16645725/0
2005Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expressionMarati R Vijayababu16049707https://pubmed.ncbi.nlm.nih.gov/16049707/0
2005Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cellsTae-Jin Lee16274926https://pubmed.ncbi.nlm.nih.gov/16274926/0
2005Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetinRoberta Ferraresi16298752https://pubmed.ncbi.nlm.nih.gov/16298752/0
2005Low Concentrations of Flavonoids Are Protective in Rat H4IIE Cells Whereas High Concentrations Cause DNA Damage and ApoptosisWätjen Wimhttps://www.sciencedirect.com/science/article/pii/S0022316622100908?via%3Dihub0
2004Inhibition of Prostate Cancer Cell Colony Formation by the Flavonoid Quercetin Correlates with Modulation of Specific Regulatory GenesHari Krishnan NairPMC321331https://pmc.ncbi.nlm.nih.gov/articles/PMC321331/0
2004Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cellsHuiqing Yuanhttps://www.sciencedirect.com/science/article/abs/pii/S03043835040028000
2004Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation. Quercetin as an effective antioxidant against pro-oxidant effects of uratePaulo Filipe15128308https://pubmed.ncbi.nlm.nih.gov/15128308/0
2003Anti- and pro-oxidant activity of rutin and quercetin derivativesMarc Kessler12625877https://pubmed.ncbi.nlm.nih.gov/12625877/0
2003Anti- and prooxidant effects of chronic quercetin administration in ratsEun Jeong Choi14660033https://pubmed.ncbi.nlm.nih.gov/14660033/0
2003Intracellular metabolism and bioactivity of quercetin and its in vivo metabolitesJeremy P E SpencerPMC1223367https://pmc.ncbi.nlm.nih.gov/articles/PMC1223367/0
2003The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosisJeong-Chae Lee14644160https://pubmed.ncbi.nlm.nih.gov/14644160/0
2002Effects of quercetin on the heat-induced cytotoxicity of prostate cancer cellsTakashi Nakanomahttps://onlinelibrary.wiley.com/doi/10.1046/j.1442-2042.2001.00389.x0
2001Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cellsN Xinghttps://pubmed.ncbi.nlm.nih.gov/11238180/0
2001Effects of the flavonoid drug Quercetin on the response of human prostate tumours to hyperthermia in vitro and in vivoA. Aseahttps://www.tandfonline.com/doi/pdf/10.1080/026567301198900
1999Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal productD Metodiewa9890646https://pubmed.ncbi.nlm.nih.gov/9890646/0
1989Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNAMiranda J. Laughtonhttps://www.sciencedirect.com/science/article/abs/pii/0006295289904425?via%3Dihub0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen LiPMC10432483https://pmc.ncbi.nlm.nih.gov/articles/PMC10432483/0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen Lihttps://www.nature.com/articles/s41598-023-39279-z0
2019The Effect of Resveratrol and Quercetin on Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem CellMustafa Hoca31595775https://pubmed.ncbi.nlm.nih.gov/31595775/0
2013Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27aArmando Del Follohttps://www.researchgate.net/publication/236082282_Resveratrol_and_Quercetin_in_Combination_Have_Anticancer_Activity_in_Colon_Cancer_Cells_and_Repress_Oncogenic_microRNA-27a0
2021Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's DiseaseSurya Nath Pandey34010562https://pubmed.ncbi.nlm.nih.gov/34010562/0
2022Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascadeShoaib Alam34636440https://pubmed.ncbi.nlm.nih.gov/34636440/0
2020Chemoprevention of prostate cancer cells by vitamin C plus quercetin: role of Nrf2 in inducing oxidative stressAli Abbasihttps://www.researchgate.net/publication/344254995_Chemoprevention_of_Prostate_Cancer_Cells_by_Vitamin_C_plus_Quercetin_role_of_Nrf2_in_Inducing_Oxidative_Stress0
2017The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cellsZohreh Mostafavi-PourPMC5403368https://pmc.ncbi.nlm.nih.gov/articles/PMC5403368/0