tbResList Print — SIL Silymarin (Milk Thistle) silibinin

Filters: qv=154, qv2=%, rfv=%

Product

SIL Silymarin (Milk Thistle) silibinin
Description: <b>Silymarin (Milk Thistle)</b> Flowering herb related to daisy and ragweed family.<br>
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. <br>
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B<br>

<br>
-Note <a href="tbResList.php?qv=154&tsv=1109&wNotes=on&exSp=open">half-life</a> 6hrs?.<br>
<a href="tbResList.php?qv=154&tsv=792&wNotes=on&exSp=open">BioAv</a> not soluble in water, low bioAv (1%).
240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can not achieve levels used in most in-vitro studies.
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- results for both inducing and reducing
<a href="tbResList.php?qv=154&tsv=275&wNotes=on">ROS</a> in cancer cells. In normal cell seems to consistently lower ROS. Reports show both ROS↑ and ROS↓ in cancer models; systemic pro-oxidant effects may require higher exposures than typical oral dosing, but local or combination contexts may differ. (level in GUT could be much higher (800uM).<br>
- ROS↑ related:
<a href="tbResList.php?qv=154&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<!-- <a href="tbResList.php?qv=154&tsv=103&wNotes=on">ER Stress↑</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=459&wNotes=on">UPR↑</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=356&wNotes=on">GRP78↑</a>, -->
<a href="tbResList.php?qv=154&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=154&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=154&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=154&tsv=239&wNotes=on">cl-PARP↑</a>,
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=Prx">Prx</a>, --><!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
<!--
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=154&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=154&word=Trx&wNotes=on">TrxR↓**</a>,
<a href="tbResList.php?qv=154&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=154&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=154&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=154&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=154&wNotes=on&word=GPx">GPx↓</a>
<br> -->

- Raises
<a href="tbResList.php?qv=154&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=154&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=154&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=154&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=154&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=154&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=154&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=154&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=154&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=154&tsv=235&wNotes=on&word=p38↓">p38↓</a>(context-dependent; often stress-activated), Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=154&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=154&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=154&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=154&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=154&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=154&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=154&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=154&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=154&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=154&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=154&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=154&tsv=308&wNotes=on">TIMP2</a>,
<!-- <a href="tbResList.php?qv=154&tsv=415&wNotes=on">IGF-1↓</a>, -->
<a href="tbResList.php?qv=154&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=154&tsv=334&wNotes=on">VEGF↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<a href="tbResList.php?qv=154&tsv=110&wNotes=on">FAK↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=154&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=154&tsv=79&wNotes=on">CXCR4↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=154&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=154&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=154&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=154&tsv=1178&wNotes=on">MARK4↓</a> --><!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=154&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=DNMT">DNMTs↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=108&wNotes=on">EZH2↓</a>, -->
<a href="tbResList.php?qv=154&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=HSP">HSP↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=506&wNotes=on">Sp proteins↓</a>, -->
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=TET">TET↑</a> -->
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=154&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=154&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=154&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=154&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=154&tsv=894&wNotes=on">CDK4↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=154&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=154&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=154&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=154&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=154&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=154&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=154&tsv=129&wNotes=on">glycolysis</a>
<!-- /<a href="tbResList.php?qv=154&tsv=947&wNotes=on">Warburg Effect</a> --> and
<a href="tbResList.php?qv=154&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=154&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=154&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=154&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=154&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=154&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=154&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=154&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=PFK">PFKs↓</a>,
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=PDK">PDKs↓</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=847&wNotes=on">ECAR↓</a>, -->
<a href="tbResList.php?qv=154&tsv=356&wNotes=on">GRP78↑</a>(ER stress),
<a href="tbResList.php?qv=154&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=154&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=154&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=154&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=154&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=NOTCH">Notch↓</a>,
<!-- <a href="tbResList.php?qv=154&wNotes=on&word=FGF">FGF↓</a>, -->
<a href="tbResList.php?qv=154&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=154&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<!-- <a href="tbResList.php?qv=154&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=154&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=524&wNotes=on">CK2↓</a>, -->
<a href="tbResList.php?qv=154&tsv=141&wNotes=on">Hh↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=434&wNotes=on">GLi↓</a>, -->
<a href="tbResList.php?qv=154&tsv=124&wNotes=on">GLi1↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=677&wNotes=on">CD133↓</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=655&wNotes=on">CD24↓</a>, -->
<a href="tbResList.php?qv=154&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=357&wNotes=on">n-myc↓</a>, -->
<!-- <a href="tbResList.php?qv=154&tsv=656&wNotes=on">sox2↓</a>, -->
<a href="tbResList.php?qv=154&wNotes=on&word=NOTCH">Notch2↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=1024&wNotes=on">nestin↓</a>, -->
<a href="tbResList.php?qv=154&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=154&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=154&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=154&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=154&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=154&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=154&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=154&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=154&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=154&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=154&tsv=168&wNotes=on">JNK</a>,


