tbResList Print — PB Phenylbutyrate

Filters: qv=15, qv2=%, rfv=%

Product

PB Phenylbutyrate
Description: <b>Used</b> to treat urea cycle disorders<br>
Sodium phenylbutyrate helps remove ammonia from the body.<br>
-Phenyl-butyrate (PB)4 is an aromatic fatty acid that is converted in vivo to phenylacetate (PA) by β-oxidation in liver and kidney mitochondria.<br>
-In human body, phenylbutyrate is oxidized to phenylacetate, which is in turn conjugated with glutamine and eliminated in urine as phenylacetylglutamine, thereby mediating elimination of waste nitrogen<br>
-Phenylbutyrate is one of the first drugs encountered in cancer therapy as a histone deacetylase inhibitor (HDACI) (relatively weak compared to vorinostat (SAHA), romidepsin, etc.).<br>
-Butyric acid is one of the short-chain fatty acids produced by the gut microbiota through the fermentation of dietary fiber. Butyrate is primarily recognized for its beneficial effects in the colon and is tightly linked to gut health. <br>
-Phenylbutyrate is a derivative of butyrate that has been chemically modified by the addition of a phenyl group. This structural change increases its lipophilicity (fat solubility) and alters its metabolic fate and biological activity. This allows it to be used as a systemic drug, in contrast to the locally produced butyrate in the gut, which is rapidly metabolized by colonocytes<br>
<br>
Pathways:<br>
-Histone deacetylase (HDAC) inhibitor<br>
-ER stress inhibitor (at least in normal cell)<br>
-Can act as a chemical chaperone, helping to reduce ER stress by facilitating proper protein folding.<br>
-Modulation of NF-κB Signaling<br>
-Changes in pathways such as PI3K/Akt/mTOR and MAPK.<br>
-Some preclinical investigations have reported that treatment with phenylbutyrate leads to mitochondrial dysfunction and endoplasmic reticulum (ER) stress, both of which can result in an increase of ROS within cancer cells. <br>
<br>
Note: Sodium butyrate (NaBu) vs Sodium phenylbutyrate<br>
-Sodium butyrate is primarily a research tool with limited clinical application, whereas phenylbutyrate is used clinically<br>
-Phenylbutyrate typically exhibits improved pharmacokinetics and is more amenable to systemic use compared to sodium butyrate.<br>
-Both compounds act as HDAC inhibitors, phenylbutyrate additionally modulates ER stress and mitochondrial function, leading to potentially greater ROS production in certain cancer cells.<br>
<br>
<a href="https://www.purepba.com/shop/">https://www.purepba.com/shop/ </a><br>

<br>

<!-- Phenylbutyrate (PB) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Histone Deacetylase (HDAC) inhibition</td>
<td>Histone acetylation ↑; p21 ↑; differentiation ↑; proliferation ↓</td>
<td>Gene-expression modulation</td>
<td>R, G</td>
<td>Epigenetic reprogramming</td>
<td>Core anticancer mechanism; early-generation, relatively weak HDAC inhibitor.</td>
</tr>

<tr>
<td>2</td>
<td>Cell-cycle arrest</td>
<td>G1 arrest ↑; Cyclin D1 ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Common downstream effect of HDAC inhibition.</td>
</tr>

<tr>
<td>3</td>
<td>Apoptosis</td>
<td>Caspase activation ↑ (reported; model-dependent)</td>
<td>↔</td>
<td>G</td>
<td>Cell death execution</td>
<td>Often secondary to transcriptional changes and stress modulation.</td>
</tr>

<tr>
<td>4</td>
<td>ER stress / Chemical chaperone activity</td>
<td>Context-dependent: ER stress ↑ or ↓</td>
<td>ER stress ↓ (protein misfolding disorders)</td>
<td>R, G</td>
<td>Protein-folding modulation</td>
<td>Acts as chemical chaperone; effect depends on cell type and dose.</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>NF-κB modulation (reported)</td>
<td>Inflammatory tone modulation</td>
<td>R, G</td>
<td>Transcriptional regulation</td>
<td>Likely secondary to epigenetic changes.</td>
</tr>

<tr>
<td>6</td>
<td>PI3K → AKT / MAPK pathways</td>
<td>Survival pathway modulation (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth signaling modulation</td>
<td>Downstream transcriptional effects rather than primary kinase inhibition.</td>
</tr>

<tr>
<td>7</td>
<td>Mitochondrial stress / ROS</td>
<td>ROS modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Metabolic adaptation</td>
<td>Not a primary ROS-inducing agent; effects vary by tumor model.</td>
</tr>

