tbResList Print — RES Resveratrol

Filters: qv=141, qv2=%, rfv=%

Product

RES Resveratrol
Features: polyphenol
Description: <b>Found</b> in red grapes and products made with grapes.<br>
Resveratrol is a polyphenol compound found in various plant species, including grapes, berries, and peanuts. <br>
• Anti-inflammatory effects, Antioxidant effects:<br>
- <a href="tbResList.php?qv=141&tsv=10&wNotes=on">Antiplatelet aggregation</a> for stroke prevention<br>
- <a href="tbResList.php?qv=141&tsv=792&wNotes=on">BioAvialability</a> use piperine <br>
- some sources may use Japanese knotweed roots (Reynoutria Japonica - root) as source which might contain Emodin (laxative)<br>
-known as Nrf2 activator, both in cancer and normal cells. Which raises controversity of use in ROS↑ therapies. Interestingly there are reports of
<a href="https://nestronics.ca/dbx/tbResList.php?qv=141&&tsv=226&wNotes=on&exSp=open">NRF2↑ and ROS↑</a>
in cancer cells. This raises the question of if it is a chemosensitizer. However other reports indicate NRF2 droping with Res, indicating it maybe a chemosenstizer.<br>
- RES is also considered to be them most effective natural
<a href="tbResList.php?qv=141&tsv=634&wNotes=on&word=SIRT1↑">SIRT1↑</a>
-activating compound (STACs). <br>


<br>
However, in the presence of certain metals, such as copper or iron, resveratrol can undergo a process called Fenton reaction, which can lead to the generation of reactive oxygen species (ROS).
The pro-oxidant effects of resveratrol are often observed at high concentrations, typically above 50-100 μM, and in the presence of certain metals or other pro-oxidant agents. In contrast, the antioxidant effects of resveratrol are typically observed at lower concentrations, typically below 10-20 μM.<br>
<br>
Clinical trials have used doses ranging from 150 mg to 5 grams per day. Lower doses (< 1 g/day) are often well-tolerated, but higher doses might be necessary for therapeutic effects and can be associated with side effects.<br>

<br>
-Note <a href="tbResList.php?qv=141&tsv=1109&wNotes=on&exSp=open">half-life</a> 1-3 hrs?.<br>
<a href="tbResList.php?qv=141&tsv=792&wNotes=on&exSp=open">BioAv</a> poor:
min 5uM/L required for chemopreventive effects, but 25mg Oral only yeilds 20nM. co-administration of piperine <br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- usually induce
<a href="tbResList.php?qv=141&tsv=275&wNotes=on">ROS</a> production in cancer cells, while reducing ROS
in normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=141&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=141&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=141&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=141&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=141&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=141&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=141&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=141&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=HSP">HSP↓</a>,
<!-- <a href="tbResList.php?qv=141&wNotes=on&word=Prx">Prx</a>, --><!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=141&tsv=226&wNotes=on&word=NRF2">NRF2</a>(typically increased),
<a href="tbResList.php?qv=141&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<a href="tbResList.php?qv=141&wNotes=on&word=SOD">SOD↓</a>,
<a href="tbResList.php?qv=141&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=141&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=141&tsv=597&wNotes=on">HO1↓</a>(wrong direction),
<a href="tbResList.php?qv=141&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=141&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=141&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=141&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=141&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=141&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=141&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=141&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=141&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=141&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=141&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=141&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=141&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=141&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=141&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=141&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=141&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=141&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=141&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=141&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=141&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=141&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=141&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=141&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=141&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=141&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=141&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=141&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=141&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=141&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=141&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=141&tsv=1247&wNotes=on">SDF1↓</a>,
<a href="tbResList.php?qv=141&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=141&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=141&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=141&tsv=1178&wNotes=on">MARK4↓</a> --><!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=141&tsv=140&wNotes=on">HDAC↓</a>,
<!-- <a href="tbResList.php?qv=141&tsv=85&wNotes=on">DNMT1↓</a>, -->
<!-- <a href="tbResList.php?qv=141&tsv=86&wNotes=on">DNMT3A↓</a>, -->
<a href="tbResList.php?qv=141&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=141&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=141&tsv=506&wNotes=on">Sp proteins↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=141&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=141&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=141&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=141&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=141&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=141&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=141&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=141&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=141&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=141&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=141&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=141&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=141&tsv=1117&wNotes=on">TOP1↓</a>,
<a href="tbResList.php?qv=141&tsv=657&wNotes=on">TET1↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=141&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=141&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=141&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=141&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=141&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=141&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=141&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=141&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=141&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=141&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=141&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=141&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=141&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=141&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=141&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=141&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=141&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=141&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=141&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=141&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=141&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=141&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=141&tsv=141&wNotes=on">Hh↓</a>,
<!-- <a href="tbResList.php?qv=141&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=141&tsv=124&wNotes=on">GLi1↓</a>, -->
<a href="tbResList.php?qv=141&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=141&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=141&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=141&tsv=357&wNotes=on">n-myc↓</a>, -->
<a href="tbResList.php?qv=141&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=141&tsv=222&wNotes=on">notch2↓</a>,
<a href="tbResList.php?qv=141&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=141&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=141&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=141&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=141&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=141&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=141&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=141&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=141&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=141&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=141&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=141&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=141&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=141&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=141&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=141&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=141&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=141&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=141&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=141&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=141&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=141&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=141&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (dose- & context-dependent)</td>
<td>↓ ROS / buffered</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>Resveratrol can act as a pro-oxidant in cancer cells while functioning as an antioxidant in normal cells</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Driver</td>
<td>Execution of intrinsic apoptosis</td>
<td>Mitochondrial dysfunction and apoptosis follow ROS elevation in cancer cells</td>
</tr>

<tr>
<td>3</td>
<td>SIRT1 / AMPK axis</td>
<td>↑ AMPK; context-dependent SIRT1 modulation</td>
<td>↑ SIRT1 / ↑ AMPK</td>
<td>Driver</td>
<td>Metabolic stress signaling</td>
<td>Resveratrol modulates energy-sensing pathways affecting survival and metabolism</td>
</tr>

<tr>
<td>4</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR</td>
<td>↔ adaptive suppression</td>
<td>Secondary</td>
<td>Growth and anabolic inhibition</td>
<td>Downregulation of growth signaling contributes to cytostasis and apoptosis sensitization</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of survival and inflammatory transcription</td>
<td>NF-κB inhibition contributes to reduced proliferation and invasion</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↑ G1/S or G2/M arrest</td>
<td>↔ largely spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects upstream signaling disruption</td>
</tr>