- <a href="tbResList.php?qv=154&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=154&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=154&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=154&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=154&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=154&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=154&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=154&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=154&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=154&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=154&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=154&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>


<!-- Silymarin (Milk Thistle; major active = silibinin/silybin) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS / redox buffering + mitochondrial protection</td>
<td>Often ↑ stress susceptibility; can support apoptosis when survival signaling is blocked</td>
<td>↓ oxidative stress; mitochondrial protection</td>
<td>P, R, G</td>
<td>Context-selective redox modulation</td>
<td>Silymarin is classically cytoprotective/antioxidant in normal tissues (notably liver), while in tumors it can weaken pro-survival adaptation and increase vulnerability to stressors and therapy.</td>
</tr>

<tr>
<td>2</td>
<td>Intrinsic apoptosis (mitochondria → caspases)</td>
<td>↑ apoptosis signaling; ↑ caspase activation</td>
<td>↔ minimal activation</td>
<td>G</td>
<td>Cell death execution</td>
<td>Common downstream outcome in cancer models: apoptosis increases after earlier signaling/redox shifts and/or checkpoint disruption.</td>
</tr>

<tr>
<td>3</td>
<td>Cell-cycle control (cyclins/CDKs; checkpoints)</td>
<td>↑ arrest (G1/S or G2/M depending on model)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Typically observed as reduced proliferation with checkpoint engagement; timing usually later than kinase phosphorylation changes.</td>
</tr>

<tr>
<td>4</td>
<td>NF-κB inflammatory transcription</td>
<td>↓ NF-κB activity; ↓ inflammatory/pro-survival tone</td>
<td>↔ or protective anti-inflammatory effect</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>NF-κB suppression can reduce tumor-promoting inflammation and blunt stress-adaptive survival programs.</td>
</tr>

<tr>
<td>5</td>
<td>JAK/STAT3 axis (incl. PD-L1 / immune escape programs in some models)</td>
<td>↓ STAT3 signaling (context); may ↓ PD-L1 in certain tumor contexts</td>
<td>↔</td>
<td>R, G</td>
<td>Reduced survival + immune-evasion signaling</td>
<td>Reported to attenuate STAT3-driven tumor programs and, in some contexts, reduce immune-suppressive signaling (model dependent).</td>
</tr>

<tr>
<td>6</td>
<td>PI3K → AKT → mTOR survival / growth signaling</td>
<td>↓ PI3K/AKT/mTOR signaling (context)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Reduced PI3K/AKT/mTOR tone increases sensitivity to apoptosis and can reinforce cell-cycle arrest.</td>
</tr>

<tr>
<td>7</td>
<td>MAPK re-wiring (ERK/p38/JNK balance)</td>
<td>Stress-MAPK shifts; ERK tone often reduced or re-patterned</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>Early phosphorylation shifts can precede later gene-expression changes; exact ERK direction is model and dose dependent.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis (VEGF and angiogenic factors)</td>
<td>↓ VEGF / angiogenesis outputs</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically reflected in reduced pro-angiogenic expression/secretion and angiogenesis-related phenotypes over longer windows.</td>
</tr>

