tbResList Print — RosA Rosmarinic acid

Filters: qv=142, qv2=%, rfv=%

Product

RosA Rosmarinic acid
Features: polyphenol
Description: <b>Polyphenol</b> of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.<br>
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)<br>
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals. <br>
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions.
It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.<br>
-divided as rosemary extract, carnosic acid, rosmarinic acid?<br>
<br>
Summary:<br>
-Capacity to chelate transition metal ions, particularly
<a href="tbResList.php?qv=142&tsv=835&wNotes=on">ironChelator</a> (Fe2+)
and copper (Cu2+)<br>
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS<br>
-rosmarinic acid (RA) as a potential inhibitor of
<a href="tbResList.php?qv=142&tsv=1178&wNotes=on">MARK4↓</a> (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)<br>


<br>
-Note <a href="tbResList.php?qv=142&tsv=1109&wNotes=on&exSp=open">half-life</a> 1.5–2 hours.<br>
<a href="tbResList.php?qv=142&tsv=792&wNotes=on&exSp=open">BioAv</a> water-soluble, rapid absorbtion
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- varying results of
<a href="tbResList.php?qv=142&tsv=275&wNotes=on">ROS</a> up or down in cancer cells.
Plus a
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=3017">report</a>
of lowering ROS and no effect on Tumor cell viability.<br>
However always seems to lower
<a href="tbResList.php?qv=142&tsv=275&wNotes=on&word=ROS↓">ROS↓</a> in normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=142&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=142&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=142&tsv=459&wNotes=on">UPR↑</a>,
<!-- <a href="tbResList.php?qv=142&tsv=356&wNotes=on">GRP78↑</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, -->
<a href="tbResList.php?qv=142&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=142&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=142&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=142&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=142&wNotes=on&word=HSP">HSP↓</a>,
<!--<a href="tbResList.php?qv=142&wNotes=on&word=Prx">Prx</a>, mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- No indication of Lowering AntiOxidant defense in Cancer Cells:
<!--<a href="tbResList.php?qv=142&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=142&word=Trx&wNotes=on">TrxR↓**</a>,
<a href="tbResList.php?qv=142&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=142&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=142&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=142&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=142&wNotes=on&word=GPx">GPx↓</a>
-->

<br>

- Raises
<a href="tbResList.php?qv=142&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:(and perhaps even in cancer cells)
<a href="tbResList.php?qv=142&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=142&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>***,
<a href="tbResList.php?qv=142&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=142&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=142&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,