<tr>
<td>7</td>
<td>HIF-1α / VEGF axis</td>
<td>↓ HIF-1α; ↓ VEGF</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Anti-angiogenic pressure</td>
<td>Interference with hypoxia-driven adaptation and angiogenesis</td>
</tr>

</table>




Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 1,   ATF3↑, 1,   Catalase↓, 1,   Ferroptosis↑, 1,   GPx↑, 1,   GPx4↓, 1,   GSH↑, 1,   GSH↓, 1,   GSTs↑, 1,   H2O2↑, 1,   HO-1↑, 2,   HO-1↓, 1,   lipid-P↓, 2,   lipid-P↑, 1,   NAF1↓, 2,   NRF2↑, 6,   NRF2↓, 1,   OXPHOS↑, 1,   OXPHOS↓, 1,   Prx↓, 1,   ROS↑, 5,   ROS⇅, 2,   ROS↓, 2,   ROS↝, 1,   mt-ROS↑, 1,   SIRT3↑, 1,   SOD↑, 1,   SOD2↓, 1,   TAC↑, 1,   TAC?, 1,   TKT↝, 1,   Trx↓, 1,   Trx1↓, 1,   xCT↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   ATP↓, 2,   MKP5↑, 1,   MMP↓, 1,   OCR↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 4,   cMyc↓, 6,   ECAR↓, 1,   FASN↑, 1,   FBI-1↓, 1,   FDG↓, 1,   G6PD↓, 1,   glucose↓, 1,   GlucoseCon↓, 6,   glut↓, 1,   GlutMet↑, 1,   GlutMet↓, 1,   Glycolysis↓, 6,   HK2↓, 6,   lactateProd↓, 7,   LDH↓, 1,   NADPH↑, 1,   PDH↑, 2,   PFK↓, 2,   PFK1↓, 2,   PI3K/Akt↓, 1,   PKM2↓, 7,   POLD1↓, 1,   PPP↓, 1,   R5P↝, 1,   SIRT1↑, 12,   SIRT1↓, 1,   SIRT2↓, 1,   TCA↑, 1,   Warburg↓, 2,  

Cell Death

AhR↓, 1,   Akt↓, 14,   p‑Akt↓, 1,   Apoptosis↑, 3,   BAX↑, 1,   BAX↓, 1,   Bcl-2↓, 2,   Bcl-xL↓, 1,   BIM↑, 1,   BMP2↑, 1,   Casp3↑, 2,   cl‑Casp3↑, 1,   Casp9↑, 1,   CK2↓, 3,   Cyt‑c↑, 4,   Diablo↑, 1,   DR4↑, 2,   DR5↑, 2,   FasL↓, 1,   Ferroptosis↑, 1,   GADD34↑, 1,   iNOS↓, 1,   p‑JNK↓, 2,   MAPK↓, 2,   MAPK↑, 2,   Mcl-1↓, 1,   MDM2↓, 1,   necrosis↑, 1,   p27↑, 5,   p27↓, 1,   p38↓, 1,   p38↑, 1,   p‑p38↑, 2,   PUMA↑, 1,   survivin↓, 1,   Telomerase↓, 1,   TumCD↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   SOX9↑, 1,   Sp1/3/4↓, 8,   Sp1/3/4↑, 1,  

Transcription & Epigenetics

cJun↑, 1,   EZH2↓, 1,   miR-21↓, 1,   miR-27a-3p↓, 1,   other↓, 1,   other↑, 1,   other↝, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

ATF6↑, 2,   CHOP↑, 3,   p‑eIF2α↑, 2,   ER Stress↑, 5,   GRP78/BiP↑, 2,   GRP78/BiP↓, 1,   GRP94↑, 1,   HSP27↓, 1,   IRE1↑, 1,   PERK↑, 2,   UPR↑, 2,   XBP-1↑, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   BNIP3↑, 1,   p62↓, 1,   p62↑, 1,   TumAuto↑, 2,   TumAuto↓, 1,  

DNA Damage & Repair

ATM↑, 1,   BRCA1↑, 1,   p‑CHK1↑, 1,   DNAdam↑, 3,   DNAdam↓, 1,   DNMTs↓, 2,   P53↑, 8,   p53 Wildtype∅, 1,   PARP↑, 1,   cl‑PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP1↑, 1,   RAD51↓, 1,   SIRT6↑, 1,   TP53↑, 1,   γH2AX↑, 2,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   CDK4↝, 1,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 8,   cycD1/CCND1↑, 1,   cycE/CCNE↑, 1,   P21↑, 5,   P21↓, 1,   TumCCA↑, 7,  

Proliferation, Differentiation & Cell State

ALDH↓, 2,   ALDH1A1↓, 4,   Axin2↓, 1,   CD133↓, 6,   CD24↓, 1,   CD44↓, 6,   CSCs↓, 14,   EMT↓, 2,   EP4↑, 1,   ERK↓, 3,   p‑ERK↓, 1,   FGF↑, 1,   FOXO↑, 2,   FOXO4↓, 1,   Gli1↓, 6,   GSK‐3β↝, 2,   GSK‐3β↑, 2,   p‑GSK‐3β↓, 1,   HDAC↓, 1,   HDAC1↓, 1,   HDAC3↓, 1,   HDAC8↓, 1,   HH↓, 7,   IGF-1↓, 2,   IGF-1R↓, 1,   mTOR↓, 8,   Nanog↓, 2,   Nestin↓, 1,   NOTCH⇅, 1,   NOTCH↓, 3,   NOTCH1↓, 1,   NOTCH2↑, 1,   NOTCH2↓, 1,   OCT4↓, 3,   p300↓, 1,   PI3K↓, 7,   p‑PI3K↓, 1,   PTCH1↓, 2,   PTEN↑, 4,   RAS↓, 1,   Shh↓, 3,   Smo↓, 3,   SOX2↓, 3,   Src↓, 1,   p‑STAT3↓, 2,   STAT3↓, 8,   STAT5↓, 1,   TCF↓, 1,   TOP1?, 1,   TOP2↓, 1,   TumCG↓, 8,   Wnt↓, 8,   Wnt/(β-catenin)↓, 1,  

