tbResList Print — SSE Selenite (Sodium)

Filters: qv=148, qv2=%, rfv=%

Product

SSE Selenite (Sodium)
Description: <b>Sodium Selenite</b> - is inorganic selenium in the selenite oxidation state (Se⁴⁺)<br>
Sodium selenite is produced industrially from selenium metal, which itself is obtained as a by-product of copper refining.<br>
<pre>
Mechanistic distinction from Selenium:
-Selenite reacts with GSH → GS–Se–SG intermediates
-Generates superoxide, H₂O₂
-Exploits cancer cells’ elevated basal oxidative stress
-Normal cells neutralize it more effectively (higher redox reserve)

Both the uptake and processing of selenium has recently shown to be upregulated in subsets of cancer cells
<a href="https://pubmed.ncbi.nlm.nih.gov/35101206/"> due to their increased expression of xCT transporter</a>
The more a tumor depends on xCT, the more toxic selenite becomes. High xCT Also Increases SSE Toxicity. High xCT increases intracellular thiols, which increases SSE chemical trapping, redox cycling, and cytotoxic impact.
</pre>

<br>
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=4434">Sodium selenite might protect against toxicity
of AgNPs.</a> also
<a href="https://nestronics.ca/dbx/tbResList.php?qv=149&qv2=153&wNotes=on">here</a><br>
<br>
<br>
SSE and cancer
<table>
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Redox cycling with thiols (superoxide generation)</td>
<td>↑ O2•− / ↑ ROS</td>
<td>Acute oxidative stress</td>
<td>Defines sodium selenite anticancer mechanism in many models: early superoxide rise precedes mitochondrial apoptotic events</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2592502/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Glutathione buffering (GSH pool)</td>
<td>↓ GSH</td>
<td>Loss of redox buffering</td>
<td>Work in hepatoma models demonstrates GSH’s key role in selenite-driven oxidative stress and apoptosis</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S0891584900002069" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial dysfunction</td>
<td>Sequential mechanism shown: superoxide rise → mitochondrial depolarization</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2592502/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (cytochrome c → Caspase-9/3)</td>
<td>↑ cytochrome c release / ↑ Caspase-9/3</td>
<td>Programmed cell death</td>
<td>Same sequential model shows cytochrome c release followed by caspase-9 and caspase-3 activation</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2592502/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>ER stress / UPR (PERK → eIF2α → ATF4)</td>
<td>↑ PERK/eIF2α/ATF4</td>
<td>Proteotoxic stress signaling</td>
<td>ER-stress module is shown as a core driver in selenite-induced autophagy→apoptosis progression</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4047911/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Stress MAPK (p38) as switch control</td>
<td>↑ p38 activation</td>
<td>Signal switching (autophagy → apoptosis)</td>
<td>Mechanistic evidence for p38 participating in the selenite-driven transition toward apoptosis</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4047911/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>p53 activation (stress response)</td>
<td>↑ p53 phosphorylation (Ser15)</td>
<td>Facilitates apoptosis programs</td>
<td>NB4 leukemia model: selenite induces p53 Ser15 phosphorylation via p38/ERK in the autophagy–apoptosis switch context</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25198662/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>DNA damage response (ATM-dependent signaling)</td>
<td>↑ ATM-dependent DDR</td>
<td>Checkpoint activation &amp; death signaling</td>
<td>Selenium compounds (including selenite contexts) activate ATM-dependent DNA damage response signaling in colorectal cancer models</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20709753/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>PI3K–AKT axis linked to autophagy/apoptosis balance</td>
<td>↓ PI3K/Akt (functional axis) / ↓ protective autophagy</td>
<td>Apoptosis sensitization</td>
<td>NB4 leukemia: sodium selenite increases apoptosis by autophagy inhibition through PI3K/Akt</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/19788862/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB</td>
<td>Reduced anti-apoptotic transcription</td>
<td>Mechanistic study: sodium selenite induces ROS-mediated inhibition of NF-κB with downstream shift toward apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/30218457/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>↓ VEGF expression</td>
<td>Reduced vascular support signals</td>
<td>Prostate cancer PC3 model: sodium selenite inhibits expression of VEGF (and related inflammatory/pro-growth factors) in the tested context</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/19811770/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Ferroptosis (iron-dependent oxidative death)</td>
<td>↑ ferroptosis</td>
<td>Non-apoptotic oxidative death modality</td>
<td>Paper explicitly reports sodium selenite as an inducer of ferroptosis across multiple human cancer cell types</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7453065/" target="_blank">(ref)</a></td>
</tr>