<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=142&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=142&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=142&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=142&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=142&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=142&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=142&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=142&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=142&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=142&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=142&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=142&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=142&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=142&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=142&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=308&wNotes=on">TIMP2</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=415&wNotes=on">IGF-1↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=142&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=142&tsv=1284&wNotes=on">ROCK1↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=142&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=142&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=1247&wNotes=on">SDF1↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=304&wNotes=on">TGF-β↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=719&wNotes=on">α-SMA↓</a>, -->
<a href="tbResList.php?qv=142&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=142&tsv=1178&wNotes=on">MARK4↓</a> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth(weak) :
<a href="tbResList.php?qv=142&tsv=984&wNotes=on">HDAC2↓</a>,
<a href="tbResList.php?qv=142&tsv=469&wNotes=on">DNMTs↓weak</a>,
<!--<a href="tbResList.php?qv=142&tsv=86&wNotes=on">DNMT3A↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=108&wNotes=on">EZH2↓</a>, -->
<a href="tbResList.php?qv=142&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=142&wNotes=on&word=HSP">HSP↓</a>,
<!--<a href="tbResList.php?qv=142&tsv=506&wNotes=on">Sp proteins↓</a>, -->
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=142&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=142&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=142&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=142&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=142&tsv=894&wNotes=on">CDK4↓</a>,
<!--<a href="tbResList.php?qv=142&tsv=895&wNotes=on">CDK6↓</a>,-->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=142&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=142&tsv=324&wNotes=on">TumCI↓</a>,
<!--<a href="tbResList.php?qv=142&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=142&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=142&tsv=96&wNotes=on">EMT↓</a>,
<!--<a href="tbResList.php?qv=142&tsv=1117&wNotes=on">TOP1↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=657&wNotes=on">TET1↓</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=142&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=142&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=142&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=142&tsv=143&wNotes=on">HIF-1α↓??</a>,
<!--<a href="tbResList.php?qv=142&tsv=772&wNotes=on">PKM2↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=35&wNotes=on">cMyc↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=906&wNotes=on">LDH↓</a>, -->
<a href="tbResList.php?qv=142&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<!--<a href="tbResList.php?qv=142&tsv=773&wNotes=on">HK2↓</a>, -->
<a href="tbResList.php?qv=142&wNotes=on&word=PFK">PFKs↓</a>,
<!--<a href="tbResList.php?qv=142&wNotes=on&word=PDK">PDKs↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=847&wNotes=on">ECAR↓</a>, -->
<!--<a href="tbResList.php?qv=142&tsv=230&wNotes=on">OXPHOS↓</a>, -->
<a href="tbResList.php?qv=142&tsv=356&wNotes=on">GRP78↑</a>,
<!--<a href="tbResList.php?qv=142&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=142&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=142&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=142&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=142&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=142&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=142&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=361&wNotes=on">PDGF↓</a>, -->
<a href="tbResList.php?qv=142&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<!-- <a href="tbResList.php?qv=142&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells (few references) :
<a href="tbResList.php?qv=142&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=524&wNotes=on">CK2↓</a>, -->
<a href="tbResList.php?qv=142&tsv=141&wNotes=on">Hh↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=434&wNotes=on">GLi↓</a>, -->
<a href="tbResList.php?qv=142&tsv=124&wNotes=on">GLi1↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=677&wNotes=on">CD133↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=655&wNotes=on">CD24↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=342&wNotes=on">β-catenin↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=357&wNotes=on">n-myc↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=656&wNotes=on">sox2↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=222&wNotes=on">notch2↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=1024&wNotes=on">nestin↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=508&wNotes=on">OCT4↓</a>, -->
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=142&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=142&tsv=4&wNotes=on">AKT↓</a>,
<!-- <a href="tbResList.php?qv=142&wNotes=on&word=JAK">JAK↓</a>, -->
<a href="tbResList.php?qv=142&wNotes=on&word=STAT">STAT↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=377&wNotes=on">Wnt↓</a>, -->
<!-- <a href="tbResList.php?qv=142&tsv=342&wNotes=on">β-catenin↓</a>, -->
<a href="tbResList.php?qv=142&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=142&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=142&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=142&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=142&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=142&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=142&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=142&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=142&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=142&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=142&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=142&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=142&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=142&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=142&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=142&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↓ ROS (dominant antioxidant effect)</td>
<td>↓ ROS</td>
<td>Driver</td>
<td>Antioxidant / redox buffering</td>
<td>Rosmarinic acid is a strong phenolic antioxidant; cancer effects are largely redox-modulatory rather than cytotoxic</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of inflammatory survival signaling</td>
<td>NF-κB inhibition explains anti-inflammatory, anti-proliferative, and chemopreventive effects</td>
</tr>

<tr>
<td>3</td>
<td>MAPK signaling (ERK / JNK / p38)</td>
<td>↓ ERK; ↑ JNK/p38 (context-dependent)</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Stress-modulated signaling</td>
<td>MAPK modulation reflects redox-sensitive signaling rather than direct kinase inhibition</td>
</tr>

<tr>
<td>4</td>
<td>Cell cycle regulation</td>
<td>↑ G0/G1 arrest (mild)</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Growth inhibition is modest and non-cytotoxic in most models</td>
</tr>

<tr>
<td>5</td>
<td>Apoptosis</td>
<td>↑ apoptosis (weak / context-dependent)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Threshold-dependent cell death</td>
<td>Apoptosis is not a dominant mechanism and usually requires high doses or co-stress</td>
</tr>