Migration

5LO↓, 1,   ACTA2↓, 1,   AntiAg↑, 2,   Ca+2↑, 3,   Ca+2↝, 1,   Ca+2↓, 1,   CXCL12↓, 1,   E-cadherin↑, 1,   E-cadherin↓, 2,   FAK↓, 2,   Fibronectin↑, 1,   Fibronectin↓, 1,   GLI2↓, 1,   HLA↑, 1,   ITGB1↓, 1,   Ki-67↓, 3,   MALAT1↓, 2,   MMP2↓, 8,   MMP7↓, 2,   MMP9↓, 13,   MMPs↓, 4,   N-cadherin↓, 5,   N-cadherin↑, 1,   PKCδ↑, 1,   Rho↓, 1,   ROCK1↓, 2,   Slug↓, 2,   Smad1↓, 1,   SMAD2↓, 1,   p‑SMAD2↓, 1,   SMAD3↓, 1,   p‑SMAD3↓, 1,   Snail↓, 1,   Snail↑, 1,   SOX4↓, 1,   talin↓, 1,   TET1↑, 2,   TGF-β↓, 1,   TIMP1↑, 2,   TIMP2↑, 2,   TIMP3↑, 1,   TumCI↓, 1,   TumCMig↓, 8,   TumCP↓, 1,   TumMeta↓, 2,   Twist↓, 1,   TXNIP↑, 1,   uPA↓, 1,   uPAR↓, 1,   Vim↓, 2,   Vim↑, 1,   Vim?, 1,   Zeb1↓, 1,   α-SMA↓, 2,   β-catenin/ZEB1↓, 9,  

Angiogenesis & Vasculature

angioG↓, 6,   ATF4↑, 1,   EGFR↓, 3,   Hif1a↓, 11,   Hif1a↑, 1,   PDGFR-BB↓, 1,   TXA2↑, 1,   VEGF↓, 9,   ZBTB10↑, 1,  

Barriers & Transport

GLUT1↓, 4,  

Immune & Inflammatory Signaling

CD4+↓, 1,   cellSen↑, 1,   COX2↓, 14,   CRP↓, 1,   CXCR2↑, 1,   CXCR4↓, 2,   FOXP3↓, 1,   IL1↓, 1,   IL10↓, 1,   IL18↓, 1,   IL1β↓, 2,   IL6↓, 6,   IL8↓, 2,   Inflam↓, 3,   JAK↓, 1,   JAK2↓, 1,   Macrophages↓, 1,   MCP1↓, 1,   Neut↓, 1,   NF-kB↓, 16,   p‑NF-kB↓, 2,   p65↓, 1,   PD-1↓, 1,   PD-L1↑, 1,   PGE2↓, 1,   PSA↓, 2,   T-Cell↑, 1,   T-Cell↓, 1,   Th1 response↑, 1,   TNF-α↓, 4,  

Protein Aggregation

Aβ↓, 1,   NLRP3↓, 5,  

Hormonal & Nuclear Receptors

AR↓, 4,   CDK6↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↓, 5,   BioAv↑, 3,   BioEnh?, 1,   ChemoSen↑, 15,   ChemoSen⇅, 1,   Dose?, 1,   Dose↝, 9,   Dose↑, 2,   eff↓, 4,   eff↑, 20,   eff↝, 3,   Half-Life↝, 3,   Half-Life↓, 1,   Half-Life↑, 1,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 7,   selectivity↑, 1,  

Clinical Biomarkers

AR↓, 4,   BRCA1↑, 1,   CRP↓, 1,   E6↓, 1,   EGFR↓, 3,   EZH2↓, 1,   HER2/EBBR2↓, 1,   IL6↓, 6,   Ki-67↓, 3,   LDH↓, 1,   PD-L1↑, 1,   PSA↓, 2,   TP53↑, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiTum↑, 1,   cardioP↑, 2,   chemoPv↑, 3,   ChemoSideEff↓, 1,   hepatoP↑, 1,   NKG2D↑, 1,   TumVol↓, 1,   TumW↓, 1,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 360

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 21,   Catalase↑, 7,   GPx↑, 5,   GSH↑, 9,   GSR↑, 2,   GSTs↑, 1,   H2O2↓, 1,   HO-1↑, 10,   HO-1⇅, 1,   Keap1↓, 3,   mt-lipid-P↓, 1,   lipid-P↓, 5,   MDA↓, 4,   Mets↝, 1,   MPO↓, 2,   NQO1↑, 3,   Nrf1?, 1,   NRF2↑, 11,   RNS↓, 1,   ROS↓, 21,   ROS↑, 1,   SIRT3↑, 1,   SOD↑, 7,  

Mitochondria & Bioenergetics

ATP↑, 1,   Insulin↓, 1,   MMP↑, 2,   mtDam↓, 1,   PGC-1α↑, 2,   PGC-1α↓, 1,  

Core Metabolism/Glycolysis

Acetyl-CoA↓, 1,   ALAT↓, 1,   AMPK↑, 10,   cMyc↑, 1,   p‑CREB↑, 2,   ECAR∅, 1,   FAO↑, 1,   FASN↓, 1,   G6PD↑, 1,   glucose↓, 1,   GlutMet↑, 1,   Glycolysis↝, 2,   HK2↑, 1,   LDHA↑, 2,   LDL↓, 1,   NAD↑, 1,   NADH:NAD↑, 1,   p‑PDK1↓, 1,   PDK1↓, 1,   PKM2↑, 2,   PPARγ↑, 2,   SIRT1↑, 20,   SIRT2↑, 1,   SREBP1↓, 1,  

Cell Death

Akt↓, 1,   Akt↑, 1,   p‑Akt↓, 1,   Apoptosis↓, 2,   BAX↓, 1,   Bcl-2↑, 1,   Casp3↓, 1,   Cyt‑c∅, 1,   iNOS↑, 1,   iNOS↓, 2,   p38↑, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,   Sp1/3/4↓, 3,   Sp1/3/4↑, 1,  

Transcription & Epigenetics

other?, 1,   other↑, 2,  

Protein Folding & ER Stress

HSP70/HSPA5↝, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   p62↓, 1,  

Cell Cycle & Senescence

P21↑, 1,  

Proliferation, Differentiation & Cell State

CLOCK↝, 1,   ERK↓, 1,   FOXO↑, 2,   FOXO1↝, 1,   GSK‐3β↓, 3,   GSK‐3β↑, 1,   IGF-1↓, 2,   IGFBP3↑, 1,   IGFR↓, 1,   PI3K↑, 2,   PTEN↑, 1,  