<tr>
<td>9</td>
<td>EMT / invasion / migration programs (incl. TGF-β/Smad-associated EMT in some systems)</td>
<td>↓ EMT markers; ↓ migration/invasion</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often presents as restoration of epithelial markers and suppression of migration/invasion assays; commonly a later phenotype-level outcome.</td>
</tr>

<tr>
<td>10</td>
<td>Xenobiotic handling (Phase I/II enzymes; cytoprotection / chemoprevention framing)</td>
<td>May alter carcinogen activation/detox balance</td>
<td>↑ detox / cytoprotection against xenobiotics</td>
<td>G</td>
<td>Chemopreventive protection</td>
<td>A key “dual strategy” theme: protection of normal tissue from toxins/therapy while modulating tumor response pathways.</td>
</tr>

<tr>
<td>11</td>
<td>Drug resistance / efflux (MDR phenotype; P-gp-related resistance in some models)</td>
<td>May ↓ functional MDR and ↑ chemo sensitivity (context)</td>
<td>↔</td>
<td>R, G</td>
<td>Chemo-sensitization support</td>
<td>Reported synergy with chemotherapy in resistant tumor settings; transporter direction can be context-specific, so present as “reported to reduce functional resistance” rather than a universal single-transporter claim.</td>
</tr>

<tr>
<td>12</td>
<td>Immune microenvironment signaling (cytokines / macrophage recruitment in some models)</td>
<td>May ↓ pro-tumor cytokine programs and recruitment signals (context)</td>
<td>↔</td>
<td>G</td>
<td>Anti-inflammatory tumor microenvironment shift</td>
<td>Immune-modulatory effects are increasingly discussed, but they are more model-dependent and typically show on longer time scales.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical–chemical effects; rapid signaling / phosphorylation shifts)</li>
<li><b>R</b>: 30 min–3 hr (redox signaling + acute stress-response signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   antiOx↓, 1,   Catalase↑, 1,   CYP1A1↓, 1,   Fenton↑, 1,   GPx↑, 1,   GSH↓, 2,   GSH↑, 1,   H2O2↑, 1,   HO-1↑, 3,   lipid-P↓, 3,   MDA↑, 1,   MPO↓, 1,   NRF2↑, 3,   OXPHOS↑, 1,   ROS↑, 9,   ROS↓, 5,   mt-ROS↑, 1,   SOD↓, 1,   SOD↑, 1,   SOD1↓, 1,   SOD2↓, 1,   Trx↑, 1,   Trx1↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

IronCh↑, 2,  

Mitochondria & Bioenergetics

ATP↓, 3,   p‑MEK↓, 1,   MEK↓, 1,   MMP↑, 1,   MMP↓, 7,   mtDam↑, 1,   p42↓, 1,   Raf↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 1,   i-citrate↑, 1,   cMyc↓, 4,   FASN↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 3,   HK2↓, 2,   lactateProd↓, 2,   LDHA↓, 2,   NADPH↓, 1,   NADPH↑, 1,   PFKP↓, 1,   PKM2↓, 2,   PPP↓, 1,   SIRT1↓, 1,   SREBP1↓, 1,  

Cell Death

Akt↓, 3,   Akt↑, 1,   p‑Akt↓, 1,   APAF1↑, 1,   Apoptosis↑, 9,   Apoptosis↓, 1,   BAX↑, 7,   Bcl-2↓, 9,   Bcl-2↑, 1,   Bcl-xL↓, 3,   BID↑, 1,   BIM↓, 1,   Casp↑, 2,   Casp3↑, 8,   Casp3↓, 1,   cl‑Casp3↑, 1,   pro‑Casp8↑, 1,   Casp9↑, 7,   Cyt‑c↑, 5,   DR5↑, 1,   FADD↑, 1,   Fas↑, 1,   FasL↑, 1,   hTERT/TERT↓, 1,   iNOS↓, 2,   p‑JNK↑, 3,   p‑JNK↓, 1,   MAPK↓, 3,   Mcl-1↓, 3,   p27↑, 2,   p‑p38↑, 2,   p‑p38↓, 2,   survivin↓, 6,   Telomerase↓, 1,   TumCD↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