<tr>
<td>8</td>
<td>Urea-cycle nitrogen scavenging (approved indication)</td>
<td>—</td>
<td>Ammonia elimination ↑ (phenylacetylglutamine formation)</td>
<td>—</td>
<td>Clinical metabolic role</td>
<td>Primary approved medical use.</td>
</tr>
</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Ferroptosis↑, 1,   ROS↑, 5,   ROS↓, 2,   ROS⇅, 1,   mt-ROS↑, 1,   i-ROS?, 1,   SOD↓, 1,   xCT↓, 1,  

Mitochondria & Bioenergetics

CDC25↓, 1,   MMP↓, 4,   MMP?, 1,   MMP∅, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

Cav1↓, 1,   cMyc↓, 2,   GlucoseCon↓, 3,   glut↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   lactateProd↓, 1,   LDHA↓, 1,   NH3↓, 2,   p‑PDH↓, 1,   PDH↑, 1,   PDK1↓, 1,   PDKs↓, 1,   PFK1↓, 1,   PKM2↓, 1,   SIRT1↓, 2,  

Cell Death

Apoptosis↑, 7,   Apoptosis?, 1,   ASK1↑, 1,   BAX↑, 1,   Bcl-2↓, 3,   Bcl-xL↓, 2,   BID↑, 1,   Casp↑, 1,   pro‑Casp12↓, 1,   Casp3↑, 6,   cl‑Casp3↑, 1,   cl‑Casp3↓, 1,   Casp7↑, 2,   Casp8↑, 1,   Cyt‑c↝, 1,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   JNK↑, 1,   JNK↓, 1,   p‑p38↑, 1,   p38↑, 1,   survivin↓, 1,   Telomerase↓, 1,   TumCD↑, 2,  

Transcription & Epigenetics

ac‑H3↑, 2,   ac‑H4↑, 1,   HATs↑, 1,   other↝, 3,   other?, 1,   Prot↓, 1,   SD↑, 1,   tumCV∅, 1,  

Protein Folding & ER Stress

ChemChap↑, 1,   CHOP↑, 4,   ER Stress↓, 3,   ER Stress↑, 3,   GRP78/BiP↓, 1,   GRP78/BiP↑, 1,   HSP27↑, 1,   HSP27↓, 1,   HSP90∅, 1,   IRE1↓, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   LC3B↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

BRCA1↓, 1,   DNArepair↓, 2,   P53↝, 1,   cl‑PARP↓, 1,   PARP↓, 1,  

Cell Cycle & Senescence

CycB/CCNB1↓, 1,   P21↑, 4,   TumCCA↑, 6,  

Proliferation, Differentiation & Cell State

CD44↓, 1,   cDC2↓, 1,   Diff↑, 2,   ERK↑, 1,   ERK↓, 1,   HDAC↓, 16,   IGF-2↑, 1,   IGFBP3↑, 1,   TumCG↓, 8,  

Migration

Ca+2↝, 1,   E-cadherin↑, 1,   FAK↓, 1,   miR-22↑, 1,   proMMP2↓, 1,   N-cadherin↓, 1,   TGF-β↑, 1,   TumCP↓, 4,   TumCP↑, 1,   TumMeta↓, 1,   TXNIP↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   PDI↑, 1,   VEGF↓, 2,  

Immune & Inflammatory Signaling

NF-kB↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 3,   ChemoSen↑, 4,   Dose↝, 6,   Dose↑, 1,   Dose∅, 1,   eff↑, 13,   eff↝, 4,   eff↓, 2,   RadioS↑, 4,   selectivity↑, 5,  

Clinical Biomarkers

AR↓, 1,   BRCA1↓, 1,   RBM3↑, 1,  

Functional Outcomes

AntiTum↑, 1,   chemoP↑, 1,   OS↑, 4,   toxicity↓, 2,   TumVol↓, 1,  
Total Targets: 126

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   GSH↑, 1,   ROS↓, 5,   ROS∅, 1,   ROS↑, 1,   SOD2↑, 1,  

Mitochondria & Bioenergetics

mitResp↓, 1,   mtDam↓, 1,  

Core Metabolism/Glycolysis

CREB↑, 1,   FAO↑, 1,   ac‑Histones↑, 1,   LDH↓, 1,   LDL↓, 1,   lipoGen↓, 1,   NH3↓, 1,  