Migration

AntiAg↑, 6,   miR-155↓, 1,   miR-29b↑, 1,   MMP3↓, 1,   MMP9↓, 5,   PKA↑, 1,  

Angiogenesis & Vasculature

angioG↑, 1,   eNOS↑, 1,   Hif1a↓, 1,   NO↓, 2,   VEGF↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↓, 1,   BBB↑, 1,   GLUT1↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 4,   IL1β↓, 4,   IL6↓, 2,   Inflam↓, 16,   NF-kB↓, 6,   NF-kB↑, 1,   p‑NF-kB↓, 1,   p65↓, 1,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 1,   ADAM10↑, 6,   BDNF↑, 4,   PSD95↑, 1,   p‑tau↓, 6,   tau↓, 1,  

Protein Aggregation

Aβ↓, 8,   BACE↓, 3,   NLRP3↓, 4,   PP2A↑, 4,  

Drug Metabolism & Resistance

BioAv↓, 7,   BioAv↑, 5,   BioAv↝, 2,   BioEnh↑, 1,   Dose↝, 2,   Dose↓, 1,   eff↑, 5,   Half-Life↝, 1,   Half-Life↓, 2,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BP↓, 1,   IL6↓, 2,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↑, 2,   cardioP↑, 6,   chemoPv↑, 3,   cognitive↑, 6,   hepatoP↑, 3,   memory↑, 7,   motorD↑, 1,   neuroP↑, 17,   OS↑, 1,   radioP↑, 1,   RenoP↑, 2,   toxicity↓, 3,   toxicity↑, 1,   toxicity∅, 1,   Weight↑, 1,  
Total Targets: 149

