tbResList Print — SFN Sulforaphane (mainly Broccoli)

Filters: qv=156, qv2=%, rfv=%

Product

SFN Sulforaphane (mainly Broccoli)
Description: <b>Sulforaphane</b> is an isothiocyanate derived from glucoraphanin, a compound found predominantly in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is well known for its potent antioxidant and detoxification properties and has gained significant attention for its potential chemopreventive and anticancer effects.<br>
<br>
Summary<br>
1.primarily attenuates both DNMTs and HDACs, individually suppressing DNA hypermethylation and histones deacetylation, ultimately upregulating NRF2 (best known for NRF2↑)<br>
2.Antioxidant Activity:<br>
• Nrf2 activation leads to the upregulation of a host of antioxidant and detoxification enzymes (e.g., glutathione S-transferase, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1), which in turn decrease oxidative stress and lower ROS levels.<br>
3.Pro-oxidant Effects in Cancer Cells and Under High-Dose Conditions (>=10uM?)<br>
• In certain cancer cell types or at higher concentrations, sulforaphane can paradoxically lead to an increase in ROS levels.<br>
• The elevated ROS may overwhelm the cancer cells’ antioxidant defenses, leading to oxidative stress–mediated cell death (apoptosis).<br>
• This context-dependent pro-oxidant effect has been explored for its potential in selectively targeting cancer cells while leaving normal cells less affected. <br>
<br>
- Might not be a good candidate for pro-oxidant strategy depending on concentration >10uM?.<br>
- Strong Activation of Nrf2 (best known for) at low to moderate concentrations, hence reduces oxidative stress in both cancer and normal cells.<br>
- AMPK signaling activated by SFN, high concentrations of ROS are produced<br>
- ROS generation also results in depletion of GSH levels<br>
- HIF-1α and VEGF inhibitor<br>
- Might be effective against cancer stem cells<br>
- <a href="https://www.cancertreatmentsresearch.com">But I would not combine that with radiation, </a> as Sulforaphane activates the anti-oxidant master regulator of cells.<br>
- <a href="https://www.cancertreatmentsresearch.com">“I very much agree: </a> Sulforaphane is a very good addition, even more when the choice is an anti-oxidant therapy” <br>
- well known as HDAC inhibitor (typically 5-10um concentrations)<br>
-<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4394840/">A transient decrease </a>in HDAC activity has also been observed in healthy humans 3 h after providing a daily 200 µM SFN dose, resulting in a plasma concentration of SFN metabolites of 0.1–0.2 µM.<br>
<br>


<br>



Dose/Bioavailabilty information:<br>
SFN at a daily dose of 2.2 µM/kg body weight, with a mean plasma level of 0.13 µM
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4394840/#F2">Sprout 127.6 grams = 205uM±19.9 </a>content yields SFN 0.5 to 2uM in plasma. <br>
However, it is important to consider that at lower doses, specifically 2.5 μM, SFN resulted in a slight increase in cell proliferation by 5.18–11.84% within a 6 to 48 h treatment window.<br>
-A therapeutic dose starts at approx 60 grams of the sprouts.<br>
-100 g of Broccoli sprouts contain about 15–20 mg of sulforaphane<br>
–Organic Broccoli Sprout Powder (Health Ranger) – Avmacol® – NanoPSA (a blend of NanoStilbene™ and Broccoli Sprout Extract). <br>
-<a href="https://www.mcsformulas.com/vitamins-supplements/broccoli-ultra-sulforaphane/">
-750 mg Sulforaphane Glucosinolate in Daily One Serving (2 capsules) (30mg Sulforaphane)</a> <br>
<br>
Total sulforaphane metabolite concentration in plasma was the highest (>2 μM) at 3 h in human subjects who consumed fresh broccoli sprouts (40g) <br>
-human studies with broccoli sprouts or extracts report plasma sulforaphane levels in the low micromolar range (typically 1–2 µM) after ingesting realistic, food-based quantities of sprouts (often in the range of 30–50 g of sprouts or a concentrated extract).<br>
<br>
BroccoSprouts are young broccoli sprouts that have garnered attention because they contain high amounts of glucoraphanin—a precursor molecule to sulforaphane. Studies have shown that broccoli sprouts can have sulforaphane precursor levels (i.e., glucoraphanin levels) that are 10 to 100 times higher than those found in mature broccoli heads. Glucoraphanin content in broccoli sprouts can range anywhere from about 30 to over 100 mg per 100 grams of fresh sprouts. Once activated (e.g., during consumption when myrosinase acts on glucoraphanin), these levels translate into a significant sulforaphane yield, meaning that even a small amount of broccoli sprouts can deliver a potent dose of this bioactive compound.<br>
<br>



Importantly, glucoraphanin itself is not bioactive. Rather, enzymatic hydrolysis by myrosinase, present in the plant tissue or in the mammalian microbiome, is necessary to form the active component, SFN.<br>
- GFN (glucoraphanin) is hydrolyzed in vivo to SFN via the myrosinase, which is present in gut bacteria as well as the plant itself (also in Radish)<br>
- Do not cook the vegetables, or if you do add myrosinase back in by adding radish.<br>
- <a href="tbResEdit.php?rid=1729">mild heat</a>
of broccoli (60–70 °C) inactivated ESP and preserved myrosinase and increased SF yield 3–7-fold<br>
- <a href="tbResEdit.php?rid=2556">chewing </a>
of fresh broccoli sprouts increases the interaction of glucosinolates with myrosinase and consequently, increases the bioavailability of SFN in the body<br>


