tbResList Print — RT Rutin

Filters: qv=143, qv2=%, rfv=%

Product

RT Rutin
Description: <b>Rutin</b>, a Quercetin Glycoside<br>
Rutin, a natural flavonoid glycoside found in many plants like buckwheat, citrus fruits, and apples, has shown promising neuroprotective and anticancer properties.<br>
Rutin is a flavonoid glycoside composed of quercetin bound to the disaccharide rutinose. It is widely found in buckwheat, citrus fruits, apples, and tea. In cancer models, rutin exhibits antioxidant, anti-inflammatory, anti-proliferative, and pro-apoptotic effects. Because it is glycosylated, rutin itself has relatively low cellular permeability; many biological effects are mediated after intestinal hydrolysis to quercetin and subsequent phase-II metabolites. Mechanistically, rutin is most consistently associated with suppression of NF-κB and PI3K/AKT signaling, modulation of MAPK pathways, redox regulation (Nrf2/ROS balance), inhibition of angiogenesis (VEGF), and induction of cell-cycle arrest and apoptosis in preclinical systems. Effects are model-dependent and often concentration-dependent, with antioxidant behavior dominating in normal tissue contexts and context-dependent pro-oxidant effects described in some tumor settings.<br>
-Scavenges free radicals, reduces oxidative stress<br>
-Inhibits pro-inflammatory cytokines like IL-1β, TNF-α, and reduces activation of NF-κB.<br>
-Inhibition of Aβ Aggregation (AD)<br>
-Mild inhibitory effects on acetylcholinesterase (AChE), helping enhance cholinergic function.<br>
-May upregulate BDNF expression<br>
<br>
Cancer:<br>
-Induces cell cycle arrest in G2/M phase.<br>
-Inhibits VEGF, Suppresses MMP-2 and MMP-9<br>
-Inhibits PI3K/Akt/mTOR, MAPK, and NF-κB signaling pathways.<br>
-Enhances sensitivity to Chemotherapy drugs like doxorubicin and cisplatin<br>
<br>

Rutin has poor oral bioavailability, but this can be improved with nanoformulations or co-administration with absorption enhancers like piperine or quercetin.<br>
<br>


<br>
<h3> Cancer Pathway Table: Rutin</h3>
<!-- Cancer Pathway Table: Rutin -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory / survival signaling</td>
<td>NF-κB ↓; COX-2, cytokines ↓ (reported)</td>
<td>Inflammatory tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival</td>
<td>Frequently reported mechanism; contributes to reduced tumor-promoting inflammation and survival signaling.</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT → mTOR axis</td>
<td>PI3K/AKT ↓; proliferation ↓ (model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth signaling suppression</td>
<td>Observed in several tumor models; often secondary to upstream redox and inflammatory modulation.</td>
</tr>

<tr>
<td>3</td>
<td>Cell-cycle regulation (Cyclins/CDKs; G1 or G2/M arrest)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Associated with reduced Cyclin D1/CDK expression; typically downstream of survival pathway inhibition.</td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Bax ↑; Bcl-2 ↓; caspases ↑ (reported)</td>
<td>Minimal activation at lower exposure</td>
<td>G</td>
<td>Apoptotic execution</td>
<td>Apoptosis induction frequently reported in vitro; magnitude depends on achievable intracellular concentration.</td>
</tr>

<tr>
<td>5</td>
<td>ROS modulation (biphasic redox behavior)</td>
<td>ROS ↑ in some tumor contexts; apoptosis ↑</td>
<td>ROS ↓ (antioxidant protection)</td>
<td>P, R</td>
<td>Redox modulation</td>
<td>Rutin is classically antioxidant but may promote oxidative stress in tumor cells under certain conditions (dose/metal-dependent).</td>
</tr>

<tr>
<td>6</td>
<td>Nrf2 / ARE antioxidant response</td>
<td>Context-dependent modulation</td>
<td>Nrf2 ↑; antioxidant enzymes ↑</td>
<td>R, G</td>
<td>Redox buffering</td>
<td>Common polyphenol signature; may protect normal tissue from oxidative injury.</td>
</tr>