</table>





<br>
Table to compare Sodium Selenite to SeNPs<br>
-Sodium selenite → chemical oxidant (thiol attack → ROS shock).<br>
-SeNPs → engineered redox stressor (signaling-level control, broader window).<br>
-Selenomethionine / Se-yeast → redox buffer & selenium storage form (often protective to cancer cells, especially when oxidative stress is a therapeutic goal).<br>

<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Dimension</th>
<th>Sodium Selenite (Na2SeO3)</th>
<th>Selenium Nanoparticles (SeNPs)</th>
<th>Selenomethionine / Se-Yeast</th>
</tr>

<tr>
<td>Primary mechanistic class</td>
<td>Direct redox-disrupting agent</td>
<td>Controlled redox modulator / signaling perturbator</td>
<td>Nutritional selenium reservoir / selenoprotein precursor</td>
</tr>

<tr>
<td>Initial molecular interaction</td>
<td>Rapid reaction with cellular thiols (GSH, Trx, protein –SH)</td>
<td>Cellular uptake → gradual selenium release or surface redox effects</td>
<td>Nonspecific incorporation into proteins in place of methionine</td>
</tr>

<tr>
<td>ROS generation</td>
<td>↑↑ acute, non-buffered ROS burst</td>
<td>↑ mild–moderate, sustained ROS</td>
<td>↓ or ↔ (antioxidant bias)</td>
</tr>

<tr>
<td>Glutathione (GSH) system</td>
<td>↓↓ GSH depletion</td>
<td>↔ or mild ↓ (context-dependent)</td>
<td>↑ GSH recycling via GPX support</td>
</tr>

<tr>
<td>Redox selectivity (cancer vs normal)</td>
<td>Limited; toxicity threshold close to efficacy</td>
<td>Improved tumor selectivity window</td>
<td>Poor for cancer killing; favors normal-cell protection</td>
</tr>

<tr>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓↓ rapid depolarization</td>
<td>↓ gradual, dose-dependent disruption</td>
<td>↔ or ↑ mitochondrial protection</td>
</tr>

<tr>
<td>Dominant cell-death pathways</td>
<td>Intrinsic apoptosis ± necrosis (high dose)</td>
<td>Apoptosis ± ferroptosis ± autophagy-related death</td>
<td>None (cytoprotective)</td>
</tr>

<tr>
<td>ER stress / UPR (PERK–CHOP)</td>
<td>↑ strong, early activation</td>
<td>↑ moderate, delayed activation</td>
<td>↓ ER stress via antioxidant capacity</td>
</tr>

<tr>
<td>DNA damage response</td>
<td>↑ oxidative DNA lesions (ATM/ATR)</td>
<td>↑ low–moderate, secondary to ROS</td>
<td>↓ DNA damage; improved repair environment</td>
</tr>

<tr>
<td>PI3K–AKT survival signaling</td>
<td>↓ secondary to oxidative collapse</td>
<td>↓ reported in multiple tumor models</td>
<td>↔ or ↑ survival signaling</td>
</tr>

<tr>
<td>NF-κB / inflammatory signaling</td>
<td>↓ via redox inhibition</td>
<td>↓ selectively; anti-inflammatory bias</td>
<td>↓ chronic inflammation (protective)</td>
</tr>

<tr>
<td>Ferroptosis involvement</td>
<td>Minor / indirect</td>
<td>↑ lipid peroxidation; GPX4 modulation</td>
<td>↓↓ ferroptosis risk (GPX4 support)</td>
</tr>

<tr>
<td>Autophagy</td>
<td>↑ early (protective) → collapse</td>
<td>↑ contributory to tumor suppression</td>
<td>↔ homeostatic maintenance</td>
</tr>

