tbResList Print — AgNPs Silver-NanoParticles

Filters: qv=153, qv2=%, rfv=%

Product

AgNPs Silver-NanoParticles
Description: <b>Silver NanoParticles (AgNPs)</b><br>
Summary: <br>
1.Smaller sizes are generally more bioactive due to increased surface area and enhanced tumor accumulation via the enhanced permeability and retention (EPR) effect.<br>
2.Two relevant forms: particulate silver (AgNPs) and ionic silver (Ag⁺).
There is debate regarding oral use, as Ag⁺ can precipitate as AgCl in gastric acid, reducing bioavailability; AgNPs may partially avoid this via particulate uptake and intracellular Ag⁺ release. Gastric pH may influence this equilibrium.<br>
3. Dose example 80kg person: 1.12-2mg/day, which can be calculated based on ppm and volume taken (see below) target < 10ppm and 120mL per day (30ppm and 1L per day caused argyria 30mg/day ) (Case Report: 9‐15 ppm@120mL, i.e. 1.1mg/L to 1.8mg/L per day)<br>
Likely 10ppm --> 10mg/L, hence if take 100mL, then 1mg/day? (for Cancer)<br>
The current Rfd for oral silver exposure is 5 ug/kg/d with a critical dose estimated at 14 ug/kg/d for the average person.<br>
Seems like the Cancer target range is 14ug/kg/day to 25ug/kg/day. 80Kg example: 1.12mg to 2mg
<a href="https://www.cancertreatmentsresearch.com/a-silver-bullet-to-kill-cancer/" > “1.4µg/kg body weight. If I would have 70kg, I would want to use 100µg/day. However, for fighting active disease, I would tend to explore higher daily dose, as I think this may be too low.” </a> <br>
These values reflect experimental or anecdotal contexts and are not established safe or therapeutic doses.<br>
4. Antioxidants such as NAC can counteract AgNP cytotoxicity by restoring glutathione pools and suppressing ROS-mediated mitochondrial damage. <br>
5. In vitro studies commonly show ROS elevation in both cancer and normal cells; however, in vivo, superior antioxidant, NRF2, and repair capacity in normal tissues may confer selectivity.<br>
6. Pathways/mechanisms of action/:<br>
-” intracellular ROS was increased...reduction in levels of glutathione (GSH)”<br>
- Normal-cell selectivity is partly mediated by NRF2-dependent antioxidant and detoxification responses.<br>
- AgNPs impair mitochondrial electron transport, increasing electron leak and amplifying ROS upstream of ΔΨm collapse.<br>
-AgNPs inhibit VEGF-driven endothelial signaling and permeability (anti-angiogenic effect)<br>
-”upregulation of proapoptotic genes (p53, p21, Bax, and caspases) and downregulation of antiapoptotic genes (Bcl-2)”<br>
-” upregulation of AMPK and downregulation of mTOR, MMP-9, BCL-2, and α-SMA”<br>
-”p53 is a key player...proapoptotic genes p53 and Bax were significantly increased... noticeable reduction in Bcl-2 transcript levels”<br>
-” p53 participates directly in the intrinsic apoptosis pathway by regulating the mitochondrial outer membrane permeabilization”<br>
- “Proapoptotic markers (BAX/BCL-XL, cleaved poly(ADP-ribose) polymerase, p53, p21, and caspases 3, 8 and 9) increased.”<br>
-”The antiapoptotic markers, AKT and NF-kB, decreased in AgNP-treated cells.”<br>
<br>
Chronic accumulation and long-term systemic effects remain insufficiently characterized.<br>
<br>
Silver NanoParticles and Magnetic Fields<br>
Summary:<br>
1. “exposure to PMF increased the ability of AgNPs uptake”<br>
2. 6x improvement from AgNPs alone<br>
<br>
could
<a href="https://nestronics.ca/dbx/tbResList.php?qv=335&qv2=153&wNotes=on&">glucose </a>
capping of SilverNPs work as trojan horse?<br>
<br>
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=4434">Sodium selenite might protect against toxicity
of AgNPs in normal cells.</a> <br>
<br>
-uncoated AgNPs can degrade the gut microbiome. PVP, citrate, green-synthesized, chitosan coating, may reduce
the effect. <br>
Similar oxidative considerations may apply to selenium compounds, though mechanisms differ.<br>
co-ingestion with food (higher pH) favors reduction and lower Ag+ levels. <br>

-action mechanisms of AgNPs: the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. <br>
<br>
AgNP anticancer effects come from three overlapping mechanisms:<br>
-Nanoparticle–cell interaction (uptake, membrane effects)<br>
-Intracellular ROS generation<br>
-Controlled Ag⁺ release inside cancer cells<br>
<br>
<pre>
Comparison adding Citrate Capping
| Property | Uncapped AgNPs | Citrate-capped AgNPs |
| --------------------- | -------------- | -------------------- |
| Stability | Poor | Excellent |
| Free Ag⁺ | High | Low |
| Normal cell toxicity | Higher | Lower |
| Cancer selectivity | Lower | **Higher** |
| Mechanism specificity | Crude | **Targeted** |
| Storage behavior | Degrades | Stable |
</pre>
<br>





<table >
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Oxidative stress / ROS generation</td>
<td>↑ ROS (sustained)</td>
<td>↑ transient ROS → ↓ net ROS after adaptation</td>
<td>Upstream cytotoxic trigger</td>
<td>AgNP exposure commonly elevates ROS in cancer cells, initiating downstream stress-death programs</td>
<td><a href="https://pubs.acs.org/doi/10.1021/acsomega.7b00045" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Thiol buffering (GSH pool)</td>
<td>↓ GSH (depletion)</td>
<td>↔ or transient ↓ with recovery</td>
<td>Loss of redox buffering</td>
<td>Colon cancer model: AgNPs induce oxidative cell damage through inhibition/depletion of reduced glutathione with downstream mitochondrial apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/30056045/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial ETC / respiration</td>
<td>↓ ETC efficiency; ↑ electron leak</td>
<td>↔ mild inhibition with recovery</td>
<td>Bioenergetic destabilization</td>
<td>ETC impairment amplifies ROS, precedes ΔΨm loss, and contributes to ATP collapse in cancer cells</td>
<td></td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity (ΔΨm / MMP)</td>
<td>↓ ΔΨm</td>
<td>↔ largely preserved</td>
<td>Mitochondrial dysfunction</td>
<td>Breast cancer model: AgNP exposure dissipates mitochondrial membrane potential during cytotoxic progression</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6156419/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis (caspase cascade)</td>
<td>↑ caspase-dependent apoptosis</td>
<td>↔ minimal activation</td>
<td>Programmed cell death</td>
<td>Colon cancer model: “silver-based nanoparticles” induce apoptosis mediated through p53 (apoptosis direction shown)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/23514434/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Genotoxic stress / DNA damage</td>
<td>↑ DNA damage</td>
<td>↑ damage at high dose with efficient repair</td>
<td>Checkpoint/death signaling</td>
<td>Study documents AgNP-mediated DNA damage; susceptibility increases with impaired DNA repair capacity</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5890915/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>ER stress / UPR (CHOP-dependent)</td>
<td>↑ ER stress → apoptosis</td>
<td>↑ adaptive UPR (no CHOP)</td>
<td>Proteotoxic stress signaling</td>
<td>Breast cancer cells: AgNPs induce “irremediable” ER stress leading to UPR-dependent apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/27586505/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Autophagy program</td>
<td>↑ autophagy (protective)</td>
<td>↑ adaptive autophagy</td>
<td>Stress adaptation</td>
<td>AgNPs induce autophagy in cancer cells; inhibiting autophagy enhances AgNP anticancer killing</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4502813/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Autophagic flux / lysosomal function</td>
<td>↓ flux (lysosomal defect)</td>
<td>↔ preserved flux</td>
<td>Autophagic failure</td>
<td>AgNP-induced lysosomal dysfunction drives autophagic flux defects (LC3-II accumulation)</td>
<td><a href="https://academic.oup.com/toxsci/article/150/2/473/2461967" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>NRF2 antioxidant response</td>
<td>↔ insufficient activation</td>
<td>↑ NRF2 activation</td>
<td>Adaptive redox defense</td>
<td>NRF2 activation in normal cells restores GSH and antioxidant enzymes, limiting toxicity</td>
<td></td>
</tr>