HATs↑, 3,   miR-21↓, 1,   p‑pRB↓, 1,   tumCV↓, 4,  

Autophagy & Lysosomes

Beclin-1↑, 1,   BNIP3↝, 1,   BNIP3?, 1,   LC3II↑, 2,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 1,   DNAdam↓, 2,   DNMT1↓, 1,   P53↑, 7,   PARP↑, 1,   cl‑PARP↑, 4,   PCNA↓, 3,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 1,   CDK4↓, 3,   CDK4↑, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 1,   E2Fs↓, 1,   P21↑, 3,   RB1↑, 1,   TumCCA↑, 9,  

Proliferation, Differentiation & Cell State

CD44↓, 1,   CSCs↓, 1,   EMT↓, 5,   ERK↓, 5,   p‑ERK↓, 5,   FOXM1↓, 1,   Gli1↓, 1,   HDAC↓, 3,   HDAC1↓, 1,   HDAC2↓, 1,   HDAC3↓, 1,   HDAC8↓, 1,   HH↓, 1,   IGFBP3↑, 1,   mTOR↓, 2,   p‑mTOR↓, 1,   NOTCH↓, 1,   NOTCH1↓, 1,   p‑P70S6K↓, 1,   PI3K↓, 4,   STAT3↓, 7,   p‑STAT3↓, 2,   STAT5↓, 1,   TumCG↓, 9,   Wnt↓, 2,   Wnt/(β-catenin)↓, 1,  

Migration

Akt2↓, 1,   AP-1↓, 2,   CA↓, 1,   Ca+2↑, 1,   CD31↓, 1,   E-cadherin↑, 4,   FAK↓, 1,   GLI2↓, 1,   Ki-67↓, 1,   miR-155↓, 1,   miR-203↑, 1,   MMP2↓, 4,   MMP9↓, 4,   MMPs↓, 2,   N-cadherin↓, 2,   PDGF↓, 1,   RHBDD1↓, 1,   Slug↓, 1,   Snail↓, 1,   TGF-β↓, 2,   TIMP2↑, 1,   TumCI↓, 4,   TumCMig↓, 9,   TumCP↓, 10,   TumMeta↓, 4,   TXNIP↑, 1,   uPA↓, 3,   Vim↓, 3,   Zeb1↓, 3,   α-SMA↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 9,   p‑EGFR↓, 2,   EGFR↓, 2,   HIF-1↓, 1,   Hif1a↓, 9,   LOX1↓, 1,   NO↓, 1,   VEGF↓, 8,   VEGFR2↓, 1,  

Barriers & Transport

GLUT1↓, 1,   NHE1↓, 1,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 6,   CXCR4↓, 3,   IFN-γ↑, 1,   IFN-γ↓, 1,   IL1↓, 2,   IL10↓, 1,   IL1β↓, 2,   IL2↑, 1,   IL6↓, 3,   Inflam↓, 9,   JAK2↓, 2,   MDSCs↓, 1,   NF-kB↓, 6,   PD-L1↓, 3,   PGE2↓, 3,   PSA↓, 2,   TNF-α↓, 3,  

Synaptic & Neurotransmission

AChE↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 1,   ChemoSen↑, 3,   Dose↝, 6,   eff↓, 2,   eff↝, 1,   eff↑, 12,   Half-Life↝, 2,   Half-Life↓, 1,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