<br>
-Note <a href="tbResList.php?qv=156&tsv=1109&wNotes=on&exSp=open">half-life</a> 2-3 hrs.<br>
<a href="tbResList.php?qv=156&tsv=792&wNotes=on&exSp=open">BioAv</a> is good (15-80%) but requires myrosinase
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=156&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?qv=156&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=156&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=156&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=156&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=156&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=156&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=156&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=156&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=156&tsv=226&wNotes=on&word=NRF2">NRF2↓</a>(contrary, actually most raises NRF2),
<a href="tbResList.php?qv=156&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<!-- <a href="tbResList.php?qv=156&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>, -->
<a href="tbResList.php?qv=156&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>,
<a href="tbResList.php?qv=156&tsv=46&wNotes=on">Catalase↓</a>(contrary),
<a href="tbResList.php?qv=156&tsv=597&wNotes=on">HO1↓</a>(contrary),
<a href="tbResList.php?qv=156&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=156&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=156&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=156&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=156&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=156&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=156&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=156&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=156&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=156&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=156&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=156&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=156&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=156&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=156&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=156&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=156&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=156&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=156&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=156&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=156&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=156&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=156&tsv=415&wNotes=on">IGF-1↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=156&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=156&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=156&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=156&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=156&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=156&tsv=79&wNotes=on">CXCR4↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=1247&wNotes=on">SDF1↓</a>, -->
<!-- <a href="tbResList.php?qv=156&tsv=304&wNotes=on">TGF-β↓</a>, -->
<a href="tbResList.php?qv=156&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=156&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=156&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=156&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=156&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=156&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=156&tsv=506&wNotes=on">Sp proteins↓</a>,
<!-- <a href="tbResList.php?qv=156&wNotes=on&word=TET">TET↑</a> -->
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=156&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=156&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=156&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=156&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=156&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=156&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=156&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=156&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=156&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=156&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=156&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=156&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=1117&wNotes=on">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=156&tsv=657&wNotes=on">TET1↓</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=156&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=156&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=156&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=156&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=156&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=156&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=156&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=156&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=156&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=156&tsv=773&wNotes=on">HK2↓</a>,
<!-- <a href="tbResList.php?qv=156&wNotes=on&word=PFK">PFKs↓</a>, -->
<!-- <a href="tbResList.php?qv=156&wNotes=on&word=PDK">PDKs↓</a>, -->
<a href="tbResList.php?qv=156&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=156&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=156&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=156&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=156&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=156&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=156&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=156&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=NOTCH">Notch↓</a>,
<!-- <a href="tbResList.php?qv=156&wNotes=on&word=FGF">FGF↓</a>, -->
<a href="tbResList.php?qv=156&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=156&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=156&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=156&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=524&wNotes=on">CK2↓</a>, -->
<a href="tbResList.php?qv=156&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=156&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=156&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=156&tsv=677&wNotes=on">CD133↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=655&wNotes=on">CD24↓</a>, -->
<a href="tbResList.php?qv=156&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=357&wNotes=on">n-myc↓</a>, -->
<a href="tbResList.php?qv=156&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=NOTCH">notch2↓</a>,
<a href="tbResList.php?qv=156&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=156&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=156&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=156&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=156&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=156&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=156&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=156&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=156&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=156&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=156&tsv=1014&wNotes=on">5↓</a>,
<!-- <a href="tbResList.php?qv=156&tsv=168&wNotes=on">JNK</a>, -->


- <a href="tbResList.php?qv=156&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=156&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=156&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=156&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=156&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=156&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=156&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=156&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=156&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=156&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=156&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=156&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>NRF2 / KEAP1 antioxidant response</td>
<td>↑ NRF2 (often insufficient for rescue)</td>
<td>↑ NRF2 (protective)</td>
<td>Driver</td>
<td>Electrophile-driven stress response</td>
<td>Sulforaphane covalently modifies KEAP1, activating NRF2 signaling</td>
</tr>

<tr>
<td>2</td>
<td>Histone deacetylases (HDACs)</td>
<td>↓ HDAC activity</td>
<td>↔ mild modulation</td>
<td>Driver</td>
<td>Epigenetic reprogramming</td>
<td>HDAC inhibition alters transcription of cell-cycle and apoptosis genes</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (transient / stress-inducing)</td>
<td>↓ ROS</td>
<td>Secondary</td>
<td>Redox signaling perturbation</td>
<td>ROS rise reflects electrophilic stress rather than classic redox cycling</td>
</tr>

<tr>
<td>4</td>
<td>Cell cycle regulation</td>
<td>↑ G2/M or G1 arrest</td>
<td>↔ largely spared</td>
<td>Secondary</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest is a prominent phenotype in cancer cells</td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis</td>
<td>↑ apoptosis (context-dependent)</td>
<td>↔ protected</td>
<td>Phenotypic</td>
<td>Threshold-dependent cell death</td>
<td>Apoptosis occurs when stress exceeds adaptive capacity</td>
</tr>

<tr>
<td>6</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of inflammatory survival programs</td>
<td>NF-κB inhibition supports anti-proliferative and anti-inflammatory effects</td>
</tr>