<tr>
<td>6</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Antioxidant gene induction</td>
<td>NRF2 activation reflects reinforcement of antioxidant capacity</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 6,   Catalase↑, 1,   Fenton↑, 2,   GPx↑, 1,   GSH↑, 2,   GSH↓, 1,   HO-1↑, 1,   Iron↓, 1,   lipid-P↓, 1,   NRF2↑, 2,   ROS↑, 10,   ROS↓, 11,   ROS⇅, 1,   SOD↑, 1,   SOD2↓, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   ATP↓, 1,   EGF↓, 1,   MMP↓, 2,   XIAP↓, 2,  

Core Metabolism/Glycolysis

p‑AMPK↑, 1,   AMPK↓, 1,   FABP4↑, 1,   GlucoseCon↓, 3,   Glycolysis↓, 1,   lactateProd↓, 3,   PPARα↑, 1,   PPARγ↑, 1,   SIRT1↓, 1,   Warburg↓, 5,  

Cell Death

Akt↓, 6,   p‑Akt↓, 1,   Apoptosis↑, 8,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 4,   Bcl-xL↓, 1,   Casp↑, 1,   Casp1↓, 1,   Casp3↑, 5,   cl‑Casp3↑, 1,   Casp8↑, 1,   Casp9↓, 1,   Cyt‑c↑, 2,   IAP1↓, 2,   IAP2↓, 2,   JNK↓, 2,   MDM2↓, 1,   necrosis↑, 1,   p27↑, 1,   survivin↓, 2,   TumCD∅, 1,   TumCD↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   SOX9↓, 1,  

Transcription & Epigenetics

tumCV↓, 4,   tumCV∅, 1,  

Protein Folding & ER Stress

CHOP↑, 2,   ER Stress↑, 2,   GRP78/BiP↑, 1,   HSP27↓, 1,   HSP70/HSPA5↑, 1,   PERK↑, 1,   PERK↓, 1,   UPR↑, 1,  

Autophagy & Lysosomes

BNIP3↑, 2,   SESN2↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,   DNMTs↓, 2,   GADD45A↑, 1,   P53↑, 1,   cl‑PARP↓, 1,   cl‑PARP↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   cycD1/CCND1↓, 2,   cycE/CCNE↓, 2,   P21↑, 2,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   EMT↓, 6,   ERK↓, 2,   FOXM1↓, 1,   FOXO1↓, 2,   FOXO4↑, 1,   Gli1↓, 3,   HDAC2↓, 5,   HH↓, 2,   IGFBP3↓, 1,   p‑mTOR↓, 1,   mTOR↓, 3,   p‑P70S6K↓, 1,   p‑PI3K↑, 1,   PI3K↓, 5,   PTEN↓, 1,   STAT3↓, 2,   TumCG↓, 6,  

Migration

E-cadherin↑, 3,   ER-α36↓, 1,   GIT1↓, 1,   Ki-67↓, 1,   MARK4↓, 3,   miR-155↓, 2,   MMP2↓, 4,   MMP9↓, 5,   MMPs↓, 2,   N-cadherin↓, 2,   Snail↓, 1,   TumCI↓, 4,   TumCMig↓, 6,   TumCP↓, 5,   TumMeta↓, 2,   Vim↓, 4,   Zeb1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   p‑EGFR↓, 1,   Hif1a↓, 3,   VEGF↓, 1,  

Barriers & Transport

P-gp↓, 4,   P-gp↑, 1,  

Immune & Inflammatory Signaling

ASC↑, 1,   COX2↓, 4,   ICAM-1↓, 1,   IL1β↓, 1,   IL6↓, 3,   IL6↑, 1,   IL8↓, 1,   Inflam↓, 2,   p‑IκB↓, 1,   IκB↓, 1,   NF-kB↓, 5,   p50↓, 2,   p65↓, 2,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   PSA↓, 2,   TLR4↓, 1,   TNF-α↓, 4,   TNF-α↑, 1,  