Research papers

Year Title Authors PMID Link Flag
2023ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATIONÜstündağ, Hilalhttps://journals.lww.com/shockjournal/fulltext/2023/11000/enhanced_efficacy_of_resveratrol_loaded_silver.8.aspx0
2014Synergic effects of artemisinin and resveratrol in cancer cellsPeichun Li25048878https://pubmed.ncbi.nlm.nih.gov/25048878/0
2015Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasisQian Gao26137075https://pubmed.ncbi.nlm.nih.gov/26137075/0
2024Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer's diseaseKumar Gajendrahttps://www.sciencedirect.com/science/article/pii/S27724174240002680
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2021New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer EffectsAndrea ArenaPMC8622305https://pmc.ncbi.nlm.nih.gov/articles/PMC8622305/0
2019Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancerWei Guo30943812https://pubmed.ncbi.nlm.nih.gov/30943812/0
2017Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseasesJames A McCubrey28579298https://pubmed.ncbi.nlm.nih.gov/28579298/0
2017Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cellsAida Rodriguez-Garcia28391184https://pubmed.ncbi.nlm.nih.gov/28391184/0
2017The metalloproteinase ADAM10: A useful therapeutic target?Sebastian Wetzelhttps://www.sciencedirect.com/science/article/pii/S016748891730157X0
2007Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cellsLarisa Nonn17151092https://pubmed.ncbi.nlm.nih.gov/17151092/0
2020The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and GenisteinCord Naujokathttps://www.researchgate.net/publication/339583519_The_Big_Five_Phytochemicals_Targeting_Cancer_Stem_Cells_Curcumin_EGCG_Sulforaphane_Resveratrol_and_Genistein0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290
2010Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancerAnna Slusarz20395211https://pubmed.ncbi.nlm.nih.gov/20395211/0
2013Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive actionHusain Yar Khan24123728https://pubmed.ncbi.nlm.nih.gov/24123728/0
2017Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.I. Dueñas-Garcíahttps://www.semanticscholar.org/paper/Lycopene%2C-resveratrol%2C-vitamin-C-and-FeSO4-increase-Due%C3%B1as-Garc%C3%ADa-Heres-Pulido/bda54f083ab984160e34f0c823cdc9237462da4e0
2025Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping reviewRaveena Vaidheswary MuralitharanPMC12022656https://pmc.ncbi.nlm.nih.gov/articles/PMC12022656/0
2017Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbeneLingling Zhanghttps://orbi.uliege.be/bitstream/2268/316054/1/BioFactors%20-%202017%20-%20Zhang%20-%20Targeting%20cancer%20stem%20cells%20and%20signaling%20pathways%20by%20resveratrol%20and%20pterostilbene.pdf0
2014Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal AbsorptionKaleb C. Lund, PhDhttps://restorativemedicine.org/wp-content/uploads/2014/04/Combination-Effects-of-Quercetin-Resveratrol-and-Curcumin.pdf0
2004Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cellsHuiqing Yuanhttps://www.sciencedirect.com/science/article/abs/pii/S03043835040028000
2025Resveratrol enhances post-injury muscle regeneration by regulating antioxidant and mitochondrial biogenesisXiaoli Qinhttps://www.sciencedirect.com/science/article/pii/S26659271250000360
2025A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling PathwayTanapon Soonthonsrimahttps://pubs.acs.org/doi/10.1021/acs.chemrestox.4c004360
2025Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer modelsAlisa Raihana Saiful Hakimhttps://link.springer.com/article/10.1007/s12032-025-02879-y0
2025Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical modelsAnkita Thakurhttps://www.sciencedirect.com/science/article/abs/pii/S29501997250030390
2025Targeting aging pathways with natural compounds: a review of curcumin, epigallocatechin gallate, thymoquinone, and resveratrolMohamed AhmedPMC12225039https://pmc.ncbi.nlm.nih.gov/articles/PMC12225039/0
2025Resveratrol interrupts Wnt/β-catenin signalling in cervical cancer by activating ten-eleven translocation 5-methylcytosine dioxygenase 1Ji Ren40188654https://pubmed.ncbi.nlm.nih.gov/40188654/0
2024The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 ModulationChao-Bin Yehhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00566610
2024Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathwayChao ZhangPMC10978631https://pmc.ncbi.nlm.nih.gov/articles/PMC10978631/0
2024Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagykaihong Zenghttps://sciety.org/articles/activity/10.21203/rs.3.rs-4542975/v10
2024A comprehensive review on the neuroprotective potential of resveratrol in ischemic strokeMaryam OwjfardPMC11284444https://pmc.ncbi.nlm.nih.gov/articles/PMC11284444/0
2024Resveratrol and p53: How are they involved in CRC plasticity and apoptosis?Aranka Brockmuellerhttps://www.sciencedirect.com/science/article/pii/S20901232240000550
2024Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infectionFuyun Chihttps://www.sciencedirect.com/science/article/abs/pii/S03788741240065240
2024Notch signaling mediated repressive effects of resveratrol in inducing caspasedependent apoptosis in MCF-7 breast cancer cellsPratibha Pandey39262258https://pubmed.ncbi.nlm.nih.gov/39262258/0
2023Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of actionSanchari Bhattacharyahttps://www.sciencedirect.com/science/article/pii/S26671425230001920
2023Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial FunctionsLolita KursvietienePMC10740678https://pmc.ncbi.nlm.nih.gov/articles/PMC10740678/0
2023Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cellsAihong Lianghttps://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.1019562/pdf0
2023Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α ExpressionSiyun Lihttps://www.tandfonline.com/doi/full/10.2147/DMSO.S4038930
2023The Effects of Resveratrol Targeting MicroRNA-4325P/PDGF-B to Regulate Tumor Angiogenesis in Osteosarcoma MicroenvironmentShouzheng Liuhttps://journals.sagepub.com/doi/10.1177/1934578X2311567050
2023Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathwaySunisa Thongsomhttps://www.researchgate.net/publication/371279343_Structural_modification_of_resveratrol_analogue_exhibits_anticancer_activity_against_lung_cancer_stem_cells_via_suppression_of_Akt_signaling_pathway0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen LiPMC10432483https://pmc.ncbi.nlm.nih.gov/articles/PMC10432483/0
2023Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical EvidenceZohra Nausheen NizamiPMC10295724https://pmc.ncbi.nlm.nih.gov/articles/PMC10295724/0
2023Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic StrategySepideh Mirzaei35430977https://pubmed.ncbi.nlm.nih.gov/35430977/0
2023Possible therapeutic targets for NLRP3 inflammasome-induced breast cancerXixi Wanhttps://link.springer.com/article/10.1007/s12672-023-00701-70