</table>




Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 3,   antiOx↓, 1,   Catalase↑, 1,   CYP1A1↓, 2,   Ferroptosis↑, 2,   GPx↓, 1,   GPx4↓, 1,   GSH↓, 6,   GSH↑, 2,   GSH/GSSG↓, 1,   GSR↓, 1,   GSTA1↑, 1,   GSTs↑, 1,   HO-1↑, 6,   Iron↑, 1,   i-Iron↑, 1,   lipid-P↑, 1,   MDA↑, 2,   Mets↑, 1,   MPO↓, 1,   NQO1?, 1,   NQO1↑, 3,   NRF2↑, 15,   NRF2∅, 1,   p‑NRF2↑, 1,   mt-OXPHOS↓, 1,   OXPHOS↓, 1,   Prx↓, 2,   ROS↓, 4,   ROS↑, 32,   ROS?, 1,   ROS⇅, 2,   SIRT3↑, 1,   SOD↑, 1,   TrxR↓, 1,   TrxR1↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 2,   ATP↓, 3,   CDC25↓, 2,   KIF2C↓, 1,   MEK↓, 1,   p‑MEK↓, 1,   MMP↓, 14,   XIAP↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   ACC1↓, 1,   AKT1↓, 2,   p‑AMPK↑, 1,   AMPK↑, 3,   CAIX↓, 1,   cMyc↓, 1,   CPT1A↓, 1,   CYP3A4↓, 1,   ECAR↓, 2,   FASN↓, 2,   glucoNG↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 11,   HK2↓, 7,   lactateProd↓, 1,   LDHA↓, 3,   NAD↑, 1,   PDH↓, 1,   PKM2↓, 5,   SREBP1?, 1,   SREBP1↓, 1,   Warburg↓, 1,   β-oxidation↓, 1,  

Cell Death

Akt∅, 1,   Akt↓, 7,   p‑Akt↓, 3,   Apoptosis↑, 29,   Bak↑, 1,   BAX↑, 10,   Bax:Bcl2↑, 6,   Bcl-2↓, 1,   Bcl-2∅, 1,   Bcl-xL↓, 3,   BID↑, 2,   BIM↑, 1,   Casp↑, 3,   Casp12?, 1,   Casp12↑, 2,   Casp3↑, 20,   cl‑Casp3↑, 2,   Casp7↑, 4,   Casp8∅, 2,   Casp8↑, 6,   Casp9↑, 12,   p‑Chk2↑, 1,   Cyt‑c↑, 12,   Cyt‑c↓, 1,   Diablo↑, 2,   DR4↑, 1,   DR5↑, 3,   Fas↑, 1,   Ferroptosis↑, 2,   hTERT/TERT↓, 5,   IAP1↓, 1,   IAP1↑, 1,   ICAD↑, 1,   iNOS↓, 1,   MAPK↑, 1,   Mcl-1↓, 1,   NOXA↑, 1,   p27↑, 2,   p38↓, 2,   p38↑, 3,   PUMA↑, 1,   survivin↓, 3,   Telomerase↓, 1,   TRAIL↑, 1,   TumCD↑, 1,   TUNEL↑, 1,  

Kinase & Signal Transduction

CaMKII ↑, 1,   HER2/EBBR2↓, 2,   p70S6↓, 1,   SOX9↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

EZH2↓, 1,   ac‑H3↑, 2,   H3↑, 2,   H3↓, 1,   p‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,   HATs↓, 1,   miR-30a-5p↑, 1,   other↑, 2,   other↓, 1,   other↝, 1,   Prot↝, 1,   tumCV↓, 12,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 4,   GRP78/BiP↑, 2,   HSP27↑, 1,   HSP70/HSPA5↓, 1,   ac‑HSP90↑, 1,   HSP90↓, 1,   UPR↑, 1,   XBP-1↑, 1,  

Autophagy & Lysosomes

LAMP2↑, 1,   LC3B↑, 1,   LC3II↑, 1,   p62↑, 1,   TFEB↑, 1,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 5,   DNAdam↓, 1,   DNArepair↓, 1,   DNMT1↓, 5,   DNMT3A↓, 4,   DNMTs↓, 8,   P53∅, 1,   P53↑, 4,   cl‑PARP↑, 9,   p‑PARP↑, 1,   γH2AX↑, 2,  

Cell Cycle & Senescence

CDK1↑, 2,   CDK1↓, 1,   p‑CDK1↑, 1,   CDK2↑, 1,   CDK2↓, 1,   CDK4↓, 3,   cycA1/CCNA1↑, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↑, 3,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 3,   cycD1/CCND1↑, 2,   cycE/CCNE↓, 1,   p19↑, 2,   P21↑, 11,   p‑RB1↓, 1,   TumCCA↑, 22,   TumCCA?, 1,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 2,   ALDH1A1↓, 2,   BMI1↓, 1,   CD133↓, 2,   CD44↓, 6,   cMYB↓, 2,   CSCs↓, 13,   Diff↓, 1,   EMT↓, 2,   EMT?, 1,   ERK∅, 1,   ERK↓, 4,   ERK↑, 2,   e-ERK↑, 1,   p‑ERK↓, 1,   ERK5↑, 1,   FOXO3↑, 1,   Gli↓, 1,   Gli1↓, 6,   HDAC↓, 29,   HDAC↑, 1,   HDAC1↓, 1,   HDAC2↓, 2,   HDAC3↓, 3,   HDAC4↓, 1,   HDAC8↓, 2,   HH↓, 3,   HMTs↓, 1,   IGF-1↓, 1,   KLF4↓, 1,   p‑mTOR↓, 1,   mTOR↓, 3,   mTOR↑, 1,   Nanog↓, 1,   Nestin↓, 1,   NOTCH↓, 2,   NOTCH1↓, 1,   OCT4↓, 1,   PDGFRA↓, 2,   PI3K↓, 7,   Shh↓, 5,   Smo↓, 6,   SOX2↓, 1,   p‑STAT3↓, 2,   TBX15↑, 1,   TCF↓, 1,   TOPflash↑, 1,   TumCG↑, 1,   TumCG↓, 11,   VDR↑, 1,   Wnt↓, 5,  