Synaptic & Neurotransmission

AChE↓, 2,   p‑tau↓, 1,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 2,  

Drug Metabolism & Resistance

BioAv↑, 3,   chemoR↓, 1,   ChemoSen↑, 6,   Dose↝, 4,   eff↑, 13,   eff↓, 1,   eff↝, 1,   Half-Life↝, 1,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 2,   selectivity↑, 5,  

Clinical Biomarkers

AR↓, 2,   p‑EGFR↓, 1,   FOXM1↓, 1,   HER2/EBBR2↓, 1,   IL6↓, 3,   IL6↑, 1,   Ki-67↓, 1,   PD-L1↓, 1,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 1,   CardioT↓, 1,   chemoP↑, 1,   chemoP↓, 1,   ChemoSideEff↓, 2,   hepatoP↑, 2,   neuroP↑, 2,   RenoP↑, 1,  
Total Targets: 176

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 13,   Catalase↑, 5,   Ferroptosis↓, 3,   GPx↑, 3,   GPx4↑, 2,   GSH↑, 8,   GSR↑, 1,   GSSG↓, 1,   GSTs↑, 1,   H2O2↑, 1,   H2O2↓, 1,   HO-1↑, 3,   Iron↓, 1,   lipid-P↓, 6,   MDA↓, 4,   NOX4↓, 1,   NRF2↑, 7,   Prx↑, 1,   ROS↓, 19,   SOD↑, 8,   TAC↑, 1,   Thiols↑, 1,   Trx↑, 1,   VitC↑, 1,   VitE↑, 1,  

Metal & Cofactor Biology

IronCh↑, 3,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   MMP↓, 1,   MMP↑, 2,  

Core Metabolism/Glycolysis

ACSL4↓, 1,   ALAT↓, 2,   BUN↓, 1,   CREB↑, 1,   GlucoseCon↑, 1,   GlucoseCon↓, 1,   Glycolysis↝, 1,   HK2↓, 1,   lactateProd↓, 1,   LDHA↓, 1,   NADPH↓, 2,   PFK2↓, 1,   PGC1A↑, 1,   PPP↓, 1,  

Cell Death

Apoptosis↓, 1,   BAX↓, 1,   Bcl-2↑, 1,   Casp12↓, 1,   Casp3↓, 1,   Casp9↓, 1,   Cyt‑c↓, 1,   Ferroptosis↓, 3,   iNOS↓, 2,   JNK↓, 2,   p‑JNK↓, 1,   MAPK↓, 1,   MLKL↓, 1,   p38↓, 1,   RIP1↓, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,  

Transcription & Epigenetics

other↓, 10,   other↝, 1,  

Protein Folding & ER Stress

ATF6↓, 1,   CHOP↓, 1,   ER Stress↓, 3,   GRP78/BiP↓, 5,   IRE1↓, 3,   PERK↓, 3,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   ERK↑, 1,   GSK‐3β↓, 1,   IGF-1↑, 1,   mTOR↑, 1,   Src↓, 1,   STAT3↓, 1,  

Migration

Ca+2↓, 1,   CDK5↓, 1,   E-cadherin↓, 1,   MMP2↓, 2,   MMP9↑, 1,   MMPs↓, 1,   Rho↓, 3,   ROCK1↓, 3,   TGF-β↓, 1,   Zeb1↓, 1,   ZO-1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   ATF4↓, 1,   eNOS↓, 1,   Hif1a↓, 1,   NO↓, 2,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 1,   BBB↝, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   HMGB1↓, 1,   ICAM-1↓, 1,   IL10↑, 1,   IL1β↓, 3,   IL2↓, 1,   IL6↓, 4,   IL8↓, 1,   Inflam↓, 15,   MCP1↓, 1,   NF-kB↓, 5,   p‑NF-kB↓, 1,   PGE2↓, 3,   RANTES↓, 1,   TLR4↓, 1,   TNF-α↓, 5,  

