tbResList Print — SANG Sanguinarine

Filters: qv=147, qv2=%, rfv=%

Product

SANG Sanguinarine
Description: <p><b>Sanguinarine</b> (SANG) — a benzophenanthridine alkaloid isolated primarily from Sanguinaria canadensis (bloodroot) and other Papaveraceae species. Potent redox-active, DNA-intercalating phytochemical studied extensively in preclinical oncology.</p>
<p><b>Primary mechanisms (conceptual rank):</b><br>
1) ROS generation → mitochondrial apoptosis<br>
2) NF-κB / STAT3 inhibition (anti-survival signaling)<br>
3) Cell-cycle arrest (G0/G1 or G2/M depending on model)<br>
4) MAPK modulation (JNK activation; ERK suppression context-dependent)<br>
5) Epigenetic/DNA interaction effects</p>
<p><b>Bioavailability / PK relevance:</b> Limited human PK data; rapid reactivity and protein binding likely restrict systemic exposure. Toxicity (oral mucosal injury, cytotoxicity) limits therapeutic window.</p>
<p><b>In-vitro vs oral exposure:</b> Many anti-cancer effects occur at micromolar concentrations unlikely achievable systemically via safe oral dosing (qualifier: high concentration only for direct cytotoxicity).</p>
<p><b>Clinical evidence status:</b> Preclinical oncology only; no validated RCT cancer indication. Safety concerns limit development.</p>


<b>Extracted</b> from bloodroot plant from whose scientific name, Sanguinaria canadensis, its name is derived; the Mexican prickly poppy; Chelidonium majus; and Macleaya cordata.<br>



<br>
<h3>Sanguinarine — Cancer vs Normal Cell Pathway Map</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS / Mitochondrial redox stress</td>
<td>↑ (primary; dose-dependent)</td>
<td>↑ (high concentration only)</td>
<td>P/R</td>
<td>Oxidative stress → apoptosis</td>
<td>Central mechanism; rapid ROS generation drives mitochondrial membrane depolarization and cytochrome c release.</td>
</tr>

<tr>
<td>2</td>
<td>Intrinsic apoptosis (Bax↑, Bcl-2↓, caspases)</td>
<td>↑</td>
<td>↑ (high concentration only)</td>
<td>R/G</td>
<td>Programmed cell death</td>
<td>Often ROS-dependent; cancer cells show greater susceptibility due to higher basal oxidative stress.</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB signaling</td>
<td>↓</td>
<td>↓ (context-dependent)</td>
<td>R/G</td>
<td>Reduced pro-survival transcription</td>
<td>Suppresses inflammatory and anti-apoptotic gene expression; contributes to anti-proliferative effect.</td>
</tr>

<tr>
<td>4</td>
<td>STAT3 axis</td>
<td>↓</td>
<td>↔</td>
<td>R/G</td>
<td>Reduced survival signaling</td>
<td>STAT3 inhibition reported in multiple tumor models; linked to decreased proliferation and invasion.</td>
</tr>

<tr>
<td>5</td>
<td>MAPK (JNK↑ / ERK↓ context-dependent)</td>
<td>↑ JNK; ↓ ERK</td>
<td>↔ / ↑ stress (high dose)</td>
<td>P/R</td>
<td>Stress-activated apoptosis signaling</td>
<td>JNK activation promotes apoptosis; ERK suppression reduces proliferation.</td>
</tr>

<tr>
<td>6</td>
<td>Cell Cycle (Cyclin D1, CDK regulation)</td>
<td>↓ proliferation</td>
<td>↔</td>
<td>G</td>
<td>G0/G1 or G2/M arrest</td>
<td>Checkpoint enforcement varies by tumor type and dose.</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 axis</td>
<td>↓ (overwhelmed by ROS; context-dependent)</td>
<td>↑ (adaptive; low dose)</td>
<td>R/G</td>
<td>Redox defense modulation</td>
<td>Low dose may activate adaptive NRF2; higher doses override antioxidant defenses in cancer cells.</td>
</tr>

<tr>
<td>8</td>
<td>Ca²⁺ / ER stress</td>
<td>↑ (stress-dependent)</td>
<td>↑ (high concentration only)</td>
<td>P/R</td>
<td>ER-mitochondrial stress coupling</td>
<td>Calcium dysregulation contributes to apoptosis cascade.</td>
</tr>

<tr>
<td>9</td>
<td>Ferroptosis</td>
<td>↑ (lipid ROS-linked; investigational)</td>
<td>↔</td>
<td>R/G</td>
<td>Lipid peroxidation stress</td>
<td>ROS-driven lipid damage suggests ferroptosis overlap but not primary established mechanism.</td>
</tr>

<tr>
<td>10</td>
<td>HIF-1α</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>G</td>
<td>Reduced hypoxia adaptation</td>
<td>Reported suppression in some tumor contexts.</td>
</tr>

<tr>
<td>11</td>
<td>Clinical Translation Constraint</td>
<td>↓ (constraint)</td>
<td>↓ (constraint)</td>
<td>—</td>
<td>Toxicity + limited PK data</td>
<td>Oral toxicity and narrow therapeutic index limit systemic development.</td>
</tr>

</table>

<p><b>TSF legend:</b><br>
P: 0–30 min (primary redox interactions)<br>
R: 30 min–3 hr (acute stress signaling)<br>
G: &gt;3 hr (gene-regulatory / phenotype outcomes)</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

HO-1↑, 1,   ROS↑, 2,  

Mitochondria & Bioenergetics

MMP↓, 1,   mtDam↑, 1,   SSBP1↑, 1,  

Core Metabolism/Glycolysis

PI3k/Akt/mTOR↓, 1,  

Cell Death

p‑Akt↓, 1,   Akt↓, 2,   Apoptosis↑, 3,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↑, 1,   Casp9↑, 1,   MAPK↓, 1,   p38↓, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   p‑ERK↓, 1,   ERK↓, 1,   PI3K↓, 1,   STAT3↓, 2,  

Migration

AP-1↓, 1,   EphB4↓, 1,   MMP9↓, 1,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 1,   TumCMig↓, 1,   TumMeta↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 2,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   JAK↓, 1,   NF-kB↓, 1,   PGE2↓, 1,  

Functional Outcomes

toxicity∅, 1,  
Total Targets: 36

Pathway results for Effect on Normal Cells

Total Targets: 0

Research papers

Year Title Authors PMID Link Flag
2020The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung CancerMarta Hałas-WiśniewskaPMC7411589https://pmc.ncbi.nlm.nih.gov/articles/PMC7411589/0
2023Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter regionKai-Di Wang37501645https://pubmed.ncbi.nlm.nih.gov/37501645/0
2021Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancerQi Su33636580https://pubmed.ncbi.nlm.nih.gov/33636580/0
2019Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinomaQi SuPMC6901539https://pmc.ncbi.nlm.nih.gov/articles/PMC6901539/0
2014Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression.Sun Young Park24220687https://pubmed.ncbi.nlm.nih.gov/24220687/0
2012Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migrationJIA-YING XUPMC3956271https://pmc.ncbi.nlm.nih.gov/articles/PMC3956271/0
2012Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathwayJun Sik Lee22215411https://pubmed.ncbi.nlm.nih.gov/22215411/0