Migration

AP-1↓, 2,   AP-1↑, 1,   Ca+2↑, 1,   cal2↑, 1,   CLDN1↓, 1,   decorin↑, 1,   E-cadherin↑, 5,   E-cadherin↓, 1,   ER-α36↓, 1,   FAK↓, 1,   Fibronectin↓, 1,   GLI2↓, 3,   Ki-67↓, 2,   LAMP1?, 1,   miR-155↓, 1,   miR-200c↑, 1,   MMP1↓, 1,   MMP13↓, 1,   MMP2↓, 10,   MMP2↝, 1,   MMP9↓, 10,   MMP9↝, 1,   MMPs↓, 1,   N-cadherin↓, 2,   p‑PDGF↓, 1,   PKA↓, 1,   Slug↓, 1,   Smad1↑, 1,   Snail↓, 6,   TumCI↓, 10,   TumCMig↓, 8,   TumCP↓, 18,   TumMeta↓, 4,   Twist↓, 2,   VCAM-1↓, 1,   Vim↓, 1,   Zeb1↓, 2,   ZO-1↑, 1,   β-catenin/ZEB1↓, 5,  

Angiogenesis & Vasculature

angioG↓, 8,   EGFR↓, 3,   eNOS↓, 1,   Hif1a↓, 13,   NO↓, 1,   NO↑, 1,   VEGF↓, 1,   VEGFR2↓, 2,  

Barriers & Transport

AQPs↓, 1,   SLC12A5↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 5,   COX2↝, 1,   CXCL9↓, 1,   CXCR4↓, 2,   IFN-γ↓, 1,   IFN-γ↑, 1,   IKKα↓, 2,   IL12↓, 1,   IL1β↓, 4,   IL2↑, 1,   IL6↓, 4,   IL8↑, 1,   Inflam↓, 3,   IP-10/CXCL-10↓, 1,   JAK2↓, 1,   MCP1↓, 1,   MIP-1β↓, 1,   NF-kB↓, 13,   p50↓, 1,   p65↓, 1,   PSA↓, 2,   TNF-α↓, 4,  

Cellular Microenvironment

NOX↓, 1,  

Synaptic & Neurotransmission

5HT↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,   COMT↑, 1,   CYP11A1↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 5,   BioAv↓, 2,   BioAv↝, 2,   chemoR↓, 1,   ChemoSen↑, 13,   Dose↝, 8,   Dose∅, 1,   eff↑, 29,   eff↓, 26,   eff↝, 2,   Half-Life∅, 1,   P450↓, 1,   RadioS↑, 4,   selectivity?, 1,   selectivity↑, 12,   selectivity↓, 1,  

Clinical Biomarkers

AR↓, 2,   EGFR↓, 3,   EZH2↓, 1,   GutMicro↝, 1,   HER2/EBBR2↓, 2,   hTERT/TERT↓, 5,   IL6↓, 4,   Ki-67↓, 2,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 6,   AntiTum↑, 1,   cardioP↑, 1,   CardioT↓, 2,   chemoP↑, 1,   chemoPv↑, 5,   ChemoSideEff↓, 3,   neuroP↑, 4,   NKG2D↑, 1,   OS↑, 2,   OS∅, 1,   Remission↑, 1,   RenoP↑, 1,   Risk↓, 1,   TumVol↓, 1,   TumW↓, 3,  
Total Targets: 347

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 4,   Catalase↑, 3,   GPx↑, 3,   GSH↑, 6,   GSR↑, 1,   GSTA1↑, 2,   GSTs↑, 1,   H2O2↓, 1,   HO-1↑, 9,   MDA↓, 2,   NQO1↑, 8,   NRF2↑, 22,   OXPHOS↑, 1,   ROS↓, 14,   SOD↑, 4,   Trx↓, 1,   Trx↑, 1,   TrxR↑, 2,   TrxR1↑, 1,  

Core Metabolism/Glycolysis

ACC↑, 1,   ALAT↓, 2,   AMPK↑, 1,   CREB↑, 1,   G6PD↑, 1,   GlucoseCon↓, 1,   HK2↓, 1,   LDH↓, 1,   NADPH↑, 3,   PFKFB2↓, 1,  

Cell Death

Casp1↓, 1,   Cyt‑c↓, 1,   IAP1↓, 1,   iNOS↓, 3,   MAPK↓, 1,  

Transcription & Epigenetics

H3↑, 1,   ac‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,   HSP27↓, 1,   HSP70/HSPA5↑, 3,   HSPs↑, 1,  

DNA Damage & Repair

DNMT1↓, 1,   DNMT3A↓, 1,   DNMTs↓, 1,  

Proliferation, Differentiation & Cell State

CHIP↑, 1,   p‑ERK↑, 1,   ERK↓, 2,   ERK↑, 1,   HDAC↓, 4,   HDAC1↓, 1,   HDAC2↓, 3,   HDAC3↓, 3,   mTOR↓, 1,   neuroG↑, 1,   P70S6K↓, 1,   STAT3↓, 1,  

Migration

Ca+2↓, 1,   Fibronectin↓, 1,   ITGA5↓, 1,   ITGB1↓, 1,   Ki-67↓, 1,   MMP9↓, 1,   Rho↓, 1,   ROCK1↓, 1,   TXNIP↑, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

NO↓, 2,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

ASC↓, 1,   COX2↓, 3,   ICAM-1↓, 1,   p‑IKKα↓, 1,   IL10↑, 1,   IL18↓, 1,   IL1β↓, 8,   IL6↓, 8,   IL8↓, 3,   Inflam↓, 12,   M1↓, 1,   NF-kB↓, 6,   TNF-α↓, 4,  