Synaptic & Neurotransmission

AChE↓, 9,   BDNF↑, 1,   monoA↑, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 5,   Aβ∅, 1,   Aβ↑, 1,   NLRP3↓, 2,  

Hormonal & Nuclear Receptors

cortisol↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 2,   BioAv↑, 4,   BioAv↓, 1,   Dose↝, 2,   eff↑, 4,   Half-Life↝, 2,   Half-Life↑, 1,   P450↑, 1,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 1,   AST↓, 2,   BG↓, 1,   creat↓, 1,   GutMicro↑, 4,   IL6↓, 4,  

Functional Outcomes

AntiAge↑, 2,   cardioP↑, 2,   CardioT↓, 2,   cognitive↑, 7,   hepatoP↑, 3,   memory↑, 6,   motorD↓, 1,   motorD↑, 1,   neuroP↑, 10,   radioP↑, 2,   toxicity↝, 1,   toxicity∅, 1,   toxicity↓, 1,  

Infection & Microbiome

Sepsis↓, 3,  
Total Targets: 148

Research papers

Year Title Authors PMID Link Flag
2025Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activitiesNabila G. Elmehalawyhttps://www.nature.com/articles/s41598-025-22154-40
2022Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessmentPriyashi Raohttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.02690360
2012Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human diseaseLuisa Bivar Roseirohttps://www.researchgate.net/publication/236022012_Polyphenols_as_acetylcholinesterase_inhibitors_Structural_specificity_and_impact_on_human_disease0
2025Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validationChaowang Zhouhttps://link.springer.com/article/10.1007/s12672-025-01784-00
2025Molecular docking and dynamics simulations revealed the potential inhibitory activity of honey-iQfood ingredients against GSK-3β and CDK5 protein targets for brain healthNor Hafizah Zakaria38165434https://pubmed.ncbi.nlm.nih.gov/38165434/0
2025Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF PathwayQian Lihttps://www.tandfonline.com/doi/full/10.2147/DDDT.S4816460
2025Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformationCátia Domingueshttps://www.sciencedirect.com/science/article/pii/S00142999250022010
2025Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s diseaseJingzhi Zhaohttps://pmc.ncbi.nlm.nih.gov/articles/PMC11889937/0
2024Rosmarinic Acid Supplementation Acts as an Effective Antioxidant for Restoring the Antioxidation/Oxidation Balance in Wistar Rats with Cadmium-Induced ToxicityMohammed Al-Zharanihttps://pubs.sciepub.com/jfnr/12/11/9/index.html0
2024Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effectsLianhua Zhanghttps://www.sciencedirect.com/science/article/abs/pii/S0367326X240025700
2024Rosmarinic acid against cognitive impairment via RACK1/HIF-1α regulated microglial polarization in sepsis-surviving miceDan-yang Liuhttps://www.sciencedirect.com/science/article/abs/pii/S00092797230049700
2024Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosisTao Zenghttps://www.sciencedirect.com/science/article/pii/S15675769240082450
2024Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosisAslıhan Şengelenhttps://www.sciencedirect.com/science/article/abs/pii/S09447113240071770
2024Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECsCui-ling Jiahttps://www.sciencedirect.com/science/article/abs/pii/S09447113240049380
2024The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer ActivityAdam KowalczykPMC11591264https://pmc.ncbi.nlm.nih.gov/articles/PMC11591264/0
2024Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and ToxicityCecilia VillegasPMC11274592https://pmc.ncbi.nlm.nih.gov/articles/PMC11274592/0
2024Rosmarinic acid, a natural polyphenol, has a potential pro-oxidant risk via NADH-mediated oxidative DNA damageHatasu KobayashiPMC11149181https://pmc.ncbi.nlm.nih.gov/articles/PMC11149181/0
2023rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in miceTao Zenghttps://www.sciencedirect.com/science/article/pii/S15675769220109310
2023Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axisHuan LiuPMC10770033https://pmc.ncbi.nlm.nih.gov/articles/PMC10770033/0