<tr>
<td>11</td>
<td>Stress MAPK (p38) / checkpoint signaling</td>
<td>↑ p38 → arrest/apoptosis</td>
<td>↑ transient p38 → recovery</td>
<td>Stress signaling</td>
<td>Jurkat T-cell model shows p38 MAPK activation with DNA damage and apoptosis</td>
<td><a href="https://pubs.acs.org/doi/abs/10.1021/es1020668" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Angiogenesis / invasion (VEGF, NF-κB-linked)</td>
<td>↓ angiogenesis / ↓ invasion</td>
<td>↔ minimal effect</td>
<td>Anti-angiogenic / anti-invasive</td>
<td>AgNPs inhibit VEGF-induced permeability and invasion in tumor models</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2776000/" target="_blank">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 4,   Catalase↓, 1,   Catalase↑, 1,   Ferroptosis↑, 1,   GPx↓, 1,   GPx↑, 1,   GPx4↓, 1,   GSH↓, 5,   GSH/GSSG↓, 1,   GSR↑, 1,   GSR↓, 1,   H2O2↑, 1,   lipid-P↑, 8,   lipid-P↝, 1,   MDA↑, 3,   NADPH/NADP+↓, 1,   NRF2↓, 1,   NRF2↑, 3,   NRF2↝, 1,   OSI↑, 1,   ROS↑, 25,   ROS↓, 1,   mt-ROS↑, 2,   selenoP↓, 1,   SOD↓, 3,   SOD↑, 1,   TAC↓, 1,   TOS↑, 1,   TrxR↓, 7,   TrxR1↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 4,   ETC↓, 1,   MMP↓, 3,   MMP↑, 2,   mtDam↑, 3,   Raf↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   cMyc↑, 1,   GlucoseCon↓, 1,   LDH↓, 10,   LDH↑, 2,   PIK3CA↑, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 4,   Apoptosis↑, 11,   Apoptosis↝, 1,   mt-Apoptosis↑, 1,   Bak↑, 1,   BAX↑, 11,   Bax:Bcl2↑, 1,   Bcl-2↓, 13,   Bcl-2↑, 1,   Bcl-xL↓, 1,   BID↑, 1,   Casp↑, 4,   Casp1↓, 1,   Casp12↑, 1,   Casp3↑, 13,   cl‑Casp3↑, 3,   Casp6↑, 1,   Casp7↑, 1,   Casp8↑, 1,   Casp9↑, 6,   Cyt‑c↑, 3,   Endon↑, 1,   Ferroptosis↑, 1,   hTERT/TERT↓, 1,   iNOS↑, 1,   JNK↑, 3,   MAPK↑, 1,   Mcl-1↓, 1,   Necroptosis↑, 1,   p27↑, 1,   p38↑, 1,   p‑p38↑, 1,   PUMA↝, 1,   survivin↑, 1,   survivin↓, 1,   Telomerase↓, 1,   TumCD↑, 4,   TumCD↓, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,   HER2/EBBR2↓, 1,  

Transcription & Epigenetics

ChrMod↝, 1,   other↝, 9,   other↑, 2,   other∅, 1,   other↓, 1,   sonoS↑, 1,   tumCV↓, 20,   tumCV↑, 1,  

Protein Folding & ER Stress

cl‑ATF6↑, 2,   ATF6↑, 1,   CHOP↑, 1,   ER Stress↑, 2,   GRP78/BiP↑, 3,   IRE1↑, 2,   p‑IRE1↑, 1,   PERK↑, 2,   p‑PERK↑, 1,   UPR↑, 4,   XBP-1↑, 1,  

Autophagy & Lysosomes

APA↑, 1,   Beclin-1↑, 2,   LC3B↑, 1,   LC3s↑, 1,   lysoM↓, 1,   lysosome↓, 1,   p62↓, 1,   p62↑, 2,   TumAuto↑, 6,  

DNA Damage & Repair

DNAdam↑, 24,   P53↑, 10,   P53↓, 1,   P53↝, 2,   p‑PARP↑, 1,   PARP↝, 1,   PCNA↓, 1,   γH2AX↑, 2,  

Cell Cycle & Senescence

CDK2↓, 1,   cycD1/CCND1↓, 3,   P21↑, 3,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

CD34↓, 1,   CD44↓, 1,   CSCs↓, 3,   CSCs↝, 1,   p‑ERK↓, 2,   p‑ERK↑, 1,   ERK↓, 1,   MAP2K1/MEK1↓, 1,   miR-125b↓, 1,   mTOR↑, 1,   mTOR↓, 1,   Nanog↓, 1,   OCT4↓, 1,   PI3K↓, 2,   PTEN↑, 1,   TumCG↓, 9,  

Migration

Ca+2↑, 1,   Ca+2↝, 1,   Ki-67↓, 2,   MMP2↓, 2,   MMP9↑, 1,   MMP9↓, 3,   MMPs↓, 1,   PKCδ↓, 1,   SOX4↓, 1,   TumCI↓, 3,   TumCMig↓, 5,   TumCP↓, 2,   TumMeta↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   angioG↑, 1,   ATF4↑, 1,   EPR↝, 1,   EPR↑, 7,   HIF-1↓, 1,   Hif1a↑, 2,   Hif1a↓, 1,   NO↑, 2,   VEGF↓, 2,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 1,   CellMemb↑, 2,   CTR1↑, 1,   GLUT1↓, 1,   sonoP↑, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 1,   COX2↑, 1,   IL1↑, 1,   IL1↓, 1,   IL1α↓, 1,   IL1β↓, 2,   IL1β↑, 1,   IL33↑, 1,   IL6↓, 2,   IL8↑, 1,   Inflam↓, 1,   NF-kB↓, 3,   NF-kB↑, 1,   NF-kB↝, 1,   p‑NF-kB↑, 1,   PD-L1↓, 1,   TNF-α↑, 3,   TNF-α↓, 3,  

Cellular Microenvironment

NOX↑, 1,   pH↝, 1,  

Protein Aggregation

NLRP3↓, 1,   NLRP3↑, 1,  

Drug Metabolism & Resistance

ABC↓, 1,   BioAv↝, 2,   BioEnh↑, 1,   ChemoSen↑, 4,   Dose↓, 2,   Dose↝, 6,   Dose∅, 1,   Dose?, 1,   eff↑, 51,   eff↓, 13,   eff↝, 11,   RadioS↑, 10,   selectivity↑, 34,   selectivity↓, 3,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   ascitic↓, 1,   AST↓, 1,   GutMicro↝, 1,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 1,   IL6↓, 2,   Ki-67↓, 2,   LDH↓, 10,   LDH↑, 2,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 16,   AntiTum↑, 5,   chemoP↑, 1,   hepatoP↑, 5,   OS↑, 4,   Remission↑, 1,   toxicity↓, 3,   toxicity↝, 4,   TumVol↓, 3,   Weight↑, 2,  