Synaptic & Neurotransmission

BDNF↑, 5,   tau↓, 2,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 5,   BACE↓, 2,   NLRP3↓, 4,  

Drug Metabolism & Resistance

BioAv↑, 9,   BioAv?, 1,   BioAv↓, 3,   BioAv↝, 5,   Dose↝, 1,   eff↑, 3,   eff↓, 1,   Half-Life∅, 2,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 2,   AST↓, 2,   GutMicro↑, 1,   IL6↓, 8,   Ki-67↓, 1,   LDH↓, 1,   NOS2↓, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 1,   cardioP↑, 3,   CardioT↓, 1,   cognitive↑, 6,   hepatoP↑, 1,   memory↑, 2,   Mood↑, 1,   neuroP↑, 5,   Risk↑, 1,   toxicity↓, 8,   toxicity∅, 4,   Weight∅, 1,  
Total Targets: 117

Research papers

Year Title Authors PMID Link Flag
2019Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanismsKendra J RoystonPMC6733260https://pmc.ncbi.nlm.nih.gov/articles/PMC6733260/0
2017A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer CellsKendra J RoystonPMC5455001https://pmc.ncbi.nlm.nih.gov/articles/PMC5455001/0
2017Naturally occurring anti-cancer agents targeting EZH2Fahimeh Shahabipourhttps://www.sciencedirect.com/science/article/abs/pii/S03043835173018420
2023An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast CancerJutao Li37289419https://pubmed.ncbi.nlm.nih.gov/37289419/0
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2011Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferationAmmad Ahmad Farooqi 22070051https://pubmed.ncbi.nlm.nih.gov/22070051/0
2019Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects—results from the POUDER pilot studyVladimir J. Lozanovskihttps://link.springer.com/article/10.1007/s10637-019-00826-z0
2011Intake of Cruciferous Vegetables Modifies Bladder Cancer SurvivalLi TangPMC29013970
2020The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and GenisteinCord Naujokathttps://www.researchgate.net/publication/339583519_The_Big_Five_Phytochemicals_Targeting_Cancer_Stem_Cells_Curcumin_EGCG_Sulforaphane_Resveratrol_and_Genistein0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290
2018The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic RegulationBidisha PaulPMC6032337 https://pmc.ncbi.nlm.nih.gov/articles/PMC6032337/0
2005Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cellsChangjiang Xu15856023https://pubmed.ncbi.nlm.nih.gov/15856023/0
2014Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trialVladimir J LozanovskiPMC4059031https://pmc.ncbi.nlm.nih.gov/articles/PMC4059031/0
2025Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical modelsAnkita Thakurhttps://www.sciencedirect.com/science/article/abs/pii/S29501997250030390
2020Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivoFang LiuPMC7276212https://pmc.ncbi.nlm.nih.gov/articles/PMC7276212/0
2015Synergy between sulforaphane and selenium in protection against oxidative damage in colonic CCD841 cellsYichong Wang26094214https://pubmed.ncbi.nlm.nih.gov/26094214/0
2025Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell LinesAna Peñata-TabordaPMC11817897https://pmc.ncbi.nlm.nih.gov/articles/PMC11817897/0
2025Sulforaphane potentiates the efficacy of chemoradiotherapy in glioblastoma by selectively targeting thioredoxin reductase 1Yuqian Gehttps://www.sciencedirect.com/science/article/abs/pii/S03043835240082430
2025Sulforaphane and Brain Health: From Pathways of Action to Effects on Specific DisordersJed W FaheyPMC12030691https://pmc.ncbi.nlm.nih.gov/articles/PMC12030691/0
2024Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR PathwayPing Jiang38401043https://pubmed.ncbi.nlm.nih.gov/38401043/0
2024Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathwayBo Hu39291655https://pubmed.ncbi.nlm.nih.gov/39291655/0
2024Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatmentQiuming ZouPMC11681892https://pmc.ncbi.nlm.nih.gov/articles/PMC11681892/0
2024Sulforaphane eradicates pancreatic cancer stem cells by NF-κBGeorgios Kallifatidishttps://www.klinikum.uni-heidelberg.de/fileadmin/MolOnkoChir/Poster/Sulpharophane_eridates_pancreatic_cancer_stem_cells.pdf0
2024Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophagesSheyda Bahiraiihttps://www.sciencedirect.com/science/article/pii/S08915849240003760
2024Sulforaphane inhibits TGF-β-induced fibrogenesis and inflammation in human Tenon’s fibroblastsYang LiuPMC11575843https://pmc.ncbi.nlm.nih.gov/articles/PMC11575843/0
2024Antitumor and antimetastatic effects of dietary sulforaphane in a triple-negative breast cancer modelsA. Pogorzelskahttps://www.nature.com/articles/s41598-024-65455-w0
2024Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cellsYongmin ChoPMC11390404https://pmc.ncbi.nlm.nih.gov/articles/PMC11390404/0
2024Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contextsSamaneh Hajimohammadihttps://link.springer.com/article/10.1007/s10787-024-01506-y0
2024Sulforaphane decreases oxidative stress and inhibits NLRP3 inflammasome activation in a mouse model of ulcerative colitisZi-Juan Zhou38713944https://pubmed.ncbi.nlm.nih.gov/38713944/0
2024Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 CellsDhiraj Kumar SahPMC11047376https://pmc.ncbi.nlm.nih.gov/articles/PMC11047376/0
2023Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic ApproachJames Mordecaihttps://www.researchgate.net/publication/369934141_Sulforaphane_and_Its_Protective_Role_in_Prostate_Cancer_A_Mechanistic_Approach0
2023Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC ActivityFumimasa TomookaPMC10000472https://pmc.ncbi.nlm.nih.gov/articles/PMC10000472/0