ALAT↓, 1,   AR↓, 1,   AST↓, 1,   p‑EGFR↓, 2,   EGFR↓, 2,   FOXM1↓, 1,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 1,   IL6↓, 3,   Ki-67↓, 1,   PD-L1↓, 3,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 3,   cachexia↓, 1,   cardioP↑, 2,   chemoP↑, 8,   chemoPv↑, 1,   cognitive↑, 1,   hepatoP↑, 4,   memory↑, 1,   neuroP↑, 3,   OS↑, 1,   radioP↑, 4,   Strength↑, 1,   toxicity∅, 1,   toxicity↝, 1,   toxicity?, 1,   TumVol↓, 3,   Weight∅, 1,   Weight↑, 1,  
Total Targets: 248

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 15,   antiOx↓, 2,   Catalase↑, 6,   Ferroptosis↓, 1,   GCLC↑, 1,   GCLM↑, 1,   GPx↑, 3,   GPx4↑, 1,   GSH↑, 15,   GSH↓, 1,   GSR↑, 1,   GSR↓, 1,   GSTs↑, 2,   GSTs↓, 1,   H2O2↓, 1,   HO-1↑, 6,   lipid-P↓, 9,   lipid-P?, 1,   MDA↓, 9,   MPO↓, 1,   NQO1↑, 1,   NRF2↑, 10,   ROS↓, 21,   ROS↑, 1,   SOD↑, 12,   TAC↑, 2,   Trx↑, 2,   VitC↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 2,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 5,   AMPK↑, 1,   AMPK↝, 1,   BUN↓, 1,   FASN↓, 1,   glucose↓, 1,   LDH↓, 1,   NAD↑, 1,   NADPH↓, 1,   PPARγ↑, 1,   SIRT1↑, 2,   SIRT2↑, 1,  

Cell Death

AhR↑, 1,   Akt↑, 1,   Akt↝, 1,   Apoptosis↓, 1,   BAX↑, 1,   Bcl-2↑, 1,   Casp↓, 1,   Casp3↓, 1,   Casp3↑, 1,   Casp9↑, 1,   Cyt‑c↓, 1,   Fas↓, 1,   Ferroptosis↓, 1,   iNOS↓, 9,   JNK↑, 1,   JNK↓, 1,   p‑JNK↓, 1,   MAPK↓, 3,   MAPK↝, 1,   necrosis↓, 2,   p‑p38↓, 1,   p38↓, 1,   Telomerase↓, 1,  

Transcription & Epigenetics

cJun↓, 1,   other↑, 2,  

Protein Folding & ER Stress

GRP78/BiP↓, 1,   HSP27↑, 1,   HSPs↑, 1,   HSPs↓, 1,   XBP-1↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 2,   IGF-1↑, 1,   mTOR↑, 1,   mTOR↝, 1,   OCT4↓, 1,   PI3K↝, 1,   PTEN↑, 1,  

Migration

5LO↓, 1,   TGF-β↓, 1,   TIMP1↓, 1,   α-SMA↝, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

EGFR↓, 1,   Hif1a↓, 3,   NO↓, 4,  

Barriers & Transport

BBB?, 1,   BBB↑, 1,   GLUT4↑, 1,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 5,   IFN-γ↓, 4,   IL1↓, 1,   IL10↑, 2,   IL10↓, 1,   IL1α↓, 1,   IL1β↓, 5,   IL2↓, 3,   IL4↓, 4,   IL6↑, 1,   IL6↓, 4,   IL8↓, 3,   Inflam↓, 22,   NF-kB↓, 13,   PGE2↓, 1,   TLR4↓, 2,   TNF-α↓, 13,   TNF-β↓, 1,  

Synaptic & Neurotransmission

5HT↑, 2,   AChE↓, 3,   BChE↓, 1,   BDNF↑, 6,   tau↓, 1,  

Protein Aggregation

Aβ↓, 4,   NLRP3↓, 3,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↝, 4,   BioAv↑, 3,   BioEnh↑, 1,   Dose↝, 2,   eff↑, 1,   Half-Life↝, 1,   Half-Life↑, 1,   Half-Life?, 1,   Half-Life↓, 1,  