<tr>
<td>Angiogenesis (VEGF)</td>
<td>↓ at cytotoxic doses</td>
<td>↓ at lower, tolerated doses</td>
<td>↔ or mild ↓ (indirect)</td>
</tr>

<tr>
<td>Immune compatibility</td>
<td>Poor at anticancer doses</td>
<td>Moderate–good; often immune-supportive</td>
<td>High; supports immune competence</td>
</tr>

<tr>
<td>Pharmacologic control</td>
<td>Poor (steep dose–toxicity curve)</td>
<td>High (size, coating, release tunable)</td>
<td>Low (slow turnover, storage form)</td>
</tr>

<tr>
<td>Normal tissue tolerance</td>
<td>Low</td>
<td>Moderate–high</td>
<td>High</td>
</tr>

<tr>
<td>Overall cancer relevance</td>
<td>Potent but hazardous cytotoxic agent</td>
<td>Balanced anticancer redox modulator</td>
<td>Generally counterproductive for direct cancer killing</td>
</tr>

<tr>
<td>Overall therapeutic profile</td>
<td>Potent but narrow safety margin</td>
<td>Lower acute potency, broader usable window</td>
</tr>
</table>






Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 1,   Fenton↑, 1,   Ferroptosis↑, 4,   GPx↓, 1,   GPx↑, 1,   GPx4↓, 4,   GSH↓, 8,   GSH⇅, 1,   H2O2↑, 1,   Iron↑, 4,   lipid-P↑, 4,   MDA↑, 1,   NRF2↓, 2,   NRF2↑, 1,   PrxI↓, 1,   ROS↑, 31,   ROS⇅, 1,   Thiols↓, 1,   Trx↓, 3,   xCT↓, 2,   xCT↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   mitResp↑, 1,   MMP↓, 10,   mtDam↑, 4,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   lactateProd↓, 1,   NAD↓, 1,   NADPH↓, 2,   PDK1↓, 1,  

Cell Death

Akt↓, 2,   p‑Akt↓, 1,   Apoptosis↑, 17,   BAD↓, 1,   BAX↑, 2,   Bcl-2↓, 2,   BIM↑, 1,   Casp↑, 3,   cl‑Casp3↑, 2,   Casp3↝, 1,   Casp3↑, 2,   Casp9↑, 2,   Cyt‑c↑, 3,   Ferroptosis↑, 4,   necrosis↑, 2,   NOXA↑, 1,   p38↑, 1,   pS2/TFF1↑, 1,   survivin↓, 1,   TumCD↑, 6,  

Transcription & Epigenetics

other↝, 5,   tumCV↓, 3,  

Protein Folding & ER Stress

eIF2α↑, 1,   ER Stress↑, 3,   PERK↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   Beclin-1↓, 1,   LC3I↓, 1,   LC3s↑, 1,   MitoP↑, 1,   p62↓, 1,   TumAuto↑, 3,   TumAuto↓, 1,  

DNA Damage & Repair

ATM↑, 1,   DNAdam↑, 2,   DNAdam↓, 1,   DNArepair↑, 1,   DNMT1↓, 1,   P53↑, 1,   p‑P53↑, 1,   cl‑PARP↑, 1,   PARP↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   EMT↓, 1,   HDAC↓, 1,   HOXB-AS1↓, 1,   mTOR↓, 1,   p‑PI3K↓, 1,   PI3K↓, 1,   PR↑, 1,   TumCG↓, 4,  

Migration

E-cadherin↑, 2,   MMP2↓, 3,   MMP9↓, 2,   N-cadherin↓, 1,   TET1↑, 1,   TumCI↓, 2,   TumCMig↓, 1,   TumCP↓, 9,   TumCP↑, 1,   TumMeta↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 4,   angioG↑, 1,   ATF4↑, 1,   Hif1a↓, 1,   VEGF↓, 3,  