2023Mechanistic review of sulforaphane as a chemoprotective agent in bladder cancerGabrielle E KennelleyPMC10165231https://pmc.ncbi.nlm.nih.gov/articles/PMC10165231/0
2023Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer ActionRaymond A OtooPMC10574530https://pmc.ncbi.nlm.nih.gov/articles/PMC10574530/0
2023Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophagesYe Won An26827637https://pubmed.ncbi.nlm.nih.gov/26827637/0
2023Sulforaphane and bladder cancer: a potential novel antitumor compoundMingshun Zuohttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1254236/full0
2023Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma CellsPei Guhttps://www.tandfonline.com/doi/full/10.1080/01635581.2023.21789230
2023Sulforaphane: An emergent anti-cancer stem cell agentLeandro Coutinhohttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1089115/full0
2023Sulforaphane exhibits potent renoprotective effects in preclinical models of kidney diseases: A systematic review and meta-analysisElisa B Monteiro37023957https://pubmed.ncbi.nlm.nih.gov/37023957/0
2022Sulforaphane suppresses the activity of sterol regulatory element-binding proteins (SREBPs) by promoting SREBP precursor degradationShingo Miyatahttps://www.nature.com/articles/s41598-022-12347-60
2022AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder CancerLei Huang34791822https://pubmed.ncbi.nlm.nih.gov/34791822/0
2022Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative StressShunhao ZhangPMC9218606https://pmc.ncbi.nlm.nih.gov/articles/PMC9218606/0
2022Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathwayYing ZhangPMC8948359https://pmc.ncbi.nlm.nih.gov/articles/PMC8948359/0
2022Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer CellsShinan LiPMC9099819https://pmc.ncbi.nlm.nih.gov/articles/PMC9099819/0
2022Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cellsJoseph P BurnettPMC8892390https://pmc.ncbi.nlm.nih.gov/articles/PMC8892390/0
2022Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicityQianqian Caohttps://www.nature.com/articles/s41420-022-01063-90
2021Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder CarcinomaHui XiePMC8197880https://pmc.ncbi.nlm.nih.gov/articles/PMC8197880/0
2021Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic reviewIahtisham-Ul-Haqhttps://onlinelibrary.wiley.com/doi/10.1111/jfbc.138860
2021Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosisReza Bayat MokhtariPMC8310668https://pmc.ncbi.nlm.nih.gov/articles/PMC8310668/0
2021Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodentsWei Yaohttps://www.nature.com/articles/s41398-021-01261-60
2021Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trialsBharti Manglahttps://www.researchgate.net/publication/352820051_Sulforaphane_A_review_of_its_therapeutic_potentials_advances_in_its_nanodelivery_recent_patents_and_clinical_trials0
2021The Inhibitory Effect of Sulforaphane on Bladder Cancer Cell Depends on GSH Depletion-Induced by Nrf2 TranslocationCanxia HePMC8399241https://pmc.ncbi.nlm.nih.gov/articles/PMC8399241/0
2021Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcriptionRui Tanghttps://www.nature.com/articles/s41401-021-00727-z0
2021Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike proteinJessica GasparelloPMC8095027https://pmc.ncbi.nlm.nih.gov/articles/PMC8095027/0
2021Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cellsSharmin Hossain32964464https://pubmed.ncbi.nlm.nih.gov/32964464/0
2021Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive PotentialAnna E KaiserPMC8508555https://pmc.ncbi.nlm.nih.gov/articles/PMC8508555/0
2021Pre-Clinical Neuroprotective Evidences and Plausible Mechanisms of Sulforaphane in Alzheimer’s DiseaseJiyoung KimPMC7999245https://pmc.ncbi.nlm.nih.gov/articles/PMC7999245/0
2020Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer CellsMehdi BAGHERIPMC7152640https://pmc.ncbi.nlm.nih.gov/articles/PMC7152640/0
2020Efficacy of Sulforaphane in Neurodegenerative DiseasesGiovanni SchepiciPMC7698208https://pmc.ncbi.nlm.nih.gov/articles/PMC7698208/0
2020Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stressDan LiPMC8078734https://pmc.ncbi.nlm.nih.gov/articles/PMC8078734/0
2020The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective PhytochemicalRuheea Taskin RuheePMC7346151https://pmc.ncbi.nlm.nih.gov/articles/PMC7346151/0
2020Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling PathwayHyun HwangboPMC7457169https://pmc.ncbi.nlm.nih.gov/articles/PMC7457169/0
2020Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectivesParham Jabbarzadeh Kaboli31739165https://pubmed.ncbi.nlm.nih.gov/31739165/0
2020Sulforaphane Inhibits Autophagy and Induces Exosome-Mediated Paracrine Senescence via Regulating mTOR/TFE3Kai Zheng32476238https://pubmed.ncbi.nlm.nih.gov/32476238/0
2020Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systemsMohammad M Kamal32152852https://pubmed.ncbi.nlm.nih.gov/32152852/0
2020Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7Jochen RutzPMC7699211https://pmc.ncbi.nlm.nih.gov/articles/PMC7699211/0
2019Evaluation of biodistribution of sulforaphane after administration of oral broccoli sprout extract in melanoma patients with multiple atypical neviShawn TahataPMC6030491https://pmc.ncbi.nlm.nih.gov/articles/PMC6030491/0
2019Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphaneKrishna B SinghPMC7175465https://pmc.ncbi.nlm.nih.gov/articles/PMC7175465/0