Infection & Microbiome

Bacteria↓, 8,   CD8+↑, 1,  
Total Targets: 230

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 9,   Catalase↑, 5,   GPx↑, 3,   GSH↑, 5,   GSH↓, 2,   GSTA1↑, 1,   GSTs↑, 1,   H2O2∅, 1,   HO-1↑, 1,   lipid-P↓, 1,   MDA↓, 4,   MDA↑, 1,   MPO↓, 1,   NQO1∅, 1,   NRF2↑, 1,   NRF2↝, 1,   ROS↓, 6,   ROS↑, 7,   ROS∅, 1,   mt-ROS↑, 1,   SOD↑, 6,   TAC↑, 1,   TrxR↓, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 3,   glucose↓, 1,   LDH↓, 1,   SIRT1↑, 1,  

Cell Death

Apoptosis↑, 1,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↑, 1,   JNK↑, 1,  

Transcription & Epigenetics

AntiThr↑, 4,   other↝, 11,   other↑, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   cl‑eIF2α↑, 1,   GRP78/BiP↑, 1,   p‑PERK↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   p62↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,  

Proliferation, Differentiation & Cell State

Diff↑, 1,  

Migration

AntiAg↑, 7,   MMP11↑, 1,   MMP3↑, 1,   MMP9↓, 1,   TGF-β↑, 1,   TumCP↓, 1,  

Angiogenesis & Vasculature

EPR↑, 1,   NO↓, 2,   NO↑, 1,   VEGF↓, 2,  

Barriers & Transport

BBB↑, 2,   BBB↝, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CRP↓, 1,   IL1↓, 2,   IL10↑, 1,   IL1α∅, 1,   IL1β↓, 1,   IL1β∅, 1,   IL4↑, 1,   IL5↑, 1,   IL6↓, 2,   IL8∅, 1,   Inflam↓, 11,   MCP1∅, 1,   NF-kB↓, 3,   TNF-α↓, 2,   TNF-α↑, 1,  

Synaptic & Neurotransmission

5HT↑, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 2,   BioAv↓, 3,   BioAv↝, 3,   Dose↝, 12,   Dose↑, 1,   eff↑, 20,   eff↓, 1,   eff?, 1,   eff↝, 2,   Half-Life↝, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 3,   AST↓, 3,   BMD↑, 1,   CRP↓, 1,   GutMicro↝, 2,   GutMicro∅, 1,   IL6↓, 2,   LDH↓, 1,  

Functional Outcomes

AntiDiabetic↑, 2,   Bone Healing↑, 1,   chemoPv↑, 1,   hepatoP↑, 6,   neuroP↑, 1,   RenoP↑, 3,   toxicity↓, 14,   toxicity↝, 9,   toxicity∅, 1,   Wound Healing↑, 7,  

Infection & Microbiome

AntiFungal↑, 1,   AntiViral↑, 2,   Bacteria↓, 22,   Inf↓, 1,   Sepsis↓, 1,  
Total Targets: 110