<tr>
<td>7</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK/p38 activation reported in apoptosis contexts; ERK modulation varies by model.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓; angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Often secondary to NF-κB and PI3K suppression.</td>
</tr>

<tr>
<td>9</td>
<td>Invasion / metastasis (MMPs / EMT)</td>
<td>MMP2/MMP9 ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Typically downstream of inflammatory and MAPK modulation.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (glycoside → quercetin metabolism)</td>
<td>Systemic exposure mainly as metabolites</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Rutin has limited direct cellular uptake; many effects likely mediated after conversion to quercetin and phase-II metabolites.</td>
</tr>

</table>

<p><small>
TSF: P = 0–30 min (rapid redox interactions), R = 30 min–3 hr (acute signaling shifts), G = >3 hr (gene-regulatory adaptation and phenotype outcomes).
</small></p>



<br>
<br>
<p>
<h3>Alzheimer’s Disease (AD) Summary — Rutin</h3>

Rutin has been studied in preclinical neurodegeneration models for its antioxidant, anti-inflammatory, and mitochondrial-protective properties. It is reported to modulate Nrf2 signaling, suppress NF-κB–mediated neuroinflammation, reduce oxidative stress, and attenuate amyloid-β–induced neuronal injury in experimental systems. Many effects may be mediated after hydrolysis to quercetin. Human clinical evidence remains limited.
</p>


<br>
<h3> Alzheimer’s Disease Table: Rutin</h3>
<!-- Alzheimer’s Disease Table: Rutin -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>AD / Neurodegeneration Context</th>
<th>Normal Brain Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Nrf2 / ARE antioxidant response</td>
<td>Nrf2 ↑; HO-1 ↑; GSH ↑; oxidative damage ↓ (reported)</td>
<td>Redox homeostasis support</td>
<td>R, G</td>
<td>Antioxidant neuroprotection</td>
<td>Consistent polyphenol signature; reduces lipid peroxidation and ROS markers in AD models.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB / neuroinflammation</td>
<td>Microglial activation ↓; TNF-α / IL-1β ↓ (reported)</td>
<td>Inflammatory tone moderation</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>Neuroinflammation is a core AD driver; rutin shows suppression in animal models.</td>
</tr>

<tr>
<td>3</td>
<td>Amyloid-β toxicity modulation</td>
<td>Aβ-induced ROS ↓; neuronal apoptosis ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-amyloid support</td>
<td>Evidence mainly from in vitro and rodent models; not confirmed clinically.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial protection</td>
<td>ΔΨm stabilization; ATP preservation (reported)</td>
<td>Mitochondrial resilience</td>
<td>R</td>
<td>Bioenergetic protection</td>
<td>Opposes mitochondrial dysfunction induced by oxidative stress.</td>
</tr>

<tr>
<td>5</td>
<td>MAPK (JNK / p38 stress signaling)</td>
<td>Stress-MAPK suppression (reported)</td>
<td>↔</td>
<td>P, R</td>
<td>Stress signaling reduction</td>
<td>JNK/p38 activation linked to neuronal apoptosis; suppression reported in models.</td>
</tr>

<tr>
<td>6</td>
<td>Cholinergic signaling (reported in some models)</td>
<td>AChE activity ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cognitive support (model-based)</td>
<td>Evidence limited; magnitude smaller than pharmaceutical AChE inhibitors.</td>
</tr>

<tr>
<td>7</td>
<td>BBB penetration (metabolite-driven)</td>
<td>Effects likely via quercetin metabolites</td>
<td>Systemic metabolism required</td>
<td>—</td>
<td>Translation constraint</td>
<td>Parent rutin has limited direct brain penetration; hydrolysis/metabolism important.</td>
</tr>