2019High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cellsTong-Hong Wang31454652https://pubmed.ncbi.nlm.nih.gov/31454652/0
2019Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in HypoxiaYong Xia31241937https://pubmed.ncbi.nlm.nih.gov/31241937/0
2019Sulforaphane inhibits epithelial-mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cellsYue Chen31473507https://pubmed.ncbi.nlm.nih.gov/31473507/0
2019The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen ReceptorCatalina Carrasco-PozoPMC6861939https://pmc.ncbi.nlm.nih.gov/articles/PMC6861939/0
2019Sulforaphane - role in aging and neurodegenerationRoberto Santín-MárquezPMC6885086https://pmc.ncbi.nlm.nih.gov/articles/PMC6885086/0
2019Sulforaphane Inhibits Self-renewal of Lung Cancer Stem Cells Through the Modulation of Polyhomeotic Homolog 3 and Sonic Hedgehog Signaling PathwaysFanPing Wanghttps://www.researchgate.net/publication/340203817_Sulforaphane_Inhibits_Self-renewal_of_Lung_Cancer_Stem_Cells_Through_the_Modulation_of_Polyhomeotic_Homolog_3_and_Sonic_Hedgehog_Signaling_Pathways0
2019Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cellsLinh Dieu Vuong31142171https://pubmed.ncbi.nlm.nih.gov/31142171/0
2019Broccoli or Sulforaphane: Is It the Source or Dose That Matters?Yoko YagishitaPMC6804255https://pmc.ncbi.nlm.nih.gov/articles/PMC6804255/0
2018Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer modelChhanda BosePMC5843244https://pmc.ncbi.nlm.nih.gov/articles/PMC5843244/0
2018Sulforaphane Delays Fibroblast Senescence by Curbing Cellular Glucose Uptake, Increased Glycolysis, and Oxidative DamageFlorence HaritonPMC6282131https://pmc.ncbi.nlm.nih.gov/articles/PMC6282131/0
2018Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolismKrishna B SinghPMC5972626https://pmc.ncbi.nlm.nih.gov/articles/PMC5972626/0
2018Relevance of the natural HDAC inhibitor sulforaphane as a chemopreventive agent in urologic tumorsEva Juengel30026053https://pubmed.ncbi.nlm.nih.gov/30026053/0
2018Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's diseaseFangfang Zhao29382536https://pubmed.ncbi.nlm.nih.gov/29382536/0
2018ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cellsYung H Choi29593120https://pubmed.ncbi.nlm.nih.gov/29593120/0
2018Sulforaphane Inhibits the Generation of Amyloid-β Oligomer and Promotes Spatial Learning and Memory in Alzheimer's Disease (PS1V97L) Transgenic MiceTing-Ting Hou29614663https://pubmed.ncbi.nlm.nih.gov/29614663/0
2018TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cellsCheng-Yun Jin29792947https://pubmed.ncbi.nlm.nih.gov/29792947/0
2018Chronic diseases, inflammation, and spices: how are they linked?Ajaikumar B KunnumakkaraPMC5785894https://pmc.ncbi.nlm.nih.gov/articles/PMC5785894/0
2018Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer's DiseaseSiyoung Lee29714053https://pubmed.ncbi.nlm.nih.gov/29714053/0
2018Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia CellsCecilia PrataPMC6276444https://pmc.ncbi.nlm.nih.gov/articles/PMC6276444/0
2018Sulforaphane Induces Apoptosis of Acute Human Leukemia Cells Through Modulation of Bax, Bcl-2 and Caspase-3Fanping Wanghttps://www.researchgate.net/publication/323803749_Sulforaphane_Induces_Apoptosis_of_Acute_Human_Leukemia_Cells_Through_Modulation_of_Bax_Bcl-2_and_Caspase-30
2018Chemopreventive activity of sulforaphaneXin JiangPMC6141106https://pmc.ncbi.nlm.nih.gov/articles/PMC6141106/0
2018Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling PathwayXuling SuPMC6011061https://pmc.ncbi.nlm.nih.gov/articles/PMC6011061/0
2017The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-reviewReza Bayat Mokhtarihttps://onlinelibrary.wiley.com/doi/abs/10.1007/s12079-017-0401-y0
2017Beneficial Effects of Sulforaphane Treatment in Alzheimer's Disease May Be Mediated through Reduced HDAC1/3 and Increased P75NTR ExpressionJingzhu ZhangPMC5410605https://pmc.ncbi.nlm.nih.gov/articles/PMC5410605/0
2017Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer CellsAnna LewinskaPMC5596436https://pmc.ncbi.nlm.nih.gov/articles/PMC5596436/0
2017Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c inductionChia-Ming Liuhttps://www.sciencedirect.com/science/article/pii/S09296646160002800
2017Broccoli Sprouts Delay Prostate Cancer Formation and Decrease Prostate Cancer Severity with a Concurrent Decrease in HDAC3 Protein Expression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) MiceLaura M BeaverPMC6041877https://pmc.ncbi.nlm.nih.gov/articles/PMC6041877/0
2017d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling PathwayZiwei MiaoPMC5297707https://pmc.ncbi.nlm.nih.gov/articles/PMC5297707/0
2017Combination therapy in combating cancerReza Bayat MokhtariPMC5514969https://pmc.ncbi.nlm.nih.gov/articles/PMC5514969/0
2017Nrf2 targeting by sulforaphane: A potential therapy for cancer treatmentMaria Russohttps://www.tandfonline.com/doi/full/10.1080/10408398.2016.12599830
2017Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathwaysJisung Kim27735126https://pubmed.ncbi.nlm.nih.gov/27735126/0
2017Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 UpregulationYang Bai28636290https://pubmed.ncbi.nlm.nih.gov/28636290/0
2017Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathwayHai Lan28944886https://pubmed.ncbi.nlm.nih.gov/28944886/0
2016A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat dietGabsik Yanghttps://www.nature.com/articles/srep243990