Research papers

Year Title Authors PMID Link Flag
2025Silver nanoparticles: Forging a new frontline in lung cancer therapySamar Raies40577936https://pubmed.ncbi.nlm.nih.gov/40577936/0
2025Chitosan-coated silver nanoparticles synthesized using Moringa oleifera flower extract: A potential therapeutic approach against triple-negative breast cancerJaganathan Anitha40669649https://pubmed.ncbi.nlm.nih.gov/40669649/0
2025Plant-based synthesis of gold and silver nanoparticles using Artocarpus heterophyllus aqueous leaf extract and its anticancer activitiesFirli RP DewiPMC12425552https://pmc.ncbi.nlm.nih.gov/articles/PMC12425552/0
2025Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical applicationE. S. Harsha Haridashttps://www.nature.com/articles/s41598-025-93864-y0
2025Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A reviewMaghimaa Mhttps://www.sciencedirect.com/science/article/pii/S13877003240179690
2025Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro studyEvgenii V. Plotnikov Ph.D.https://www.sciencedirect.com/science/article/pii/S15499634250001390
2025Green-synthesized silver nanoparticles: a sustainable nanoplatform for targeted colon cancer therapyShubham Dohare40744381https://pubmed.ncbi.nlm.nih.gov/40744381/0
2025Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activitiesMelek YücePMC12402268https://pmc.ncbi.nlm.nih.gov/articles/PMC12402268/0
2025Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological propertiesShafia ParveenPMC12208411https://pmc.ncbi.nlm.nih.gov/articles/PMC12208411/0
2025Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cellsFatemeh NosratiPMC12264097https://pmc.ncbi.nlm.nih.gov/articles/PMC12264097/0
2025Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatmentYichao Taohttps://www.sciencedirect.com/science/article/pii/S258900422500118X0
2025Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer CellsZeinab Hormozi-MoghaddamPMC12283205https://pmc.ncbi.nlm.nih.gov/articles/PMC12283205/0
2025Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cellsAzadeh Taherpour40522436https://pubmed.ncbi.nlm.nih.gov/40522436/0
2025Biogenic synthesis of silver nanoparticles using Zaleya pentandra and investigation of their biological activitiesNeelam Neelamhttps://www.nature.com/articles/s41598-025-21909-30
2025Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathwaysNaief Dahran40280486https://pubmed.ncbi.nlm.nih.gov/40280486/0
2025Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 UpdateAbhinav Satihttps://pubs.acs.org/doi/10.1021/acsomega.4c110450
2025Eco-friendly synthesis of silver nanoparticles: multifaceted antioxidant, antidiabetic, anticancer, and antimicrobial activitiesNabila G. Elmehalawyhttps://www.nature.com/articles/s41598-025-22154-40
2025Investigating the Anti-cancer Potential of Silver Nanoparticles Synthesized by Chemical Reduction of AgNO3 Using Trisodium Citrate and Ascorbic AcidK. S. Dhanyahttps://link.springer.com/chapter/10.1007/978-981-95-2697-0_130
2025Advancements in metal and metal oxide nanoparticles for targeted cancer therapy and imaging: Mechanisms, applications, and safety concernsJameema Sidhichttps://www.sciencedirect.com/science/article/abs/pii/S0304389422023937?via%3Dihub0
2025Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directionsSaqib Hussain Hadrihttps://link.springer.com/article/10.1007/s12032-025-02743-z0
2025Silver CASRN 7440-22-4 | DTXSID4024305United States Environmental Protection Agencyhttps://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=990
2025Evaluation of hepatic cancer stem cells (CD73+, CD44+, and CD90+) induced by diethylnitrosamine in male rats and treatment with biologically synthesized silver nanoparticlesAmber Pervez40232523https://pubmed.ncbi.nlm.nih.gov/40232523/0
2025Exploring the Potentials of Silver Nanoparticles in Overcoming Cisplatin Resistance in Lung Adenocarcinoma: Insights from Proteomic and Xenograft Mice StudiesTin Yan Wonghttps://pubs.acs.org/doi/10.1021/acsnano.5c090560
2025Silver nanochitosan: a sustainable approach for enhanced antimicrobial, antioxidant, and anticancer applicationsSaranya Elumalaihttps://link.springer.com/article/10.1007/s13205-025-04524-x0
2025Solid-state tailored silver nanocomposites from chitosan: Synthesis, antimicrobial evaluation and molecular dockingRania Abdel-Wahedhttps://www.sciencedirect.com/science/article/abs/pii/S01418130250238400
2025Modulation of the mechanism of action of antibacterial silver N-heterocyclic carbene complexes by variation of the halide ligandIgor V. Esarevhttps://pubs.rsc.org/en/content/articlehtml/2025/ra/d4ra08093a0
2025Metformin-loaded chitosan nanoparticles augment silver nanoparticle-induced radiosensitization in breast cancer cells during radiation therapyFatemeh Shiridokht39270400https://pubmed.ncbi.nlm.nih.gov/39270400/0
2025Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer TreatmentFrancesco RagonesePMC12030114https://pmc.ncbi.nlm.nih.gov/articles/PMC12030114/0
2025Nrf2 Activation Mitigates Silver Nanoparticle-Induced Ferroptosis in HepatocytesRuirui Wang40888047pubmed.ncbi.nlm.nih.gov/40888047/0
2024Protective effects of Nigella sativa L. seeds aqueous extract-based silver nanoparticles on sepsis-induced damages in ratsWen Daihttps://www.sciencedirect.com/science/article/abs/pii/S138770032400577X0
2024Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicityLailla Daianna Soltau Missio Pinheirohttps://www.sciencedirect.com/science/article/abs/pii/S025405842400840X0
2024Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathwaysSoheila Montazersaheb https://www.sciencedirect.com/science/article/pii/S24058440240299060
2024Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysisJoão Marcos Carvalho-SilvaPMC11305315https://pmc.ncbi.nlm.nih.gov/articles/PMC11305315/0
2024In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cellsAmirhossein Moshrefi https://link.springer.com/article/10.1007/s10735-024-10315-00
2024Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatmentAlaa Elmetwallihttps://link.springer.com/article/10.1007/s12032-024-02330-80
2024Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteineJing Hehttps://www.sciencedirect.com/science/article/pii/S0300483X240001550
2024Antitumor efficacy of silver nanoparticles reduced with β-D-glucose as neoadjuvant therapy to prevent tumor relapse in a mouse model of breast cancerMoisés Armides Franco MolinaPMC10851876https://pmc.ncbi.nlm.nih.gov/articles/PMC10851876/0
2024Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cellsMaria D. Riverahttps://onlinelibrary.wiley.com/doi/full/10.1002/jbt.238230
2024Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice modelSara Bayoumi Alihttps://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-024-00901-10
2024Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and ApoptosisMohammad VahabiradPMC10896653https://pmc.ncbi.nlm.nih.gov/articles/PMC10896653/0
2024Pongamia pinnata seed extract-mediated green synthesis of silver nanoparticle loaded nanogel for estimation of their antipsoriatic propertiesDarshan R. Telangehttps://link.springer.com/article/10.1007/s00449-024-03058-50
2024Green Synthesis and Characterization of Silver Nanoparticles from Eclipta alba and Its Activity Against Triple-Negative Breast Cancer Cell Line (MDA-MB-231)Suresh Thanjavur Mani37993758https://pubmed.ncbi.nlm.nih.gov/37993758/0
2024Synthesis and Characterization of Multifunctional Chitosan–Silver Nanoparticles: An In-Vitro Approach for Biomedical ApplicationsGulamnabi Vantihttps://www.mdpi.com/1424-8247/17/9/12290
2024Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer CellsWajd Y Al-Asiri 39223765https://pubmed.ncbi.nlm.nih.gov/39223765/0
2024Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell linesIkram Ullah38450823https://pubmed.ncbi.nlm.nih.gov/38450823/0
2024Synthesis and Characterization of Chitosan–Silver Nanocomposite Film: Antibacterial and Cytotoxicity StudyShephrah Olubusola Ogungbesanhttps://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/slct.2024049090
2024Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma TreatmentSupreeda TambunlertchaiPMC10158852https://pmc.ncbi.nlm.nih.gov/articles/PMC10158852/0
2024Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in SolutionTitilope John Jayeoyehttps://link.springer.com/article/10.1007/s11468-024-02413-20
2024Eco-friendly Synthesis of Silver Nanoparticles using Ascorbic Acid and its Optical CharacterizationBriana Andronicescuhttps://arc.ungjournals.org/articles/220
2024Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response InhibitorsChristina M SnyderPMC11477547https://pmc.ncbi.nlm.nih.gov/articles/PMC11477547/0