Clinical Biomarkers

ALAT↓, 5,   AST↓, 4,   creat↓, 1,   EGFR↓, 1,   GutMicro↑, 1,   GutMicro↝, 1,   IL6↑, 1,   IL6↓, 4,   LDH↓, 1,  

Functional Outcomes

cardioP↑, 2,   chemoP↑, 3,   cognitive↑, 5,   hepatoP↑, 20,   memory↑, 5,   Mood↑, 1,   neuroP↑, 13,   neuroP↝, 1,   OS↑, 2,   radioP↑, 2,   RenoP↑, 2,   Strength↑, 1,   toxicity↓, 1,   toxicity∅, 1,   Weight↓, 1,  
Total Targets: 153

Research papers

Year Title Authors PMID Link Flag
2020Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cellsKiren JacksonPMC8573457https://pmc.ncbi.nlm.nih.gov/articles/PMC8573457/0
2018Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2Peng XuPMC6212553https://pmc.ncbi.nlm.nih.gov/articles/PMC6212553/0
2022Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferationAlhan SayyedPMC9372765https://pmc.ncbi.nlm.nih.gov/articles/PMC9372765/0
2017Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cellsAida Rodriguez-Garcia28391184https://pubmed.ncbi.nlm.nih.gov/28391184/0
2025Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer's Disease and Other Neurological DisordersAbdulmajeed G Almutary39956886https://pubmed.ncbi.nlm.nih.gov/39956886/0
2025Silymarin: a promising modulator of apoptosis and survival signaling in cancerUjjawal Sharmahttps://link.springer.com/article/10.1007/s12672-025-01800-30
2025Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiationFaezeh Arghidashhttps://www.sciencedirect.com/science/article/abs/pii/S03440338250019430
2025Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar ratsRoland Eghoghosoa Akhigbe40120348https://pubmed.ncbi.nlm.nih.gov/40120348/0
2025Anticancer therapeutic potential of silibinin: current trends, scope and relevanceAnupam Sharmahttps://link.springer.com/article/10.1007/s00044-025-03383-80
2025Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer’s Disease and Other Neurological DisordersAbdulmajeed G. Almutaryhttps://link.springer.com/article/10.1007/s12035-024-04654-y0
2024Silymarin Alleviates Oxidative Stress and Inflammation Induced by UV and Air Pollution in Human Epidermis and Activates β-Endorphin Release through Cannabinoid Receptor Type 2Cloé Boira https://www.mdpi.com/2079-9284/11/1/300
2024Silymarin Nanoparticles Counteract Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights into Mitochondrial Dysfunction and Nrf2/HO-1 AxisFatma G. Aboelnasrhttps://www.sciencedirect.com/science/article/pii/S00142999240090750
2024Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative reviewHafiza Madiha JaffarPMC11077231https://pmc.ncbi.nlm.nih.gov/articles/PMC11077231/0
2024The clinical anti-inflammatory effects and underlying mechanisms of silymarinYuqi Zhaohttps://www.cell.com/iscience/pdf/S2589-0042(24)02334-4.pdf0
2024Exploring the anti-cancer and antimetastatic effect of Silymarin against lung cancerSrithika Srinivasanhttps://www.sciencedirect.com/science/article/pii/S17564646230010200
2024Silymarin administration after cerebral ischemia improves survival of obese mice by increasing cortical BDNF and IGF1 levelsYesica María Rodríguez-Cortéshttps://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2024.1484946/full0
2024Protective effects of silymarin in glioblastoma cancer cells through redox system regulationSara Zarei Shandizhttps://link.springer.com/article/10.1007/s11033-024-09658-40
2024A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatmentPantha Prodip RayPMC10937417https://pmc.ncbi.nlm.nih.gov/articles/PMC10937417/0
2023Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo studyMaham DoagooyanPMC10660084https://pmc.ncbi.nlm.nih.gov/articles/PMC10660084/0
2023Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insightShovit RanjanPMC10232807https://pmc.ncbi.nlm.nih.gov/articles/PMC10232807/0
2023Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathwayLiang YuPMC10408533https://pmc.ncbi.nlm.nih.gov/articles/PMC10408533/0
2023Structural basis of Nrf2 activation by flavonolignans from silymarinMartiniano Bellohttps://www.sciencedirect.com/science/article/abs/pii/S10933263220027280