Immune & Inflammatory Signaling

IL2↑, 1,   IL6↓, 1,   Imm↑, 3,   INF-γ↑, 1,   Inflam↓, 2,   p‑IκB↑, 1,   NF-kB↓, 5,   NK cell↑, 2,   p‑p65↑, 1,   p65↓, 2,   PSA↓, 1,   Th1 response↑, 1,   Th2↑, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   chemoR↓, 1,   ChemoSen↑, 9,   Dose↑, 7,   Dose∅, 1,   Dose↝, 3,   Dose⇅, 1,   eff∅, 2,   eff↑, 9,   eff↓, 10,   eff↝, 3,   Half-Life↝, 3,   RadioS↑, 2,   RadioS∅, 1,   RadioS↝, 1,   selectivity↑, 8,  

Clinical Biomarkers

AR↓, 1,   ERα/ESR1↓, 1,   IL6↓, 1,   PSA↓, 1,  

Functional Outcomes

AntiCan∅, 2,   AntiCan↑, 4,   AntiTum↑, 6,   chemoP↑, 6,   chemoP↝, 1,   chemoP∅, 1,   chemoPv↑, 1,   ChemoSideEff↓, 2,   OS↓, 1,   OS↑, 3,   Pain↓, 1,   QoL↑, 1,   radioP↑, 5,   radioP↝, 1,   Risk↑, 3,   Risk↓, 15,   Risk∅, 1,   Risk⇅, 1,   toxicity↝, 7,   toxicity↓, 3,   TumW↓, 1,   Weight∅, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 159

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   antiOx↓, 1,   Catalase↑, 1,   Ferroptosis↓, 2,   GPx↑, 5,   GPx↓, 1,   GPx1↑, 1,   GPx4↑, 3,   GSH↑, 2,   H2O2↓, 1,   HO-1↑, 2,   lipid-P↓, 1,   MDA↓, 2,   NRF2↑, 7,   ROS↓, 8,   selenoP↑, 8,   SOD↑, 1,   Trx↑, 1,   xCT↑, 1,  

Core Metabolism/Glycolysis

BUN↓, 1,  

Cell Death

Akt↑, 1,   Bcl-2↑, 1,   Ferroptosis↓, 2,  

Transcription & Epigenetics

other↓, 3,   other↑, 1,   other↝, 3,  

DNA Damage & Repair

DNAdam↓, 2,   GADD45A↑, 1,  

Proliferation, Differentiation & Cell State

PI3K↑, 1,  

Immune & Inflammatory Signaling

CRP↓, 2,   IL1↓, 1,   IL6↓, 2,   Imm↑, 2,   Inflam↓, 7,   MCP1↓, 1,   NF-kB↓, 2,   NK cell↑, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

BDNF↑, 1,   TrkB↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↑, 3,   Dose↝, 6,   Dose↓, 1,   eff↑, 3,   Half-Life↓, 1,  

Clinical Biomarkers

CRP↓, 2,   GutMicro↑, 4,   IL6↓, 2,  

Functional Outcomes

memory↑, 1,   neuroP↑, 3,   Pain↓, 1,   QoL↑, 1,   radioP↑, 2,   RenoP↑, 1,   Risk↓, 2,   toxicity↑, 1,   toxicity↓, 2,   toxicity∅, 1,   toxicity↝, 1,  
Total Targets: 61