2024Advances in nano silver-based biomaterials and their biomedical applicationsPunuri Jayasekhar Babuhttps://www.sciencedirect.com/science/article/pii/S26661381240003800
2024Silver nanoparticle induced immunogenic cell death can improve immunotherapyAra Sargsianhttps://www.researchgate.net/publication/385697470_Silver_nanoparticle_induced_immunogenic_cell_death_can_improve_immunotherapy0
2024Nanosilver, Next-Generation Antithrombotic AgentSiddhartha Shrivastavahttps://link.springer.com/rwe/10.1007/978-1-4614-1533-6_5440
2024Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field Hany G AttiaPMC11401528https://pmc.ncbi.nlm.nih.gov/articles/PMC11401528/0
2024Metal-Based Nanoparticles for Cardiovascular DiseasesAlexandru Scafa Udriștehttps://pmc.ncbi.nlm.nih.gov/articles/PMC10815551/0
2023Comparative proteomic analysis reveals the different hepatotoxic mechanisms of human hepatocytes exposed to silver nanoparticlesTin Yan Wonghttps://www.sciencedirect.com/science/article/abs/pii/S0304389422023937?via%3Dihub0
2023Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling PathwayYunyun MaPMC11339151https://pmc.ncbi.nlm.nih.gov/articles/PMC11339151/0
2023Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activitiesAkif Hakan KurtPMC10043739https://pmc.ncbi.nlm.nih.gov/articles/PMC10043739/0
2023ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATIONÜstündağ, Hilalhttps://journals.lww.com/shockjournal/fulltext/2023/11000/enhanced_efficacy_of_resveratrol_loaded_silver.8.aspx0
2023Novel Silver Complexes Based on Phosphanes and Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands Targeting TrxR: New Promising Chemotherapeutic Tools Relevant to SCLC ManagemenMaura PelleiPMC9960633https://pmc.ncbi.nlm.nih.gov/articles/PMC9960633/0
2023The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?Peter Takáč PMC9965924https://pmc.ncbi.nlm.nih.gov/articles/PMC9965924/0
2023Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell CarcinomaMariana MoraisPMC10741111https://pmc.ncbi.nlm.nih.gov/articles/PMC10741111/0
2023Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancerGunashekar Kalvakunta Subramanyam36752159https://pubmed.ncbi.nlm.nih.gov/36752159/0
2023Adaptive regulations of Nrf2 alleviates silver nanoparticles-induced oxidative stress-related liver cells injuryMenghao Guohttps://www.sciencedirect.com/science/article/abs/pii/S00092797220049260
2023Silver nanoparticles induces apoptosis of cancer stem cells in head and neck cancerRupinder KaurPMC10758978https://pmc.ncbi.nlm.nih.gov/articles/PMC10758978/0
2023Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic TherapyGlory KahPMC10417642https://pmc.ncbi.nlm.nih.gov/articles/PMC10417642/0
2023Oral administration of silver nanomaterials affects the gut microbiota and metabolic profile altering the secretion of 5-HT in miceXiaoyu Wang36734837https://pubmed.ncbi.nlm.nih.gov/36734837/0
2022Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro studyAly Fahmy MohamedPMC8817517 https://pmc.ncbi.nlm.nih.gov/articles/PMC8817517/0
2022Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability StudyKatherine Guzmanhttps://www.researchgate.net/publication/363467065_Ascorbic_Acid-assisted_Green_Synthesis_of_Silver_Nanoparticles_pH_and_Stability_Study0
2022Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on MitochondriaFengbang Wanghttps://pubs.acs.org/doi/10.1021/acs.est.1c082460
2022Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)Mir Mohd Faheem35367334https://pubmed.ncbi.nlm.nih.gov/35367334/0
2022Chitosan conjugated silver nanoparticles: the versatile antibacterial agentsShumaila Mumtazhttps://link.springer.com/article/10.1007/s00289-022-04321-z0
2022Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in ratsDoaa Assarhttps://www.researchgate.net/publication/365321254_Silver_nanoparticles_induced_testicular_damage_targeting_NQO1_and_APE1_dysregulation_apoptosis_via_BaxBcl-2_pathway_fibrosis_via_TGF-ba-SMA_upregulation_in_rats0
2022Oxidative Stress-Induced Silver Nano-Carriers for ChemotherapyMinh Phuong Nguyenhttps://pmc.ncbi.nlm.nih.gov/articles/PMC9783686/0
2022Cancer Therapy by Silver Nanoparticles: Fiction or Reality?Dávid KovácsPMC8777983https://pmc.ncbi.nlm.nih.gov/articles/PMC8777983/0
2022Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing ActivitiesAmr M ShehabeldinePMC9225580https://pmc.ncbi.nlm.nih.gov/articles/PMC9225580/0
2022Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic ActivitySaeed Ali AlsareiiPMC9571849https://pmc.ncbi.nlm.nih.gov/articles/PMC9571849/0
2022Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic ApplicationsPravin Dudhagarahttps://www.mdpi.com/2227-9717/10/4/6230
2022Tyndall-effect-based colorimetric assay with colloidal silver nanoparticles for quantitative point-of-care detection of creatinine using a laser pointer pen and a smartphoneKaijing Yuanhttps://pubs.rsc.org/en/content/articlehtml/2022/ra/d2ra03598g0
2022Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell LinesMusthahimah MuhamadPMC9525761https://pmc.ncbi.nlm.nih.gov/articles/PMC9525761/0
2022Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cellsJun Baohttps://www.degruyter.com/document/doi/10.1515/ntrev-2022-0114/html0
2022Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro studyAly Fahmy MohamedPMC8817517https://pmc.ncbi.nlm.nih.gov/articles/PMC8817517/0
2022Preparation of triangular silver nanoparticles and their biological effects in the treatment of ovarian cancerMan YinPMC9680130https://pmc.ncbi.nlm.nih.gov/articles/PMC9680130/0
2022Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicologyFilipa Mascarenhas-Melohttps://www.sciencedirect.com/science/article/pii/S093964112200100X0
2022Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell LinesHatice AlkanPMC9143030https://pmc.ncbi.nlm.nih.gov/articles/PMC9143030/0
2022Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes ExpressionSajedeh DaeiPMC9535103 https://pmc.ncbi.nlm.nih.gov/articles/PMC9535103/0
2022Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cellsMariana MoraisPMC9489222https://pmc.ncbi.nlm.nih.gov/articles/PMC9489222/0
2022Exploring silver nanoparticles for cancer therapy and diagnosisRenata Rank Mirandahttps://www.sciencedirect.com/science/article/abs/pii/S09277765210070010
2021Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanopartciles Against DEN-Induced Hepatocellular Cancer in RatsR Vidya34792748https://pubmed.ncbi.nlm.nih.gov/34792748/0
2021ORAL DELIVERY OF SILVER NANOPARTICLES – A REVIEWVEDAMURTHY JOSHI1https://www.researchgate.net/publication/356327328_ORAL_DELIVERY_OF_SILVER_NANOPARTICLES_-_A_REVIEW0
2021Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGCDebarati Chanda33472113https://pubmed.ncbi.nlm.nih.gov/33472113/0
2021Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell LineXiongwei LiuPMC7868205https://pmc.ncbi.nlm.nih.gov/articles/PMC7868205/0
2021Sepsis diagnosis and treatment using nanomaterialsJaesung LimPMC8274966https://pmc.ncbi.nlm.nih.gov/articles/PMC8274966/0
2021Tyndall-effect-enhanced supersensitive naked-eye determination of mercury (II) ions with silver nanoparticlesJinkun Huanghttps://www.sciencedirect.com/science/article/abs/pii/S09254005210078750
2021Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health ImpactsJessica Shenghttps://carleton.scholaris.ca/server/api/core/bitstreams/3d183d09-0d42-4be8-9f30-5dbfd0cf915d/content0
2021Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer CellsSurya P Singh32557113https://pubmed.ncbi.nlm.nih.gov/32557113/0
2021Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathwayLin TaoPMC7885187https://pmc.ncbi.nlm.nih.gov/articles/PMC7885187/0
2021Response of platelets to silver nanoparticles designed with different surface functionalizationMarija Milićhttps://www.sciencedirect.com/science/article/abs/pii/S01620134210021290
2021Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic CancerXuefeng AnPMC8507678https://pmc.ncbi.nlm.nih.gov/articles/PMC8507678/0
2021Systemic Evaluation of Mechanism of Cytotoxicity in Human Colon Cancer HCT-116 Cells of Silver Nanoparticles Synthesized Using Marine Algae Ulva lactuca ExtractDiptikanta Acharyahttps://link.springer.com/article/10.1007/s10904-021-02133-80
2021Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activityNancy Jainhttps://mnsl-journal.springeropen.com/articles/10.1186/s40486-021-00131-60
2021Biogenic silver nanoparticles synthesized from Piper longum fruit extract inhibit HIF-1α/VEGF mediated angiogenesis in prostate cancer cellsSüleyman İLHANhttps://www.researchgate.net/publication/352874592_Biogenic_silver_nanoparticles_synthesized_from_Piper_longum_fruit_extract_inhibit_HIF-1aVEGF_mediated_angiogenesis_in_prostate_cancer_cells0