2023Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal FibroblastsSuphachai Charoensinhttps://pmc.ncbi.nlm.nih.gov/articles/PMC10384106/0
2023Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiotaKan Lihttps://www.sciencedirect.com/org/science/article/pii/S21650497230009630
2023Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applicationsShumaila Ijazhttps://www.sciencedirect.com/science/article/pii/S0753332223004754?via%3Dihub0
2023Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature ReviewEvangelia K KonstantinouPMC10780465https://pmc.ncbi.nlm.nih.gov/articles/PMC10780465/0
2023Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cellsGilnei Bruno da Silvahttps://www.sciencedirect.com/science/article/abs/pii/S00092797230009470
2023Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative DiseasesMd. Khabeer Azharhttps://www.mdpi.com/2072-6643/15/19/42970
2022Rosmarinic Acid Decreases the Malignancy of Pancreatic Cancer Through Inhibiting Gli1 SignalingXiang Zhou34864627https://pubmed.ncbi.nlm.nih.gov/34864627/0
2022Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of CancerJiachao ZhaoPMC9599057https://pmc.ncbi.nlm.nih.gov/articles/PMC9599057/0
2022New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acidDinh Hieu TruongPMC8978883https://pmc.ncbi.nlm.nih.gov/articles/PMC8978883/0
2022Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 InflammasomeTakumi SatohPMC8772720https://pmc.ncbi.nlm.nih.gov/articles/PMC8772720/0
2022Rosmarinus officinalis and Methylphenidate Exposure Improves Cognition and Depression and Regulates Anxiety-Like Behavior in AlCl3-Induced Mouse Model of Alzheimer's DiseaseNishat MalikPMC9411514https://pmc.ncbi.nlm.nih.gov/articles/PMC9411514/0
2022Nanoformulated rosemary extract impact on oral cancer: in vitro studyMarwa Mohamed Ellithyhttps://bnrc.springeropen.com/articles/10.1186/s42269-022-00895-w0
2021Food-derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s DiseaseRotimi E. Alukohttps://iadns.onlinelibrary.wiley.com/doi/10.2991/efood.k.210318.0010
2021Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's DiseaseSurya Nath Pandey34010562https://pubmed.ncbi.nlm.nih.gov/34010562/0
2021Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathwayZheng-kun Zhanghttps://academic.oup.com/jpp/article/73/7/916/6173978?login=false0
2021Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma CellsPayungsak TantipaiboonwongPMC8622939https://pmc.ncbi.nlm.nih.gov/articles/PMC8622939/0
2020Rosmarinic Acid Exhibits Anticancer Effects via MARK4 InhibitionSaleha Anwarhttps://www.nature.com/articles/s41598-020-65648-z0
2020Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disordersMahboobeh Ghasemzadeh RahbardarPMC7491497https://pmc.ncbi.nlm.nih.gov/articles/PMC7491497/0
2020Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic PotentialsAlessandro AllegraPMC7352773https://pmc.ncbi.nlm.nih.gov/articles/PMC7352773/0
2020Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3pTingting ZhangPMC7580151https://pmc.ncbi.nlm.nih.gov/articles/PMC7580151/0
2020Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROSMYPT1TGFβ1 Signaling Via miR-19b-3pTingting Zhanghttps://www.researchgate.net/publication/346275935_Rosmarinic_Acid_Prevents_Radiation-Induced_Pulmonary_Fibrosis_Through_Attenuation_of_ROSMYPT1TGFb1_Signaling_Via_miR-19b-3p0
2019Development of Acetylcholinesterase (AChE) Inhibitorhttps://www.ukessays.com/essays/sciences/development-of-acetylcholinesterase-ache-inhibitor.php0
2019Therapeutic Potential of Rosmarinic Acid: A Comprehensive ReviewMuhammad Nadeemhttps://www.mdpi.com/2076-3417/9/15/31390
2019Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of actionTaiwo O. Elufioyehttps://www.sciencedirect.com/science/article/pii/S07533322183464440