Research papers

Year Title Authors PMID Link Flag
2023Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling PathwayYunyun MaPMC11339151https://pmc.ncbi.nlm.nih.gov/articles/PMC11339151/0
2025Selenium in cancer management: exploring the therapeutic potentialLingwen Hehttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1490740/full0
2023Nano and mesosized selenium and its synthesis using the ascorbic acid routeDaniela Štefankováhttps://www.sciencedirect.com/science/article/abs/pii/S00223093230032890
2025Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4Mengxue Zhaohttps://link.springer.com/article/10.1007/s12011-025-04896-40
2025Application Notes and Protocols: Selenite as a Selenium Source in Cell Culture Media SupplementationBenchChem Technical Support Teamhttps://pdf.benchchem.com/80/Application_Notes_and_Protocols_Selenite_as_a_Selenium_Source_in_Cell_Culture_Media_Supplementation.pdf0
2025Sodium selenite inhibits the growth of cervical cancer cells through the PI3K/AKT pathwayYuanyuan Wanghttps://www.sciencedirect.com/science/article/abs/pii/S0946672X240020250
2025Efficacy and safety of intravenous administration of high-dose selenium for preventing chemotherapy-induced peripheral neuropathy in gastric cancer patients receiving adjuvant oxaliplatin and capecitabine after gastrectomy: a retrospective pilot studyWedyan Alhazmihttps://www.kjco.org/journal/view.php?number=4370
2025Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathwayYulong Lihttps://www.sciencedirect.com/science/article/pii/S00325791250022990
2024Sodium Selenite Prevents Matrine-Induced Nephrotoxicity by Suppressing Ferroptosis via the GSH-GPX4 Antioxidant SystemXi Wanghttps://pubmed.ncbi.nlm.nih.gov/38177716/0
2024Protection during radiotherapy: seleniumJ. Yanhttps://www.radioprotection.org/articles/radiopro/full_html/2024/04/radiopro240041/radiopro240041.html0
2024Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4Jie Shihttps://www.sciencedirect.com/science/article/abs/pii/S22107401240018880
2024A Diet Lacking Selenium, but Not Zinc, Copper or Manganese, Induces Anticancer Activity in Mice with Metastatic CancersPatricia Díaz-OrtegaPMC11280272https://pmc.ncbi.nlm.nih.gov/articles/PMC11280272/0
2024Selenium in Oncological InterventionUwe Gröberhttps://britishjournalofcancerresearch.com/selenium-in-oncological-intervention0
2023Selective Impact of Selenium Compounds on Two Cytokine Storm PlayersIndu SinhaPMC10607864https://pmc.ncbi.nlm.nih.gov/articles/PMC10607864/0
2023Intravenous Infusion of High Dose Selenite in End-Stage Cancer Patients: Analysis of Systemic Exposure to Selenite and Seleno-MetabolitesOlof BreuerPMC9953619https://pmc.ncbi.nlm.nih.gov/articles/PMC9953619/0
2023High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian CancerJung-A ChoiPMC9915545https://pmc.ncbi.nlm.nih.gov/articles/PMC9915545/0
2023Sodium Selenite Induces Ferroptosis in Non-small Cell Lung Cancer A549 Cells Via Reactive Oxygen Species (ROS)/Glutathione (GSH)/Glutathione Peroxidase4 (GPx4) Axis时杰https://www.sciengine.com/CJIAC/doi/10.3969/j.issn.2095-1035.2024.01.0150
2023Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interferenceLok Seng ChanPMC9983273https://pmc.ncbi.nlm.nih.gov/articles/PMC9983273/0
2023Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expressionXiao Xu36963369https://pubmed.ncbi.nlm.nih.gov/36963369/0
2023Selenium in Prostate Cancer: Prevention, Progression, and TreatmentJinjiang JiangPMC10536940https://pmc.ncbi.nlm.nih.gov/articles/PMC10536940/0
2022Calcium intake may explain the reduction of colorectal cancer odds by dietary selenium - a case-control study in PolandMalgorzata AugustyniakPMC8919630https://pmc.ncbi.nlm.nih.gov/articles/PMC8919630/0
2022Sodium selenite inhibits proliferation and metastasis through ROS‐mediated NF‐κB signaling in renal cell carcinomaXiao Liuhttps://link.springer.com/article/10.1186/s12885-022-09965-80