2021Current Research on Silver Nanoparticles: Synthesis, Characterization, and ApplicationsSonika Dawadihttps://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/66872900
2021The mechanism of cell death induced by silver nanoparticles is distinct from silver cationsMonica M RohdePMC8515661https://pmc.ncbi.nlm.nih.gov/articles/PMC8515661/0
2021Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cellsHassan NoorbazarganPMC8076435https://pmc.ncbi.nlm.nih.gov/articles/PMC8076435/0
2021Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell LinesDamian Krzyzanowski PMC8234686https://pmc.ncbi.nlm.nih.gov/articles/PMC8234686/0
2020Evaluation of the Genotoxic and Oxidative Damage Potential of Silver Nanoparticles in Human NCM460 and HCT116 CellsMingxi Jiahttps://www.mdpi.com/1422-0067/21/5/16180
2020β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell lineKathiswar Raj Rhttps://pubmed.ncbi.nlm.nih.gov/32319188/0
2020Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitroMay Bin-JumahPMC7074819https://pmc.ncbi.nlm.nih.gov/articles/PMC7074819/0
2020Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasisSalma A FereigPMC7269080https://pmc.ncbi.nlm.nih.gov/articles/PMC7269080/0
2020Chitosan-coated silver nanoparticles promoted antibacterial, antibiofilm, wound-healing of murine macrophages and antiproliferation of human breast cancer MCF 7 cellsAyyanar Parthasarathyhttps://www.sciencedirect.com/science/article/abs/pii/S01429418203090650
2020Silver nanoparticles: Synthesis, medical applications and biosafetyLi XuPMC7415816https://pmc.ncbi.nlm.nih.gov/articles/PMC7415816/0
2020Green synthesized novel silver nanoparticles and their application as anticoagulant and thrombolytic agents: A perspectiveMusibau Adewuyi Azeezhttps://www.researchgate.net/publication/341880768_Green_synthesized_novel_silver_nanoparticles_and_their_application_as_anticoagulant_and_thrombolytic_agents_A_perspective0
2020Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cellsXiaozhou Wen32806252https://pubmed.ncbi.nlm.nih.gov/32806252/0
2020Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic ReviewBehnaz Babaye AbdollahiPMC8046397https://pmc.ncbi.nlm.nih.gov/articles/PMC8046397/0
2020The Antibacterial Drug Candidate SBC3 is a Potent Inhibitor of Bacterial Thioredoxin ReductaseJennie O'Loughlin33170522https://pubmed.ncbi.nlm.nih.gov/33170522/0
2020Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cellsYue Chen 32043710https://pubmed.ncbi.nlm.nih.gov/32043710/0
2020Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticlesTemoor AhmedPMC7296185https://pmc.ncbi.nlm.nih.gov/articles/PMC7296185/0
2020Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cellsKiren JacksonPMC8573457https://pmc.ncbi.nlm.nih.gov/articles/PMC8573457/0
2020Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancerLuiz Alberto Bandeira Ferreira32311428https://pubmed.ncbi.nlm.nih.gov/32311428/0
2020Cancer cell specific cytotoxic potential of the silver nanoparticles synthesized using the endophytic fungus, Penicillium citrinum CGJ-C2Ananda Danagoudarhttps://www.sciencedirect.com/science/article/abs/pii/S23524928203245330
2020Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell linesShanmugapriya Meenakshisundaram31927333https://pubmed.ncbi.nlm.nih.gov/31927333/0
2020Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7Ahmed A H AbdellatifPMC7608585https://pmc.ncbi.nlm.nih.gov/articles/PMC7608585/0
2020Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7Ahmed A H AbdellatifPMC7608585 https://pmc.ncbi.nlm.nih.gov/articles/PMC7608585/0
2019Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation TherapyJing ZhaoPMC6897066 https://pmc.ncbi.nlm.nih.gov/articles/PMC6897066/0
2019Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut modelCristina Cattòhttps://www.sciencedirect.com/science/article/abs/pii/S02697491183360290
2019Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer TherapyZhen-Xing Wanghttps://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.2018085560
2019Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell lineSubramanyam Deepika31753355https://pubmed.ncbi.nlm.nih.gov/31753355/0
2019The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cellsDawei Guo24734519https://pubmed.ncbi.nlm.nih.gov/24734519/0
2019Comparative and Mechanistic Study on the Anticancer Activity of Quinacrine-Based Silver and Gold Hybrid Nanoparticles in Head and Neck CancerKrushna Chandra Hembram 31145852https://pubmed.ncbi.nlm.nih.gov/31145852/0
2019Hepatoprotective effect of silver nanoparticles synthesized using aqueous leaf extract of Rhizophora apiculataHongru ZhangPMC6535432https://pmc.ncbi.nlm.nih.gov/articles/PMC6535432/0
2019Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as RadiosensitizersKhaled HabibaPMC6864075https://pmc.ncbi.nlm.nih.gov/articles/PMC6864075/0
2019Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future TrendsFederica PaladiniPMC6719912https://pmc.ncbi.nlm.nih.gov/articles/PMC6719912/0
2019Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extractS.S. Dakshayanihttps://www.sciencedirect.com/science/article/abs/pii/S01418130183674120
2019Size dependent anti-invasiveness of silver nanoparticles in lung cancer cellsYu Mei Quehttps://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra03662h0
2019Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivoJessica SwannerPMC6996381https://pmc.ncbi.nlm.nih.gov/articles/PMC6996381/0
2019Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applicationsRenuka Yadav31500006https://pubmed.ncbi.nlm.nih.gov/31500006/0
2019Silver nanoparticles; a new hope in cancer therapy?Şükriye Yeşilot 317344340
2019Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cellsMohana Krishna GopisettyPMC6341731https://pmc.ncbi.nlm.nih.gov/articles/PMC6341731/0
2018Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with CisplatinCale D FahrenholtzPMC6052800https://pmc.ncbi.nlm.nih.gov/articles/PMC6052800/0
2018Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effectsBiao Chen30203702https://pubmed.ncbi.nlm.nih.gov/30203702/0
2018Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116Sangiliyandi Gurunathanhttps://www.mdpi.com/1422-0067/19/8/22690
2018Attenuation of diethylnitrosamine (DEN) - Induced hepatic cancer in experimental model of Wistar rats by Carissa carandas embedded silver nanoparticlesDeepika Singh30248544https://pubmed.ncbi.nlm.nih.gov/30248544/0
2018Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancerNafiseh Nafisi Fardhttps://www.tandfonline.com/doi/10.1080/21691401.2018.15289830
2018Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer TherapyYun-Jung ChoiPMC5877571https://pmc.ncbi.nlm.nih.gov/articles/PMC5877571/0
2018Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer CellsYu-Guo YuanPMC6311846https://pmc.ncbi.nlm.nih.gov/articles/PMC6311846/0
2018Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cellsZhujun Liu 30307330https://pubmed.ncbi.nlm.nih.gov/30307330/0
2018Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma CellsEwelina BarcińskaPMC6116403https://pmc.ncbi.nlm.nih.gov/articles/PMC6116403/0
2018Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)Bita Mousavi29361855https://pubmed.ncbi.nlm.nih.gov/29361855/0
2018Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial CellsSangiliyandi GurunathanPMC6222610https://pmc.ncbi.nlm.nih.gov/articles/PMC6222610/0
2018I-131 doping of silver nanoparticles platform for tumor theranosis guided drug deliveryTamer M Sakr29981892https://pubmed.ncbi.nlm.nih.gov/29981892/0
2018Understanding the prospective of nano-formulations towards the treatment of psoriasisMadhulika Pradhanhttps://www.sciencedirect.com/science/article/abs/pii/S07533322183113510
2018Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor functionLin Li29306025https://pubmed.ncbi.nlm.nih.gov/29306025/0
2018Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cellsBlassan Plackal Adimuriyil Georgehttps://www.nature.com/articles/s41598-018-32480-50
2018Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial propertiesSadegh KhorramiPMC6267361https://pmc.ncbi.nlm.nih.gov/articles/PMC6267361/0
2018Biomedical Applications of Silver Nanoparticles: An Up-to-Date OverviewAlexandra-Cristina BurdușelPMC6163202https://www.mdpi.com/2079-4991/8/9/6810
2018Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of MammalsAnna AntsiferovaPMC5951442https://pmc.ncbi.nlm.nih.gov/articles/PMC5951442/0