2019Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathwayLi Wang31541884https://pubmed.ncbi.nlm.nih.gov/31541884/0
2018Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell LinesYin-Gi JangPMC6266655https://pmc.ncbi.nlm.nih.gov/articles/PMC6266655/0
2018Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A ReviewGema NietoPMC6165352https://pmc.ncbi.nlm.nih.gov/articles/PMC6165352/0
2017Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant systemChangfang Luhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X173002850
2016Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cellsYichun Xu26340059https://pubmed.ncbi.nlm.nih.gov/26340059/0
2016Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymesİlhami Gülçinhttps://www.tandfonline.com/doi/full/10.3109/14756366.2015.11359140
2016Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract PolyphenolsJessy MoorePMC5133115https://pmc.ncbi.nlm.nih.gov/articles/PMC5133115/0
2015Rosmarinic Acid Inhibits Cell Growth and Migration in Head and Neck Squamous Cell Carcinoma Cell Lines by Attenuating Epidermal Growth Factor Receptor SignalingZohra Tumurhttps://www.researchgate.net/publication/287358880_Rosmarinic_Acid_Inhibits_Cell_Growth_and_Migration_in_Head_and_Neck_Squamous_Cell_Carcinoma_Cell_Lines_by_Attenuating_Epidermal_Growth_Factor_Receptor_Signaling0
2014Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic ratsNadia Mushtaqhttps://pubmed.ncbi.nlm.nih.gov/24301255/0
2014Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor GrowthSakina M PetiwalaPMC3943728https://pmc.ncbi.nlm.nih.gov/articles/PMC3943728/0
2012Short-Term Study on the Effects of Rosemary on Cognitive Function in an Elderly PopulationAndrew Pengellyhttps://www.liebertpub.com/doi/abs/10.1089/jmf.2011.0005?journalCode=jmf0
2010The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cellsJarosław Paluszczak19840838https://pubmed.ncbi.nlm.nih.gov/19840838/0
2010Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cellsDong-Oh Moonhttps://pubmed.ncbi.nlm.nih.gov/19619938/0
2010Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cellsDong-Oh Moonhttps://www.sciencedirect.com/science/article/abs/pii/S03043835090046130
2009Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretionTomoki Hasehttps://www.nature.com/articles/s41598-019-45168-10
2009Effect of aromatherapy on patients with Alzheimer's diseaseDaiki Jimbo20377818https://pubmed.ncbi.nlm.nih.gov/20377818/0
2007Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen speciesKeiko Murakamihttps://pubmed.ncbi.nlm.nih.gov/17267171/0
2006Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitroShuang-sheng Huanghttps://www.sciencedirect.com/science/article/abs/pii/S03043835050081530
2004Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2)C Renzulli15300717https://pubmed.ncbi.nlm.nih.gov/15300717/0
2004Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acidSeigo Babahttps://www.researchgate.net/publication/8583995_Orally_administered_rosmarinic_acid_is_present_as_the_conjugated_andor_methylated_forms_in_plasma_and_is_degraded_and_metabolized_to_conjugated_forms_of_caffeic_acid_ferulic_acid_and_m-coumaric_acid0
2022Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and LavenderArezoo FaridzadehPMC9297920https://pmc.ncbi.nlm.nih.gov/articles/PMC9297920/0
2014Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae familySanda Vladimir-KneževićPMC6271370https://pmc.ncbi.nlm.nih.gov/articles/PMC6271370/0
2024Therapeutic Effect of Rosemary and Its Active Constituent on Nervous System DisordersVaidehi Bhaladharehttps://ijpsjournal.com/article/Therapeutic+Effect+of+Rosemary+and+Its+Active+Constituent+on+Nervous+System+Disorders#0
2022Ursolic acid and rosmarinic acid ameliorate alterations in hippocampal neurogenesis and social memory induced by amyloid beta in mouse model of Alzheimer’s diseaseFatima Javed MirzaPMC9817136https://pmc.ncbi.nlm.nih.gov/articles/PMC9817136/0