2022Sodium Selenite Regulates the Proliferation and Apoptosis of Gastric Cancer Cells by Suppressing the Expression of LncRNA HOXB-AS1Hongsheng Jianghttps://onlinelibrary.wiley.com/doi/10.1155/2022/63565830
2022Potential Role of Selenium in the Treatment of Cancer and Viral InfectionsAseel O RataanPMC8879146https://pmc.ncbi.nlm.nih.gov/articles/PMC8879146/0
2022Therapeutic Benefits of Selenium in Hematological MalignanciesMelanie A EhudinPMC9323677https://pmc.ncbi.nlm.nih.gov/articles/PMC9323677/0
2022Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathwayHongmei Wuhttps://www.sciencedirect.com/science/article/pii/S03619230220005700
2022Selenium ameliorates mercuric chloride-induced brain damage through activating BDNF/TrKB/PI3K/AKT and inhibiting NF-κB signaling pathwaysLan-Xin Lihttps://www.sciencedirect.com/science/article/abs/pii/S01620134220000580
2022Advances in the study of selenium and human intestinal bacteriaJinzhong CaiPMC9794586https://pmc.ncbi.nlm.nih.gov/articles/PMC9794586/0
2022Selenium Toxicity Accelerated by Out-of-Control Response of Nrf2-xCT PathwayKoji Uedahttps://www.researchgate.net/publication/357944506_Selenium_Toxicity_Accelerated_by_Out-of-Control_Response_of_Nrf2-xCT_Pathway0
2022Examining xCT-mediated selenium uptake and selenoprotein production capacity in cellsNamgyu Lee35101206https://pubmed.ncbi.nlm.nih.gov/35101206/0
2021The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo StudyKevin DoelloPMC8268835https://pmc.ncbi.nlm.nih.gov/articles/PMC8268835/0
2021Antitumor Effects of SeleniumSeung Jo Kimhttps://www.mdpi.com/1422-0067/22/21/118440
2021Antitumor effects of sodium selenite on acute lymphocytic leukemiaSiddiqa, Ayeshahttps://journals.lww.com/cancerjournal/Fulltext/2021/17010/Antitumor_effects_of_sodium_selenite_on_acute.45.aspx0
2021Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With DiseasesRannapaula Lawrynhuk Urbano FerreiraPMC8211732https://pmc.ncbi.nlm.nih.gov/articles/PMC8211732/0
2020The solvent and treatment regimen of sodium selenite cause its effects to vary on the radiation response of human bronchial cells from tumour and normal tissuesKatrin MandaPMC7671986https://pmc.ncbi.nlm.nih.gov/articles/PMC7671986/0
2020Superoxide-mediated ferroptosis in human cancer cells induced by sodium seleniteKarthikeyan Subburayanhttps://www.sciencedirect.com/science/article/pii/S19365233203033510
2020Superoxide-mediated ferroptosis in human cancer cells induced by sodium seleniteKarthikeyan SubburayanPMC7453065https://pmc.ncbi.nlm.nih.gov/articles/PMC7453065/0
2019Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in miceXiming Wuhttps://www.sciencedirect.com/science/article/abs/pii/S10436618193055600
2019Results from a Phase 1 Study of Sodium Selenite in Combination with Palliative Radiation Therapy in Patients with Metastatic CancerSusan J KnoxPMC6717060https://pmc.ncbi.nlm.nih.gov/articles/PMC6717060/0
2019Sodium Selenite Alleviates Breast Cancer-Related Lymphedema Independent of Antioxidant Defense SystemHye Won HanPMC6566195https://pmc.ncbi.nlm.nih.gov/articles/PMC6566195/0
2019Sodium selenite induces apoptosis via ROS-mediated NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis in 4T1 cellsTao Zhang30218457https://pubmed.ncbi.nlm.nih.gov/30218457/0
2018Selenium in Radiation Oncology—15 Years of Experiences in GermanyRalph MueckePMC5946268https://pmc.ncbi.nlm.nih.gov/articles/PMC5946268/0
2018Selenium for preventing cancerMarco VincetiPMC6491296https://pmc.ncbi.nlm.nih.gov/articles/PMC6491296/0
2018Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibitionRachael TindellPMC6134185https://pmc.ncbi.nlm.nih.gov/articles/PMC6134185/0
2017Application of Sodium Selenite in the Prevention and Treatment of CancersMarek Kieliszekhttps://www.mdpi.com/2073-4409/6/4/390
2017Sodium Selenite as an Anticancer AgentBoguslaw Lipinski27281365https://pubmed.ncbi.nlm.nih.gov/27281365/0