2023Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancerSandra Cotino-NájeraPMC10667487https://pmc.ncbi.nlm.nih.gov/articles/PMC10667487/0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen Lihttps://www.nature.com/articles/s41598-023-39279-z0
2023Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applicationsWeronika Spaleniakhttps://link.springer.com/article/10.1007/s11033-023-08513-20
2022Neuroprotective Effects of Resveratrol in Ischemic Brain InjuryNeuroprotective Effects of Resveratrol in Ischemic Brain Injuryhttps://www.mdpi.com/2673-4087/2/3/220
2022Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of actionMitra BehroozaghdamPMC11802982https://pmc.ncbi.nlm.nih.gov/articles/PMC11802982/0
2022Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 InhibitionPaula Seixas da Costahttps://www.tandfonline.com/doi/full/10.1080/01635581.2021.19778340
2022Resveratrol and Its Anticancer EffectsBeyza Nur Özkanhttps://hamidiyemedj.com/articles/doi/hamidiyemedj.galenos.2022.330430
2022Resveratrol improves follicular development of PCOS rats via regulating glycolysis pathway and targeting SIRT1Peng Huo36268996https://pubmed.ncbi.nlm.nih.gov/36268996/0
2021Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and miR-155 Expression in Microglia Through Sirt1/AMPK PathwayKemal Ugur Tufekcihttps://pubmed.ncbi.nlm.nih.gov/34739715/0
2021Resveratrol reverses hippocampal synaptic markers injury and SIRT1 inhibition against developmental Pb exposureRuike Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00068993210042480
2021Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cellsMengmeng YangPMC7954741https://pmc.ncbi.nlm.nih.gov/articles/PMC7954741/0
2021Resveratrol for targeting the tumor microenvironment and its interactions with cancer cellsQi Muhttps://www.sciencedirect.com/science/article/abs/pii/S15675769210053120
2021Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose MetabolismAranka Brockmuellerhttps://www.mdpi.com/2072-6694/13/2/1880
2021Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysisPeng Gaohttps://pmc.ncbi.nlm.nih.gov/articles/PMC8544309/0
2021The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor MicroenvironmentNatalie SilkPMC7931005https://pmc.ncbi.nlm.nih.gov/articles/PMC7931005/0
2020Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinomaXixi Tianhttps://www.sciencedirect.com/science/article/abs/pii/S09552863203052100
2020Resveratrol reduces cerebral edema through inhibition of de novo SUR1 expression induced after focal ischemiaIván Alquisiras-Burgoshttps://pubmed.ncbi.nlm.nih.gov/32380020/0
2020Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's DiseaseNamdoo KimPMC7669341https://pmc.ncbi.nlm.nih.gov/articles/PMC7669341/0
2020Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cellsKai Wang MDhttps://onlinelibrary.wiley.com/doi/10.1002/pros.240290
2020Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancerGowru Srivani32485183https://pubmed.ncbi.nlm.nih.gov/32485183/0
2020Effect of the natural compound trans‑resveratrol on human MCM4 gene transcriptionFumiaki Uchiumihttps://www.researchgate.net/publication/340987402_Effect_of_the_natural_compound_trans-resveratrol_on_human_MCM4_gene_transcription0
2020Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic TargetsWamidh H Talibhttps://pmc.ncbi.nlm.nih.gov/articles/PMC7571133/0
2020The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathwayTahereh Farkhondehhttps://www.sciencedirect.com/science/article/pii/S07533322203042610
2020Anticancer Potential of Resveratrol, β-Lapachone and Their AnaloguesDanielly C Ferraz da CostaPMC7070981https://pmc.ncbi.nlm.nih.gov/articles/PMC7070981/0
2020Neuroprotective Properties of Resveratrol and Its Derivatives—Influence on Potential Mechanisms Leading to the Development of Alzheimer’s DiseaseMichał WicińskiPMC7215333https://pmc.ncbi.nlm.nih.gov/articles/PMC7215333/0
2020Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell ActivationYing XiaoPMC7563930https://pmc.ncbi.nlm.nih.gov/articles/PMC7563930/0
2020The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in MiceHao SunPMC7323307https://pmc.ncbi.nlm.nih.gov/articles/PMC7323307/0
2020Resveratrol in Alzheimer's disease: a review of pathophysiology and therapeutic potentialJúlia Canto E Sousa32520230https://pubmed.ncbi.nlm.nih.gov/32520230/0
2020Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated reviewMilad Ashrafizadeh32491273https://pubmed.ncbi.nlm.nih.gov/32491273/0
2020Resveratrol inhibits Ca2+ signals and aggregation of plateletsMikio MarumoPMC7648989https://pmc.ncbi.nlm.nih.gov/articles/PMC7648989/0
2020Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative ReviewXiao MengPMC7143620https://pmc.ncbi.nlm.nih.gov/articles/PMC7143620/0
2020Resveratrol, cancer and cancer stem cells: A review on past to futureVasanth K BhaskaraPMC7718213https://pmc.ncbi.nlm.nih.gov/articles/PMC77182130
2019Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic StrategyAngara Zambranohttps://www.mdpi.com/1422-0067/20/13/33740
2019Resveratrol and cognitive decline: a clinician perspectiveArrigo FG CiceroPMC6657254https://pmc.ncbi.nlm.nih.gov/articles/PMC6657254/0
2019Resveratrol cytotoxicity is energy-dependentIvanna K Olivares-Marin31385323https://pubmed.ncbi.nlm.nih.gov/31385323/0
2019Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulationDaniele Maria Lopes Pinheirohttps://www.sciencedirect.com/science/article/pii/S08915849183148860
2019The Effect of Resveratrol and Quercetin on Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem CellMustafa Hoca31595775https://pubmed.ncbi.nlm.nih.gov/31595775/0
2019Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) CellsMagdalena Skonieczna30950357https://pubmed.ncbi.nlm.nih.gov/30950357/0
2019Resveratrol Rescues Tau-Induced Cognitive Deficits and Neuropathology in a Mouse Model of TauopathyXiao-Ying Sun31368873https://pubmed.ncbi.nlm.nih.gov/31368873/0
2019Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signalingChunyan Hu30941654https://pubmed.ncbi.nlm.nih.gov/30941654/0
2019Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate itConstanze Buhrmannhttps://journals.sagepub.com/doi/10.1177/15353702188245380
2018Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talkJinyoung Suhhttps://www.sciencedirect.com/science/article/abs/pii/S00039861173072820
2018Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different CancersAmmad Ahmad FarooqiPMC5877513https://pmc.ncbi.nlm.nih.gov/articles/PMC5877513/0
2018Resveratrol: A miraculous natural compound for diseases treatmentMehdi KoushkiPMC6261232https://pmc.ncbi.nlm.nih.gov/articles/PMC6261232/0
2018Resveratrol: A Double-Edged Sword in Health BenefitsBahare SalehiPMC6164842https://pmc.ncbi.nlm.nih.gov/articles/PMC6164842/0
2018Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injuryEun Nim KimPMC5811244https://pmc.ncbi.nlm.nih.gov/articles/PMC5811244/0
2018Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer StrategyAmit Kumar SinghPMC6024317https://pmc.ncbi.nlm.nih.gov/articles/PMC6024317/0