Cell Death

Apoptosis↓, 1,   Casp3↑, 1,   cellD↓, 1,   iNOS↓, 1,  

Protein Folding & ER Stress

ChemChap↑, 2,   ChemChap↓, 1,   ER Stress↓, 7,   HSP90↑, 1,  

Cell Cycle & Senescence

P21↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

Diff↑, 1,   GSK‐3β↓, 1,   HDAC↓, 6,  

Migration

TumCP↓, 1,   TXNIP↑, 1,  

Immune & Inflammatory Signaling

IL17↑, 1,   IL1β↓, 2,   Inflam↑, 1,   Inflam↓, 1,   Neut↑, 1,   NF-kB↓, 1,   TNF-α↓, 1,   TNF-α↑, 1,  

Synaptic & Neurotransmission

BDNF↑, 2,   p‑tau↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   Half-Life↑, 2,  

Clinical Biomarkers

GutMicro↑, 2,   LDH↓, 1,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 1,   cytoP↑, 1,   memory↑, 1,   neuroP↑, 6,   OS↑, 1,   toxicity↓, 6,   toxicity↝, 1,  

Infection & Microbiome

Bacteria↓, 1,   Inf↓, 1,  
Total Targets: 55

Research papers

Year Title Authors PMID Link Flag
2005Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cellsNarendra P Singh16309236https://pubmed.ncbi.nlm.nih.gov/16309236/0
2024Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye DiseaseZhiwei ZhaPMC11668352https://pmc.ncbi.nlm.nih.gov/articles/PMC11668352/0
2023Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells Jianjian Wu 36086867https://pubmed.ncbi.nlm.nih.gov/36086867/0
2023Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axisZiwei Wanghttps://assets-eu.researchsquare.com/files/rs-2681132/v1/8ed295ec-69df-424a-8724-5a03717f53aa.pdf?c=16974911240
2022Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathwayQiang YuPMC9097842https://pmc.ncbi.nlm.nih.gov/articles/PMC9097842/0
2021Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cellsFei Fei GaoPMC8665556https://pmc.ncbi.nlm.nih.gov/articles/PMC8665556/0
2020The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 CellsYuan Yang31749427https://pubmed.ncbi.nlm.nih.gov/31749427/0
2019Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applicationsBo He30954630https://pubmed.ncbi.nlm.nih.gov/30954630/0
2018The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cellsMaha S Al-KeilaniPMC6186900https://pmc.ncbi.nlm.nih.gov/articles/PMC6186900/0
2018Induction of Human-Lung-Cancer-A549-Cell Apoptosis by 4-Hydroperoxy-2-decenoic Acid Ethyl Ester through Intracellular ROS Accumulation and the Induction of Proapoptotic CHOP ExpressionTetsuro Kamiya30296076https://pubmed.ncbi.nlm.nih.gov/30296076/0
2018Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo29658787https://pubmed.ncbi.nlm.nih.gov/29658787/0
2017Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effectWen Zhang28450154https://pubmed.ncbi.nlm.nih.gov/28450154/0
2017Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cellsKishor PantPMC5350572https://pmc.ncbi.nlm.nih.gov/articles/PMC5350572/0
20174-Phenyl butyric acid prevents glucocorticoid-induced osteoblast apoptosis by attenuating endoplasmic reticulum stressJianhui Yang27678165https://pubmed.ncbi.nlm.nih.gov/27678165/0
2017Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairmentPMC5669027https://pmc.ncbi.nlm.nih.gov/articles/PMC5669027/0
2017Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer MechanismsMaha S Al-Keilani28930444https://pubmed.ncbi.nlm.nih.gov/28930444/0
2016The Effect of Glucose Concentration and Sodium Phenylbutyrate Treatment on Mitochondrial Bioenergetics and ER Stress in 3T3-L1 AdipocytesRoss M TanisPMC4786050https://pmc.ncbi.nlm.nih.gov/articles/PMC4786050/0
2016Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for ApoptosisJintao ZhangPMC4718706https://pmc.ncbi.nlm.nih.gov/articles/PMC4718706/0
2016TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatmentXuefang JinPMC5313639https://pmc.ncbi.nlm.nih.gov/articles/PMC5313639/0
2016Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar TyphimuriumStefan JellbauerPMC4995890https://pmc.ncbi.nlm.nih.gov/articles/PMC4995890/0
2015Phenylbutyric Acid: simple structure - multiple effectsMagdalena Kusaczuk25557635https://pubmed.ncbi.nlm.nih.gov/25557635/0
2015Histone Deacetylase (HDAC) Inhibitors: Current Evidence for Therapeutic Activities in Pancreatic CancerCHRISTOS DAMASKOShttps://ar.iiarjournals.org/content/35/6/3129.full0
2015Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetateRosa FerrieroPMC4551558https://pmc.ncbi.nlm.nih.gov/articles/PMC4551558/0
2015Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell lineMagdalena KusaczukPMC4841856https://pmc.ncbi.nlm.nih.gov/articles/PMC4841856/0