2017Optimising Selenium for Modulation of Cancer TreatmentsSTEPHEN OWEN EVANShttps://ar.iiarjournals.org/content/37/12/64970
2016Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma CellsFlorence Hazane-Puch26286659https://pubmed.ncbi.nlm.nih.gov/26286659/0
2015Selenium and inflammatory bowel diseaseAvinash K KudvaPMC4504954https://pmc.ncbi.nlm.nih.gov/articles/PMC4504954/0
2015Redox-Active Selenium Compounds—From Toxicity and Cell Death to Cancer TreatmentSougat Misrhttps://www.mdpi.com/2072-6643/7/5/35360
2015Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivoYANG YANGPMC4750746https://pmc.ncbi.nlm.nih.gov/articles/PMC4750746/0
2015Pharmacokinetics and Toxicity of Sodium Selenite in the Treatment of Patients with Carcinoma in a Phase I Clinical Trial: The SECAR StudyOla BrodinPMC4488827https://pmc.ncbi.nlm.nih.gov/articles/PMC4488827/0
2014Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2α/ATF4 axis in selenite-treated NB4 cellsQ JiangPMC4047911https://pmc.ncbi.nlm.nih.gov/articles/PMC4047911/0
2014Updates on clinical studies of selenium supplementation in radiotherapyIrma M PuspitasariPMC4073179https://pmc.ncbi.nlm.nih.gov/articles/PMC4073179/0
2013Activation of p53 by sodium selenite switched human leukemia NB4 cells from autophagy to apoptosisZhushi Li25198662https://pubmed.ncbi.nlm.nih.gov/25198662/0
2012Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axisHui Luo22074856https://pubmed.ncbi.nlm.nih.gov/22074856/0
2011Selenium and Lung Cancer: A Systematic Review and Meta AnalysisHeidi FritzPMC3208545https://pmc.ncbi.nlm.nih.gov/articles/PMC3208545/0
2011Dietary selenium affects host selenoproteome expression by influencing the gut microbiotaMarina V KasaikinaPMC3114522https://pmc.ncbi.nlm.nih.gov/articles/PMC3114522/0
2010Selenium compounds activate ATM-dependent DNA damage response via the mismatch repair protein hMLH1 in colorectal cancer cellsYongmei QiPMC2963351https://pmc.ncbi.nlm.nih.gov/articles/PMC2963351/0
2010Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cellsNong XiangPMC2592502https://pmc.ncbi.nlm.nih.gov/articles/PMC2592502/0
2010https://pubmed.ncbi.nlm.nih.gov/19811770/Zengyang Pei19811770https://pubmed.ncbi.nlm.nih.gov/19811770/0
2010Selenium Substitution During Radiotherapy of Solid Tumours – Laboratory Data from Two Observation Studies in Gynaecological and Head and Neck Cancer PatientsJENS BÜNTZELhttps://ar.iiarjournals.org/content/30/5/17830
2009Extracellular thiol-assisted selenium uptake dependent on the xc− cystine transporter explains the cancer-specific cytotoxicity of seleniteEric OlmPMC2708693https://pmc.ncbi.nlm.nih.gov/articles/PMC2708693/0
2009Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cellsYun Ren19788862https://pubmed.ncbi.nlm.nih.gov/19788862/0
2007Sodium Selenite Induces Superoxide-Mediated Mitochondrial Damage and Subsequent Autophagic Cell Death in Malignant Glioma CellsEun Hee Kimhttps://aacrjournals.org/cancerres/article/67/13/6314/533204/Sodium-Selenite-Induces-Superoxide-Mediated0
2006Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patientsGabriele DennertPMC6464502https://pmc.ncbi.nlm.nih.gov/articles/PMC6464502/0
2005Rationale for the treatment of cancer with sodium seleniteBoguslaw Lipinski15694701https://pubmed.ncbi.nlm.nih.gov/15694701/0
2001Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell lineWeixiong Zhonghttps://www.researchgate.net/publication/11763422_Redox-mediated_effects_of_selenium_on_apoptosis_and_cell_cycle_in_the_LNCaP_human_prostate_cancer_cell_line0
2000Effects of selenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cellsA Stoica10967555https://pubmed.ncbi.nlm.nih.gov/10967555/0
2000Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cellsHan-Ming Shenhttps://www.sciencedirect.com/science/article/abs/pii/S08915849000020690
2023Selenium modulates cancer cell response to pharmacologic ascorbateConnor SR JankowskiPMC9532358https://pmc.ncbi.nlm.nih.gov/articles/PMC9532358/0