2018Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type miceSameera NallanthighalPMC5890915https://pmc.ncbi.nlm.nih.gov/articles/PMC5890915/0
2018Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosisNandita Dasgupta30056045https://pubmed.ncbi.nlm.nih.gov/30056045/0
2018Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell lineElham Ahmadian30274079https://pubmed.ncbi.nlm.nih.gov/30274079/0
2018Activity and pharmacology of homemade silver nanoparticles in refractory metastatic head and neck squamous cell cancerJasmine Singh MDhttps://pubmed.ncbi.nlm.nih.gov/30537286/0
2018Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposureYue Chen 30248563https://pubmed.ncbi.nlm.nih.gov/30248563/0
2018Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)Ebtesam S Al-SheddiPMC6236914https://pmc.ncbi.nlm.nih.gov/articles/PMC6236914/0
2017Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatmentYu-Guo YuanPMC5592960https://pmc.ncbi.nlm.nih.gov/articles/PMC5592960/0
2017Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell lineMarzieh Azizihttps://www.nature.com/articles/s41598-017-05461-30
2017Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapyJae Woong HanPMC5644540https://pmc.ncbi.nlm.nih.gov/articles/PMC5644540/0
2017Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigationMiriam ButtacavoliPMC5839394https://pmc.ncbi.nlm.nih.gov/articles/PMC5839394/0
2017Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinomaEwelina ZielinskaPMC5797005https://pmc.ncbi.nlm.nih.gov/articles/PMC5797005/0
2017The apoptotic and genomic studies on A549 cell line induced by silver nitrateAyse Kaplanhttps://journals.sagepub.com/doi/full/10.1177/10104283176950330
2017Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2)Rijuta G. Saratalehttps://www.tandfonline.com/doi/full/10.1080/21691401.2017.13370310
2017Differential genotoxicity mechanisms of silver nanoparticles and silver ionsYan L27180073https://pubmed.ncbi.nlm.nih.gov/27180073/0
2017Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated MiceBella B Manshian 27885834https://pubmed.ncbi.nlm.nih.gov/27885834/0
2017Current Progresses in Metal-based Anticancer Complexes as Mammalian TrxR InhibitorsYizhe Cheng28270080https://pubmed.ncbi.nlm.nih.gov/28270080/0
2017Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental miceGovindaraj Prasannaraj28129629https://pubmed.ncbi.nlm.nih.gov/28129629/0
2017Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse modelIngrid L BerginPMC4767695https://pmc.ncbi.nlm.nih.gov/articles/PMC4767695/0
2017Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptidesSamad Mussa Farkhani27357085https://pubmed.ncbi.nlm.nih.gov/27357085/0
2017Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer CellsLeena Fagerihttps://pubs.acs.org/doi/10.1021/acsomega.7b000450
2017Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver NanoparticlesAngela B JavurekPMC5460200https://pmc.ncbi.nlm.nih.gov/articles/PMC5460200/0
2017Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectivesThangavel Shanmugasundaram29072767https://pubmed.ncbi.nlm.nih.gov/29072767/0
2017NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cellsXia Sun28815642https://pubmed.ncbi.nlm.nih.gov/28815642/0
2017Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cellsElisa Panzarinihttps://www.sciencedirect.com/science/article/abs/pii/S088723331730036X0
2016Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro ModelVladimir SivakovPMC5085636https://pmc.ncbi.nlm.nih.gov/articles/PMC5085636/0
2016Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS ProductionDebasis Nayak27715004https://pubmed.ncbi.nlm.nih.gov/27715004/0
2016Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell linesDebasis Nayakhttps://www.sciencedirect.com/science/article/abs/pii/S00219797163012300
2016Chapter 2 - Silver nanoparticles in cancer therapyGeorge Mihail Vlăsceanuhttps://www.sciencedirect.com/science/article/abs/pii/B97803234286370000250
2016Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticumK Venugopal 28110253https://pubmed.ncbi.nlm.nih.gov/28110253/0
2016Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cellsJae-Kyo JeongPMC4751501https://pmc.ncbi.nlm.nih.gov/articles/PMC4751501/0
2016Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesisTieshan YangPMC5154724https://pmc.ncbi.nlm.nih.gov/articles/PMC5154724/0
2016Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cellsVerónica Castro Aceituno27251158https://pubmed.ncbi.nlm.nih.gov/27251158/0
2016Synergetic effects of silver and gold nanoparticles in the presence of radiofrequency radiation on human kidney cellsJafar Fattahi-aslPMC5204255https://pmc.ncbi.nlm.nih.gov/articles/PMC5204255/0
2016Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivoYan HePMC4862350 https://pmc.ncbi.nlm.nih.gov/articles/PMC4862350/0
2016Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosisDávid KovácsPMC4904210https://pmc.ncbi.nlm.nih.gov/articles/PMC4904210/0
2016Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs Hao Wu 27254247https://pubmed.ncbi.nlm.nih.gov/27254247/0
2016Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-DependentAnurag R. Mishrahttps://academic.oup.com/toxsci/article-abstract/150/2/473/2461967?redirectedFrom=fulltext0
2016Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of gliomaPeidang LiuPMC5055115https://pmc.ncbi.nlm.nih.gov/articles/PMC5055115/0
2016Silver nanoparticles induce irremediable endoplasmic reticulum stress leading to unfolded protein response dependent apoptosis in breast cancer cellsJean-Christophe Simard27586505https://pubmed.ncbi.nlm.nih.gov/27586505/0
2016Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticlesNóra Igaz27434153https://pubmed.ncbi.nlm.nih.gov/27434153/0
2016Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem CellsYun-Jung ChoiPMC5187877https://pmc.ncbi.nlm.nih.gov/articles/PMC5187877/0
2015Trojan-Horse Mechanism in the Cellular Uptake of Silver Nanoparticles Verified by Direct Intra- and Extracellular Silver Speciation AnalysisI-Lun Hsiaohttps://pubs.acs.org/doi/10.1021/es504705p0
2015Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcomaBiswajit ChakrabortyPMC4786626https://pmc.ncbi.nlm.nih.gov/articles/PMC4786626/0
2015Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosolValeria De Matteis25546848https://pubmed.ncbi.nlm.nih.gov/25546848/0
2015Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeastFrancisco G OrtegaPMC4368032 https://pmc.ncbi.nlm.nih.gov/articles/PMC4368032/0
2015Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen speciesMi Jin Lee PMC4694681https://pmc.ncbi.nlm.nih.gov/articles/PMC4694681/0
2015Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle sizeAkira Onoderahttps://www.researchgate.net/publication/274095478_Short-term_changes_in_intracellular_ROS_localization_after_the_silver_nanoparticles_exposure_depending_on_particle_size0
2015Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancerDávid Kovács 26656631https://pubmed.ncbi.nlm.nih.gov/26656631/0
2015Silver nanoparticles provoke apoptosis of Dalton's ascites lymphoma in vivo by mitochondria dependent and independent pathwaysJoe Antony Jacob26590893https://pubmed.ncbi.nlm.nih.gov/26590893/0
2015The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo conditionMasoud NegahdaryPMC4386201https://pmc.ncbi.nlm.nih.gov/articles/PMC4386201/0
2015Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cellsJessica SwannerPMC4501353https://pmc.ncbi.nlm.nih.gov/articles/PMC4501353/0
2014Inhibition of autophagy enhances the anticancer activity of silver nanoparticlesJun LinPMC4502813https://pmc.ncbi.nlm.nih.gov/articles/PMC4502813/0
2014Combined effect of silver nanoparticles and therapeutical ultrasound on ovarian carcinoma cells A2780Vladan Bernardhttps://www.sciencedirect.com/science/article/abs/pii/S1214021X140002830
2014The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary StudyAbbas Abbaszadegan0
2014In vivo human time-exposure study of orally dosed commercial silver nanoparticlesMark A. Munger PharmDhttps://www.sciencedirect.com/science/article/abs/pii/S15499634130033530
2014Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell linesIvan Mfouo-Tyngahttps://www.dovepress.com/article/download/178740
2014Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptakeDavid C KennedyPMC4275941https://pmc.ncbi.nlm.nih.gov/articles/PMC4275941/0
2014Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cellsHa Ryong Kim24849675https://pubmed.ncbi.nlm.nih.gov/24849675/0
2014Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregateshttps://pubmed.ncbi.nlm.nih.gov/24243556/24243556https://pubmed.ncbi.nlm.nih.gov/24243556/0