2014Preliminary Findings on the Use of Targeted Therapy in Combination with Sodium Phenylbutyrate in Colorectal Cancer after Failure of Second-Line Therapy—A Potential Strategy for Improved SurvivalStanislaw R. Burzynskihttps://www.scirp.org/journal/paperinformation?paperid=515770
20134-Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitorSeisuke Mimori24044874https://pubmed.ncbi.nlm.nih.gov/24044874/0
2013Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer´s disease-like phenotype of a commonly used mouse modelMar Cuadrado-Tejedor23448463https://pubmed.ncbi.nlm.nih.gov/23448463/0
2012Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s DiseaseAvik RoyPMC3377667https://pmc.ncbi.nlm.nih.gov/articles/PMC3377667/0
2012Inhibition of Mitochondria- and Endoplasmic Reticulum Stress-Mediated Autophagy Augments Temozolomide-Induced Apoptosis in Glioma CellsChien-Ju LinPMC3382156https://pmc.ncbi.nlm.nih.gov/articles/PMC3382156/0
2012Protective effects of 4-phenylbutyrate derivatives on the neuronal cell death and endoplasmic reticulum stressSeisuke Mimori22223342https://pubmed.ncbi.nlm.nih.gov/22223342/0
2012Impact of butyrate on PKM2 and HSP90β expression in human colon tissues of different transformation stages: a comparison of gene and protein dataFranziska Jahnshttps://link.springer.com/article/10.1007/s12263-011-0254-60
2011Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic miceJesse C Wiley21272191https://pubmed.ncbi.nlm.nih.gov/21272191/0
2011Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress responseKim Y C Fung21235278https://pubmed.ncbi.nlm.nih.gov/21235278/0
2010The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brainHyeon Ju KimPMC2726719https://pmc.ncbi.nlm.nih.gov/articles/PMC2726719/0
2009Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse modelAna Ricobaraza19145227https://pubmed.ncbi.nlm.nih.gov/19145227/0
2008Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatinKyunghee BurkittPMC2276233https://pmc.ncbi.nlm.nih.gov/articles/PMC2276233/0
2007Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumorsLuis H Camacho17053987https://pubmed.ncbi.nlm.nih.gov/17053987/0
2007Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiationCarlos A Lopez17707275https://pubmed.ncbi.nlm.nih.gov/17707275/0
2007Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injuryChotiros DaosukhoPMC2151922https://pmc.ncbi.nlm.nih.gov/articles/PMC2151922/0
2006Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cellsO AmmerpohlPMC2360208https://pmc.ncbi.nlm.nih.gov/articles/PMC2360208/0
2006Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changesJiiang-Huei Jeng16737765https://pubmed.ncbi.nlm.nih.gov/16737765/0
2005Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomasMichal Entin-Meer16373710https://pubmed.ncbi.nlm.nih.gov/16373710/0
2005Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: A dose escalation and pharmacologic studySurasak PhuphanichPMC1871887https://pmc.ncbi.nlm.nih.gov/articles/PMC1871887/0
2004Sodium 4-phenylbutyrate induces apoptosis of human lung carcinoma cells through activating JNK pathwayXing Zhang15389886https://pubmed.ncbi.nlm.nih.gov/15389886/0
2002Complete response of a recurrent, multicentric malignant glioma in a patient treated with phenylbutyrateMatthew J Baker12241121https://pubmed.ncbi.nlm.nih.gov/12241121/0
2002Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cellsRena Feinman11855750https://pubmed.ncbi.nlm.nih.gov/11855750/0
2001Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer CellsMeidee GohPMC1505863https://pmc.ncbi.nlm.nih.gov/articles/PMC1505863/0
2001A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignanciesJ Gilbert11489804https://pubmed.ncbi.nlm.nih.gov/11489804/0
2000Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitorsS D Gore11093362https://pubmed.ncbi.nlm.nih.gov/11093362/0
1998Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolismDominique Darmaunhttps://journals.physiology.org/doi/full/10.1152/ajpendo.1998.274.5.E8010
1996Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetateM A Carducci9816181https://pubmed.ncbi.nlm.nih.gov/9816181/0
1994Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuriaD Samid8313377https://pubmed.ncbi.nlm.nih.gov/8313377/0
2013Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serineHelene M SavignacPMC3858812https://pmc.ncbi.nlm.nih.gov/articles/PMC3858812/0