2018Resveratrol and Pterostilbene Exhibit Anticancer Properties Involving the Downregulation of HPV Oncoprotein E6 in Cervical Cancer CellsKaushiki ChatterjeePMC5852819https://pmc.ncbi.nlm.nih.gov/articles/PMC5852819/0
2018Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to ApoptosisGraciela RuízPMC5846439https://pmc.ncbi.nlm.nih.gov/articles/PMC5846439/0
2018Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axisHailong ZhaoPMC6294058https://pmc.ncbi.nlm.nih.gov/articles/PMC6294058/0
2018Trans-resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3βAli A. Shatihttps://link.springer.com/article/10.1007/s11064-018-2683-80
2018Resveratrol: A Miracle Drug for Vascular PathologiesShishir Upadhyayhttps://link.springer.com/chapter/10.1007/978-981-13-1123-9_70
2018Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease TreatmentRafaela PeronPMC5874708https://pmc.ncbi.nlm.nih.gov/articles/PMC5874708/0
2018Resveratrol for Alzheimer's diseaseChristine SawdaPMC5664214https://pmc.ncbi.nlm.nih.gov/articles/PMC5664214/0
2018Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling PathwaysLiang ChengPMC5885341https://pmc.ncbi.nlm.nih.gov/articles/PMC5885341/0
2018Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activationXueyan Zhou30009768https://pubmed.ncbi.nlm.nih.gov/30009768/0
2018Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell lineJae-Rim HeoPMC6089775https://pmc.ncbi.nlm.nih.gov/articles/PMC6089775/0
2017Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complexSusann Schweigerhttps://www.nature.com/articles/s41598-017-12974-40
2017The Role of Resveratrol in Cancer TherapyJeong-Hyeon Kohttps://www.mdpi.com/1422-0067/18/12/25890
2017Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cellsBoxuan LiPMC5428242https://pmc.ncbi.nlm.nih.gov/articles/PMC5428242/0
2017Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cellsElise SaunierPMC5537345https://pmc.ncbi.nlm.nih.gov/articles/PMC5537345/0
2017Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axisYu Na KimPMC5336560https://pmc.ncbi.nlm.nih.gov/articles/PMC5336560/0
2017Combination therapy in combating cancerReza Bayat MokhtariPMC5514969https://pmc.ncbi.nlm.nih.gov/articles/PMC5514969/0
2017Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a CellsXiaping HePMC5281604https://pmc.ncbi.nlm.nih.gov/articles/PMC5281604/0
2017Effect of resveratrol on platelet aggregation by fibrinogen protectionClaudia Bonechihttps://www.sciencedirect.com/science/article/abs/pii/S03014622163034900
2017Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAsJames A. McCubreyhttps://www.aging-us.com/article/101250/text0
2017Resveratrol Inhibits Diabetic-Induced Müller Cells Apoptosis through MicroRNA-29b/Specificity Protein 1 PathwayKaihong Zenghttps://www.researchgate.net/publication/304009481_Resveratrol_Inhibits_Diabetic-Induced_Muller_Cells_Apoptosis_through_MicroRNA-29bSpecificity_Protein_1_Pathway0
2016Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial FissionHaili Wuhttps://pubs.acs.org/doi/10.1021/acs.jafc.6b045490
2016Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathwayWei Li27829129https://pubmed.ncbi.nlm.nih.gov/27829129/0
2016Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cellsHyeRan Gwakhttps://www.sciencedirect.com/science/article/abs/pii/S03043835150072230
2016Resveratrol induces intracellular Ca2 + rise via T-type Ca2 + channels in a mesothelioma cell lineCarla Marchettihttps://www.sciencedirect.com/science/article/abs/pii/S00243205163004800
2016Less is more for cancer chemoprevention: evidence of a non-linear dose response for the protective effects of resveratrol in humans and miceEdwina ScottPMC4827609https://pmc.ncbi.nlm.nih.gov/articles/PMC4827609/0
2016Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissueAna Graciahttps://www.researchgate.net/publication/297682248_Involvement_of_miR-539-5p_in_the_inhibition_of_de_novo_lipogenesis_induced_by_resveratrol_in_white_adipose_tissue0
2015Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasisQian Gao26137075https://pubmed.ncbi.nlm.nih.gov/26137075/0
2015Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expressionQing Jihttps://link.springer.com/article/10.1186/s12885-015-1119-y?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot&getft_integrator=sciencedirect_contenthosting0
2015By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in miceWeiqi DaiPMC4537043https://pmc.ncbi.nlm.nih.gov/articles/PMC4537043/0
2015Resveratrol Represses Pokemon Expression in Human Glioma CellsYutao Yanghttps://link.springer.com/article/10.1007/s12035-014-9081-20
2014Resveratrol attenuates matrix metalloproteinase-9 and -2-regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathwaysEun Jeong Gweonhttps://www.spandidos-publications.com/10.3892/or.2014.31920
2014Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagyYa-Ping Changhttps://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.249030
2014Effect of resveratrol on proliferation and apoptosis of human pancreatic cancer MIA PaCa-2 cells may involve inhibition of the Hedgehog signaling pathwayYong Qinhttps://www.spandidos-publications.com/mmr/10/5/25630
2014Neuroprotective effects of resveratrol in Alzheimer disease pathologyShraddha D Regehttps://pmc.ncbi.nlm.nih.gov/articles/PMC4161050/0
2014Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathwaysBhupendra SinghPMC4123650https://pmc.ncbi.nlm.nih.gov/articles/PMC4123650/0
2013Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed ratsSampath Madhyastha23850968https://pubmed.ncbi.nlm.nih.gov/23850968/0
2013Resveratrol Inhibits CD4+ T Cell Activation by Enhancing the Expression and Activity of Sirt1Ting ZouPMC3779207https://pmc.ncbi.nlm.nih.gov/articles/PMC3779207/0
2013Resveratrol: Biological and pharmaceutical properties as anticancer moleculeTze-chen HsiehPMC3655417https://pmc.ncbi.nlm.nih.gov/articles/PMC3655417/0
2013Resveratrol Impedes the Stemness, Epithelial-Mesenchymal Transition, and Metabolic Reprogramming of Cancer Stem Cells in Nasopharyngeal Carcinoma through p53 ActivationYao-An Shenhttps://www.researchgate.net/publication/237057814_Resveratrol_Impedes_the_Stemness_Epithelial-Mesenchymal_Transition_and_Metabolic_Reprogramming_of_Cancer_Stem_Cells_in_Nasopharyngeal_Carcinoma_through_p53_Activation0
2013Resveratrol Inhibits Invasion and Metastasis of Colorectal Cancer Cells via MALAT1 Mediated Wnt/β-Catenin Signal PathwayQing Jihttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00787000
2013Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27aArmando Del Follohttps://www.researchgate.net/publication/236082282_Resveratrol_and_Quercetin_in_Combination_Have_Anticancer_Activity_in_Colon_Cancer_Cells_and_Repress_Oncogenic_microRNA-27a0
2013Resveratrol Restores Sirtuin 1 (SIRT1) Activity and Pyruvate Dehydrogenase Kinase 1 (PDK1) Expression after Hemorrhagic Injury in a Rat ModelBixi JianPMC3912254https://pmc.ncbi.nlm.nih.gov/articles/PMC3912254/0