<tr>
<td>8</td>
<td>Clinical evidence</td>
<td>Limited human AD trials</td>
<td>—</td>
<td>—</td>
<td>Evidence constraint</td>
<td>Most data preclinical; not established as AD therapy.</td>
</tr>

</table>

<p><small>
TSF: P = 0–30 min (early signaling modulation), R = 30 min–3 hr (stress-response shifts), G = >3 hr (gene-regulatory and neuroprotective outcomes).
</small></p>

Pathway results for Effect on Cancer / Diseased Cells

Cell Death

Apoptosis↑, 2,  

Transcription & Epigenetics

tumCV↑, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Migration

E-cadherin↓, 1,   N-cadherin↑, 1,   TumCMig↑, 1,   TumCP↑, 1,   Vim↑, 1,  

Barriers & Transport

P-gp↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,  

Functional Outcomes

MKI67↑, 1,   TumVol↓, 1,  
Total Targets: 13

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   GSH↑, 3,   GSSG↓, 1,   lipid-P↓, 2,   MDA↓, 3,   NOX4↓, 1,   OXPHOS↑, 1,   ROS↓, 5,   SOD↑, 2,  

Core Metabolism/Glycolysis

ALAT↓, 1,   FASN↓, 1,   Glycolysis↓, 1,  

Cell Death

iNOS↓, 2,   MAPK↑, 1,  

Transcription & Epigenetics

AntiThr↑, 1,   other↓, 2,  

Migration

AntiAg↑, 2,   Cartilage↑, 1,   CEA↓, 1,   α-tubulin↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL1β↓, 3,   IL6↓, 2,   IL8↓, 2,   Inflam↓, 6,   NF-kB↓, 3,   TNF-α↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 5,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   eff↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   CEA↓, 1,   IL6↓, 2,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 5,   hepatoP↑, 1,   memory↑, 4,   neuroP↑, 3,   RenoP↑, 1,  
Total Targets: 45

Research papers

Year Title Authors PMID Link Flag
2020Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymesW. Błaszczakhttps://www.sciencedirect.com/science/article/abs/pii/S0308814620300285?via%3Dihub0
2012Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human diseaseLuisa Bivar Roseirohttps://www.researchgate.net/publication/236022012_Polyphenols_as_acetylcholinesterase_inhibitors_Structural_specificity_and_impact_on_human_disease0
2023Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer CellsHoma HajimehdipoorPMC10346419https://pmc.ncbi.nlm.nih.gov/articles/PMC10346419/1
2021Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s diseaseXiao-ying SunPMC8196535https://pmc.ncbi.nlm.nih.gov/articles/PMC8196535/0
2020Rutin-Loaded Silver Nanoparticles With Antithrombotic FunctionHaitao WuPMC7723967https://pmc.ncbi.nlm.nih.gov/articles/PMC7723967/0
2019Rutin: A Potential Therapeutic Agent for Alzheimer DiseaseNada M Mostafahttps://www.walshmedicalmedia.com/open-access/rutin-a-potential-therapeutic-agent-for-alzheimer-disease.pdf0
2019Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearanceRui-Yuan PanPMC6393001https://pmc.ncbi.nlm.nih.gov/articles/PMC6393001/0
2018Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actionsAmira Saleh30465055https://pubmed.ncbi.nlm.nih.gov/30465055/0
2017Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer CellsMarcello Iriti28752532https://pubmed.ncbi.nlm.nih.gov/28752532/0
2016Rutin as a Natural Therapy for Alzheimer's Disease: Insights into its Mechanisms of ActionSolomon Habtemariam26898570https://pubmed.ncbi.nlm.nih.gov/26898570/0
2016The Pharmacological Potential of RutinAditya GaneshpurkarPMC5355559https://pmc.ncbi.nlm.nih.gov/articles/PMC5355559/0
2014Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell ProliferationQian LiPMC6270752https://pmc.ncbi.nlm.nih.gov/articles/PMC6270752/0
2014Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammationPeng-Xin Xu24512768https://pubmed.ncbi.nlm.nih.gov/24512768/0