2014Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cellsRona Miethling-Graffhttps://www.sciencedirect.com/science/article/abs/pii/S08872333140011060
2014Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cellsShilpa Sharma23852919https://pubmed.ncbi.nlm.nih.gov/23852919/0
2014Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis inductionKarunamoorthy Vasanth https://www.sciencedirect.com/science/article/abs/pii/S0927776514001258?via%3Dihub0
2013Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cellsAlicia Avaloshttps://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jat.29570
2013Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathwaysPorntipa Chairuangkittihttps://www.sciencedirect.com/science/article/abs/pii/S08872333120022870
2013Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafishVerena Christen 23800688https://pubmed.ncbi.nlm.nih.gov/23800688/0
2013Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculataUdhayaraj Suriyakalaa23018020https://pubmed.ncbi.nlm.nih.gov/23018020/0
2013Silver nanoparticles: a novel radiation sensitizer for glioma?Peidang Liu 24126539https://pubmed.ncbi.nlm.nih.gov/24126539/0
2013Enhancement effect of cytotoxicity response of silver nanoparticles combined with thermotherapy on C6 rat glioma cells Rui Wang 23862417https://pubmed.ncbi.nlm.nih.gov/23862417/0
2013Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53Shakti Ranjan Satapathyhttps://www.researchgate.net/publication/236066545_Silver-based_nanoparticles_induce_apoptosis_in_human_colon_cancer_cells_mediated_through_p530
2013Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptakeRaju Y Prasad 23872425https://pubmed.ncbi.nlm.nih.gov/23872425/0
2013In vitro evaluation of silver nanoparticles on human tumoral and normal cellsAlicia Ávalos Fúnez23278213https://pubmed.ncbi.nlm.nih.gov/23278213/0
2012Effect of Biologically Synthesized Silver Nanoparticles on Human Cancer CellsMishra, Abhijeethttps://www.ingentaconnect.com/content/asp/sam/2012/00000004/00000012/art00003;jsessionid=gc1hkakc51sps.x-ic-live-010
2012Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell typesAnil K Suresh22216981https://pubmed.ncbi.nlm.nih.gov/22216981/0
2012Silver Nanoparticles as Real Topical Bullets for Wound HealingThirumurugan GunasekaranPMC3921230https://pmc.ncbi.nlm.nih.gov/articles/PMC3921230/0
2012Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cellsHua Jiang23421206https://pubmed.ncbi.nlm.nih.gov/23421206/0
2011Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogensSamuel Jacob Inbanesonhttps://link.springer.com/article/10.1007/s13204-011-0031-20
2011Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin ReductaseMilan SrivastavaPMC3261948https://pmc.ncbi.nlm.nih.gov/articles/PMC3261948/0
2011In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligandsCarlo Santini21194623https://pubmed.ncbi.nlm.nih.gov/21194623/0
2011Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549 Rasmus Foldbjerg 20428844https://pubmed.ncbi.nlm.nih.gov/20428844/0
2011Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrierPallab Sanpui21280584https://pubmed.ncbi.nlm.nih.gov/21280584/0
2011Bioavailability and Toxicokinetics of citrate-coated silver nanoparticles in ratsKwangsik Parkhttps://link.springer.com/article/10.1007/s12272-011-0118-z0
2011Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosisRui Zhang22064246https://pubmed.ncbi.nlm.nih.gov/22064246/0
2011Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cellsKristen K Comfort 22070748https://pubmed.ncbi.nlm.nih.gov/22070748/0
2011Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cellsYoung Sook Leehttps://link.springer.com/article/10.1007/s00204-011-0714-10
2010Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodesHongmei Quanhttps://www.sciencedirect.com/science/article/abs/pii/S00134686090145220
2010Interaction of multi-functional silver nanoparticles with living cellsIlknur Sur20368680https://pubmed.ncbi.nlm.nih.gov/20368680/0
2010Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanismEun-Jung Parkhttps://www.sciencedirect.com/science/article/abs/pii/S08872333090035310
2010Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosisMei Jing Piao21182908https://pubmed.ncbi.nlm.nih.gov/21182908/0
2010Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosisMei Jing Piao21182908https://pubmed.ncbi.nlm.nih.gov/21182908/0
2010Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro2113772421137724https://pubmed.ncbi.nlm.nih.gov/21137724/0
2010Antitumor activity of colloidal silver on MCF-7 human breast cancer cellsMoisés A Franco-Molinahttps://jeccr.biomedcentral.com/articles/10.1186/1756-9966-29-1480
2010Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor modelMuthu Irulappan SriramPMC2962271https://pmc.ncbi.nlm.nih.gov/articles/PMC2962271/0
2010p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T CellsHyun-Jeong Eomhttps://pubs.acs.org/doi/10.1021/es10206680
2009Antibacterial Effects of Silver Nanoparticles on the Bacterial Strains Isolated from Catheterized Urinary Tract Infection CasesMuhammad Ali Syedhttps://www.researchgate.net/publication/40893147_Antibacterial_Effects_of_Silver_Nanoparticles_on_the_Bacterial_Strains_Isolated_from_Catheterized_Urinary_Tract_Infection_Cases0
2009Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cellsSoohee Kimhttps://www.sciencedirect.com/science/article/abs/pii/S08872333090012950
2009Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cellsSardarpasha SheikpranbabuPMC2776000https://pmc.ncbi.nlm.nih.gov/articles/PMC2776000/0
2009Antiangiogenic properties of silver nanoparticleshttps://www.sciencedirect.com/science/article/abs/pii/S0142961209008357?via%3Dihub0
2009Characterization of Antiplatelet Properties of Silver NanoparticlesSiddhartha Shrivastavahttps://pubs.acs.org/doi/10.1021/nn900277t0
2009In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cellsKoji Kawata19731716https://pubmed.ncbi.nlm.nih.gov/19731716/0
2008The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cellsYi-Hong Hsin18547751https://pubmed.ncbi.nlm.nih.gov/18547751/0
2021Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of CurcuminSahdeo PrasadPMC8268053https://pmc.ncbi.nlm.nih.gov/articles/PMC8268053/0
2013Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterizationShokit Hussainhttps://link.springer.com/article/10.1007/s00449-013-1094-00
2024Glucose-capped fisetin silver nanoparticles induced cytotoxicity and ferroptosis in breast cancer cells: A molecular perspectiveK. Subhalakshmihttps://www.sciencedirect.com/science/article/abs/pii/S13877003240098820
2022Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox HomeostasisMichele De FrancoPMC10092581https://pmc.ncbi.nlm.nih.gov/articles/PMC10092581/0
2021Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver NanoparticlesV. S. Shanibahttps://link.springer.com/article/10.1007/s10876-021-01981-10
2021Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced AutophagyMajid S JabirPMC7913157https://pmc.ncbi.nlm.nih.gov/articles/PMC7913157/0
2019Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studiesMohanalakshmi Sabapati30663427https://pubmed.ncbi.nlm.nih.gov/30663427/0
2021Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapyAnushree Pandeyhttps://www.researchgate.net/publication/348878042_Synthesis_of_polygonal_chitosan_microcapsules_for_the_delivery_of_amygdalin_loaded_silver_nanoparticles_in_breast_cancer_therapy0
2020Rutin-Loaded Silver Nanoparticles With Antithrombotic FunctionHaitao WuPMC7723967https://pmc.ncbi.nlm.nih.gov/articles/PMC7723967/0
2016Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapyXi-Feng ZhangPMC4977082https://pmc.ncbi.nlm.nih.gov/articles/PMC4977082/0
2025The ameliorative effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced ovarian toxicity in female albino ratsOmnia E. Shalabyhttps://link.springer.com/content/pdf/10.1186/s13048-024-01577-z.pdf0
2025Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reductionKarthik K Karunakarhttps://www.sciencedirect.com/science/article/pii/S27906760250001600
2024Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal healthKarthik K Karunakar39312019https://pubmed.ncbi.nlm.nih.gov/39312019/0
2017Antioxidant and hepatoprotective role of selenium against silver nanoparticlesSabah AnsarPMC5661492https://pmc.ncbi.nlm.nih.gov/articles/PMC5661492/0
2015A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureusPoonam Vermahttps://www.researchgate.net/publication/323004815_A_Review_on_synthesis_and_their_antibacterial_activity_of_Silver_and_Selenium_nanoparticles_against_biofilm_forming_Staphylococcus_aureus0