2023Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulationsYin Wanghttps://www.sciencedirect.com/science/article/pii/S17564646220045460
2023Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoidMehdi Koushkihttps://www.sciencedirect.com/science/article/pii/S17564646230010200
2023Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells KHORSANDI LAYASADAThttps://www.sid.ir/paper/1084509/en0
2023Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathwayHaibo ZhangPMC10355200https://pmc.ncbi.nlm.nih.gov/articles/PMC10355200/0
2023The Therapeutic Effect of Silymarin and Silibinin on Depression and Anxiety Disorders and Possible Mechanism in the Brain: A Systematic ReviewSahar Rostamianwww.eurekaselect.com/article/1339690
2023Silymarin: a review on paving the way towards promising pharmacological agentMuhmmad Nadeem akhtarhttps://www.tandfonline.com/doi/full/10.1080/10942912.2023.22446850
2022Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to LactationShengyu XuPMC9454421https://pmc.ncbi.nlm.nih.gov/articles/PMC9454421/0
2022A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patentsSeyyed Amir EmadiPMC9588316https://pmc.ncbi.nlm.nih.gov/articles/PMC9588316/0
2022Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and QuestionsTomas KoltaiPMC8814827https://pmc.ncbi.nlm.nih.gov/articles/PMC8814827/0
2022Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer TreatmentIqra SarfrazPMC9609560https://pmc.ncbi.nlm.nih.gov/articles/PMC9609560/0
2022Mechanistic Insights into the Pharmacological Significance of SilymarinKaran Wadhwahttps://www.mdpi.com/1420-3049/27/16/53270
2021Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in ratsAhmet Yardımhttps://www.sciencedirect.com/science/article/abs/pii/S03781119203090820
2021Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosisSung-Hyun Kimhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8100955/0
2021Effects of silymarin on HIF‑1α and MDR1 expression in HepG‑2 cells under hypoxiahttp://182.92.200.144/EN/abstract/abstract668.shtml0
2021Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancerMaryam Fallahhttps://www.sciencedirect.com/science/article/pii/S07533322210080760
2020Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injuryGhaffar Shokouhihttps://www.sciencedirect.com/science/article/abs/pii/S00243205203080060
2020Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanismsRasool Haddadihttps://www.sciencedirect.com/science/article/abs/pii/S09447113203015250
2020Silymarin (Milk thistle)https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Silymarin-Cognitive-Vitality-For-Researchers.pdf0
2020Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1Suyan XuPMC7285460https://pmc.ncbi.nlm.nih.gov/articles/PMC7285460/0
2020Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in miceErhan Sahin32189355https://pubmed.ncbi.nlm.nih.gov/32189355/0
2020Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolismLeïla Sarah SellamPMC8507490https://pmc.ncbi.nlm.nih.gov/articles/PMC8507490/0
2020Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and ChemosensitivityDominique DelmasPMC7248929https://pmc.ncbi.nlm.nih.gov/articles/PMC7248929/0
2020Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIFChongcheng Wanghttps://www.nature.com/articles/s41419-020-02866-30
2020Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic ApplicationsNancy Vargas-MendozaPMC7277158https://pmc.ncbi.nlm.nih.gov/articles/PMC7277158/0
2019Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cellsSung-Hyun Kimhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6775811/0
2018Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseasesAbdoh Talebhttps://www.sciencedirect.com/science/article/abs/pii/S07533322183024760
2018Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomicsGagan DeepPMC5637733https://pmc.ncbi.nlm.nih.gov/articles/PMC5637733/0