2013Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cellsYoon-Jin Leehttps://pubmed.ncbi.nlm.nih.gov/23146690/0
2013Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α ActivationKyung-Ho Junghttps://jnm.snmjournals.org/content/54/12/21610
2013Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin TherapyJosé Díaz-Chávezhttps://www.researchgate.net/publication/236943879_Proteomic_Profiling_Reveals_That_Resveratrol_Inhibits_HSP27_Expression_and_Sensitizes_Breast_Cancer_Cells_to_Doxorubicin_Therapy0
2012The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1Kyung-Ae Leehttps://pubmed.ncbi.nlm.nih.gov/22552784/0
2012Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthasePuspa R PandeyPMC3404809https://pmc.ncbi.nlm.nih.gov/articles/PMC3404809/0
2012Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of RapamycinMohd Askandar IqbalPMC3344940https://pmc.ncbi.nlm.nih.gov/articles/PMC3344940/0
2012Resveratrol Induces Notch2-mediated Apoptosis and Suppression of Neuroendocrine Markers in Medullary Thyroid CancerMatthew TruongPMC3078954https://pmc.ncbi.nlm.nih.gov/articles/PMC3078954/0
2012The Anticancer Effects of Resveratrol: Modulation of Transcription FactorsNichelle C Whitlockhttps://www.researchgate.net/publication/223963833_The_Anticancer_Effects_of_Resveratrol_Modulation_of_Transcription_Factors0
2011Effect of oral resveratrol on the BDNF gene expression in the hippocampus of the rat brainMostafa Rahvar21221775https://pubmed.ncbi.nlm.nih.gov/21221775/0
2010Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathwaysJairam Vanamalahttps://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-10-2380
2010Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein responseYing Yanhttps://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-10-4450
2010Epigenetic targets of bioactive dietary components for cancer prevention and therapySyed M MeeranPMC3024548https://pmc.ncbi.nlm.nih.gov/articles/PMC3024548/#Sec120
2007Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cellsKashif A Ahmad17363494https://pubmed.ncbi.nlm.nih.gov/17363494/0
2007https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2007.06788.xMing Y. Shenhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2007.06788.x0
2007Forkhead Proteins Are Critical for Bone Morphogenetic Protein-2 Regulation and Anti-tumor Activity of ResveratrolJen-Liang Suhttps://pdf.sciencedirectassets.com/778417/1-s2.0-S0021925817X41070/1-s2.0-S0021925817473194/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDYaCXVzLWVhc3QtMSJGMEQCIDq756JUsMTiloCBvDHBmfSGI5CtAVoKXMrby6Dw5hMvAiAnW8emsUnT2HKIBz1Fs%2FpYxVsR0nIV5Qp3k7T0kSEtOyqzBQhPEAUaDDA1OTAwMzU0Njg2NSIMhO9%2F8txW3eOZ4ykBKpAFxbod3fbUMCkIr293vATqSxc99cair2ZE7%2B71xfQ9htu6Hj%2FYcli3UvRnvREfILt7mpqbmOS2baASKB%2BsTXzeaf6zMKSFTP1tYqQ2FOq%2FNCWw%2BGEF%2FARvQWomckaa8yAmMKYMKf8UVBpMhb5o2g2xrXAIk9MHkz8vU4hsSlvdTuuxE2HTnFUaHCtVzi5XRD6%2FI3h2RM%2BYrvWMNvVfwIp2x679vjUMsyQ%2FwrTJUPrIeOvl9FsnwQ9aut5Q2KuyGTKgC02PDZmR%2FYmtOxZBN%2Fs961j1%2ByqUZaIvCAcBXa%2ByE2cCVJgMgxqRHdjdwSMHP1a%2FRUa4gfoVZW%2FyKqr73qcO33cmpb%2FImKIIryTTjjT4EBcS7I%2Bu11JopN%2BbNXfifaTRN4Y2bh7360v8AbHREj%2FrHZLe6DGrPoji6RyWSmddHESe%2FcGZ7%2Box9bBpOsiWjgq%2F7Vl3I3fMR9UPUHXx5%2F%2BqBUL48aEY51gVRxzGdqQKRq69ekzJmlKBjqmmBPug2j9NWLrMJ%2BcNiueRtK2HH5jZJsreWMkj16vb6GvEiWTbsGRDpNUtGeaHg76XWPixehXmvrdFK8Y2oADwiUhuJKnV4eCOZ5J1pgOKZ9xDfgKz9GVR5YKy3YtFdOABHh0GayOsC%2B159T3mz8l69lL378PCRstc1xEWMBOJ4HY%2BCQWI%2BfRaHGCY8V9z%2FydEJjT5fj%2B6S01Pdu521aomV8V92DuoHCu8TMUr%2FVBXoDW87fA5KnaCvA8ZpqIhO15%2BfY7LGFADlc6deAmOiDW3%2FaQJsTTzgRb47Fou1TdtfhJ9UzQjt7MVK6O9V%2Fn1%2FhZjDxcRl4QAKvRjwJiGSCrUOrKjHj1W5fWNEemf3kL0sltELP0KyDwwrbKPvQY6sgF0qIzMXNbSMlsfbAVeVW10IQq52bOOyabW0re25iLrguFNRT3whVmUKL0%2BAgJIDzI2h%2FR6u5xqxYydM5PEJ6zv9JqET80pgIq9gtekMMbhXbxQ73YBaFAKpp1Wq412jG32TZYkVNU3dOfVqLiP10uFMfQInmotnowY3Ll8kPwHLAI%2FQscOiYeCgVWdeGoL9p%2FAWFP0KVlZuva31FmXfKD%2B7PxIMDbP15mJ%2BIfWN30SdUjB&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250205T215200Z&X-Amz-SignedHeaders=host&X-Amz-Expires=299&X-Amz-Credential=ASIAQ3PHCVTYW6RJHCLR%2F20250205%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=21b26c6083f9a9b14a464fa25fab3bf71843d303b3e2ab61b3576e6f98467597&hash=f49fc669d5d68981fea1069c753f02a8025fbe9d5f9107c3647c4d043d48ebed&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0021925817473194&tid=spdf-57bf577c-fc0b-4cda-9e3a-87addf313a32&sid=b81781906838f143c969d8e75fb7498a4110gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=1907585e0454515e535758&rr=90d620018c814945&cc=ca0
2007Resveratrol: A Review of Pre-clinical Studies for Human Cancer PreventionMohammad AtharPMC2083123https://pmc.ncbi.nlm.nih.gov/articles/PMC2083123/0
2006Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1Shoji Fukudahttps://pubmed.ncbi.nlm.nih.gov/16456233/0
2006Resveratrol--a boon for treating Alzheimer's disease?Thimmappa S Anekonda16766037https://pubmed.ncbi.nlm.nih.gov/16766037/0
2005Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 proteinhttps://watermark.silverchair.com/621.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAzAwggMsBgkqhkiG9w0BBwagggMdMIIDGQIBADCCAxIGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMyfv1eC39DSin5rH9AgEQgIIC45kFR49wwMQ9lPcavkPqllN9KQWTRsox18kAGcx0HAPLBmMXNpwdWIZpeO-f_cYAjMoTk1iTBPd72vfv-Shan49EnZ2S1xqyc_4IdEHQ_bUkYXiptT1SzS7LbukefD4XPHPq_TA3idVio3RUrDCvLtatCiaSAXRsElPTZ_ZNiNvURaYCm7fz1KI1MH9LfYHr8KWAIFcBcp99Bd2yFeANYAQhfONbnjho9E1cdT9QyreWS4Jix1Fpk7gRyQPkeEeBP3FSnZv5QMxRSlW0zpLwZcnqt26N9DFp-hpfuvqI_yRS3kvWz6XATiExPK304WfesZeFV7rHZnq6LqawlVLTGGUJpytCxt1zuD4pVH6CSPe4Fju3NeovNp0Jn8tGGXBAlNsfdmzj4DHkAz6bf_fCTl2pJCXRU2RlAKFUiBq0I4DuHewSPHuV7JZZ2hhwddz6VlafOdJd8MYFOcs01Kb4jm2Jcpj_8Crf3LJMjM_1l8NayMiD1sP0n_n07JSqFhwSvxGuhQ_GvjiIVSv6f8xIEMbMD-WGUQ-q2qOId1kP9tP-9dFfW-rv-_KiowdhXDRtKv2Wp14enaZ4elh5hEzvFFAj1fG74IpPgeEcHc-hyJG7mQ-zp8L8URPvRKeIb5NEahKLgBolT6SfO_eOoscAIX5qrvspcOyFWr2kyzRyRinbL4dkEgnlsUEp6mQU2NckPTxzbbrjlBRHtEWFlNuX8FhY5LAvGdKo4uGFcI7K6AhwYw07KC5z9XCvAdAaNN9UGhEdqOivCGkh3KwlT0DbvCyicWpcu2NIm9yXLbJyxOs5465b2mc-ipzAJNgyDDzMer0Z3BfeTJ50hIAoXHJ0cgICqmsJoA1Wwy6nC_Ep6aiciMmFQGAr_qs35Ubt4x_WXIlG6Ztr9jw2IqXGMdX4afmpVja84BEHBD7UVNv6IFZ0d1X4b3xlmYZGTepMsEP3FVXZ3xVGv-qpHUYC8ki73Zm5aMk0
2004High absorption but very low bioavailability of oral resveratrol in humansThomas Walle15333514https://pubmed.ncbi.nlm.nih.gov/15333514/0
2010The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cellsJarosław Paluszczak19840838https://pubmed.ncbi.nlm.nih.gov/19840838/0
2022Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer TreatmentIqra SarfrazPMC9609560https://pmc.ncbi.nlm.nih.gov/articles/PMC9609560/0
2017Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolismAlessia LodiPMC5705091https://pmc.ncbi.nlm.nih.gov/articles/PMC5705091/0
2017Vitamin D Combined with Resveratrol Prevents Cognitive Decline in SAMP8 MiceJinbo Cheng28176624https://pubmed.ncbi.nlm.nih.gov/28176624/0