2017Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress responseVishnu N Thakare28711395https://pubmed.ncbi.nlm.nih.gov/28711395/0
2017Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhageRaorao Yuanhttps://www.sciencedirect.com/science/article/abs/pii/S07533322173158460
2017Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cellsLiang Li28137608https://pubmed.ncbi.nlm.nih.gov/28137608/0
2017Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stressXiaoyu Song28004303https://pubmed.ncbi.nlm.nih.gov/28004303/0
2017Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampusXiaoyu Song28735062https://pubmed.ncbi.nlm.nih.gov/28735062/0
2017Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many YearsAlessandro FedericoPMC6155865https://pmc.ncbi.nlm.nih.gov/articles/PMC6155865/0
2016Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expressionTripti SinghPMC4937733https://pmc.ncbi.nlm.nih.gov/articles/PMC4937733/0
2016Studies on radiation sensitization efficacy by silymarin in colon carcinoma cellsdamodar Guptahttps://www.academia.edu/87378211/Studies_on_radiation_sensitization_efficacy_by_silymarin_in_colon_carcinoma_cells0
2016Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injuryYanwu JinPMC4950650https://pmc.ncbi.nlm.nih.gov/articles/PMC4950650/0
2015Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitroFeng Zhao26173462https://pubmed.ncbi.nlm.nih.gov/26173462/0
2015Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cellsKai Jianghttps://www.spandidos-publications.com/10.3892/or.2015.39150
2015Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and PerspectivesPeter F SuraiPMC4665566https://pmc.ncbi.nlm.nih.gov/articles/PMC4665566/0
2015Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinomaZhenkun Mahttps://www.spandidos-publications.com/or/34/5/24610
2015Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growthSurendra K ShuklaPMC4747396https://pmc.ncbi.nlm.nih.gov/articles/PMC4747396/0
2014Hepatoprotective effect of silymarinNancy Vargas-MendozaPMC3959115https://pmc.ncbi.nlm.nih.gov/articles/PMC3959115/0
2014Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κBReem T Atawia25164963https://pubmed.ncbi.nlm.nih.gov/25164963/0
2013Neuroprotective Potential of Silymarin against CNS Disorders: Insight into the Pathways and Molecular Mechanisms of ActionAnupom BorahPMC6493565https://pmc.ncbi.nlm.nih.gov/articles/PMC6493565/0
2013Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cellsSoo-Jin Oh23353996https://pubmed.ncbi.nlm.nih.gov/23353996/0
2012Silymarin regulates the HIF-1 and iNOS expression in the brain and Gills of the hypoxic-reoxygenated rainbow trout (Oncorhynchus mykis)Hassan Malekinejadhttps://www.researchgate.net/publication/233868305_Silymarin_regulates_the_HIF-1_and_iNOS_expression_in_the_brain_and_Gills_of_the_hypoxic-reoxygenated_rainbow_trout_Oncorhynchus_mykis0
2011"Silymarin", a promising pharmacological agent for treatment of diseasesGholamreza KarimiPMC3586829https://pmc.ncbi.nlm.nih.gov/articles/PMC3586829/0
2010Silibinin: a novel inhibitor of Aβ aggregationFei Yin21185897https://pubmed.ncbi.nlm.nih.gov/21185897/0
2009Effect of silymarin on biochemical parameters of oxidative stress in aged and young rat brainF. Galhardihttps://www.sciencedirect.com/science/article/pii/S02786915090036640
2007Protective effect of silymarin on oxidative stress in rat brainC. Nencinihttps://www.sciencedirect.com/science/article/abs/pii/S09447113060004190
2007Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapyMaria Cristina Comellihttps://pubmed.ncbi.nlm.nih.gov/17548791/0
2004Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2Shu-Chen Chu15224346https://pubmed.ncbi.nlm.nih.gov/15224346/0
1999Aminotransferase levels and silymarin in de novo tacrine-treated patients with Alzheimer's diseaseH Allain10325444https://pubmed.ncbi.nlm.nih.gov/10325444/0
1999Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosisS K Manna10586080https://pubmed.ncbi.nlm.nih.gov/10586080/0