2016Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axisXingxing Wanghttps://www.nature.com/articles/srep367960
2016Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog SignalingCheng Bao27327035https://pubmed.ncbi.nlm.nih.gov/27327035/0
2016Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer CellsKuo-Ching Liu27627923https://pubmed.ncbi.nlm.nih.gov/27627923/0
2015Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathwayLiping WangPMC4694875https://pmc.ncbi.nlm.nih.gov/articles/PMC4694875/0
2015Sulforaphane (SFN): An Isothiocyanate in a Cancer Chemoprevention ParadigmMohammad Fahad UllahPMC5456215https://pmc.ncbi.nlm.nih.gov/articles/PMC5456215/0
2015Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous MyrosinaseJed W FaheyPMC4629881https://pmc.ncbi.nlm.nih.gov/articles/PMC4629881/0
2015Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cellsDong Hwan Kim26498863https://pubmed.ncbi.nlm.nih.gov/26498863/0
2015Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsyLauren L AtwellPMC4670794https://pmc.ncbi.nlm.nih.gov/articles/PMC4670794/0
2015Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cellsCheng Baohttps://link.springer.com/article/10.1007/s10068-015-0046-70
2015Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organsLiping Guohttps://www.sciencedirect.com/science/article/abs/pii/S17564646140014800
2015Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC InhibitionStephanie M TortorellaPMC4432495https://pmc.ncbi.nlm.nih.gov/articles/PMC4432495/0
2015Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemopreventionLaura M BeaverPMC4184971https://pmc.ncbi.nlm.nih.gov/articles/PMC4184971/0
2015Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphaneSang J Lee25395599https://pubmed.ncbi.nlm.nih.gov/25395599/0
2015Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extractLauren L AtwellPMC4394840https://pmc.ncbi.nlm.nih.gov/articles/PMC4394840/0
2015Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysisPrayag J Amin25721293https://pubmed.ncbi.nlm.nih.gov/25721293/0
2014Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathwayGuk Heui Jo24993616https://pubmed.ncbi.nlm.nih.gov/24993616/0
2014Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cellsSABRINA LABSCHPMC4027950https://pmc.ncbi.nlm.nih.gov/articles/PMC4027950/0
2014Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cellsHyun Soo Park24296129https://pubmed.ncbi.nlm.nih.gov/24296129/0
2014Sulforaphane Inhibits TNF-α-Induced Adhesion Molecule Expression Through the Rho A/ROCK/NF-κB Signaling PathwayChi-Nan HungPMC4185976https://pmc.ncbi.nlm.nih.gov/articles/PMC4185976/0
2014Optimization of a blanching step to maximize sulforaphane synthesis in broccoli floretsCarmen Pérezhttps://www.sciencedirect.com/science/article/abs/pii/S03088146130113450
2014Sulforaphane Induces Oxidative Stress and Death by p53-Independent Mechanism: Implication of Impaired Glutathione RecyclingJosé Miguel P Ferreira de OliveiraPMC3965485https://pmc.ncbi.nlm.nih.gov/articles/PMC3965485/0
2013Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sproutsYanyan Li23902242https://pubmed.ncbi.nlm.nih.gov/23902242/0
2013Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cellsYujuan Shan23159064https://pubmed.ncbi.nlm.nih.gov/23159064/0
2013Amelioration of Alzheimer's disease by neuroprotective effect of sulforaphane in animal modelHyunjin Vincent Kim23253046https://pubmed.ncbi.nlm.nih.gov/23253046/0
2012Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cellsJohn D ClarkePMC3129466https://pmc.ncbi.nlm.nih.gov/articles/PMC3129466/0
2012Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-RenewalMariana RodovaPMC3461003https://pmc.ncbi.nlm.nih.gov/articles/PMC3461003/0
2012Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathwayShih-Hui Li23129257https://pubmed.ncbi.nlm.nih.gov/23129257/0
2011Effect of sulforaphane on protein expression of Bip/GRP78 and caspase-12 in human hapetocelluar carcinoma HepG-2 cellsJi Yu-binhttps://www.semanticscholar.org/paper/Effect-of-sulforaphane-on-protein-expression-of-Bip-Yu-bin/4586d6d6d0003a6c6dd76c298a51b63034017f580
2011Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cellsHuawei Zeng21271458https://pubmed.ncbi.nlm.nih.gov/21271458/0
2011Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem CellsYanyan LiPMC2862133https://pmc.ncbi.nlm.nih.gov/articles/PMC2862133/0
2010Cellular responses to dietary cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen speciesDong XiaoPMC2744077https://pmc.ncbi.nlm.nih.gov/articles/PMC2744077/0
2010Epigenetic targets of bioactive dietary components for cancer prevention and therapySyed M MeeranPMC3024548https://pmc.ncbi.nlm.nih.gov/articles/PMC3024548/0
2009Chemopreventive functions of sulforaphane: A potent inducer of antioxidant enzymes and apoptosisChi-Tai Yehhttps://www.sciencedirect.com/science/article/pii/S17564646080000300
2008Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesisSharmila Shankar18980980https://pubmed.ncbi.nlm.nih.gov/18980980/0
2008Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cellsWoo Young Choi18313257https://pubmed.ncbi.nlm.nih.gov/18313257/0
2007Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjectsMelinda C Myzak17259330https://pubmed.ncbi.nlm.nih.gov/17259330/0
2007Discovery and development of sulforaphane as a cancer chemopreventive phytochemicalYuesheng Zhanghttps://www.nature.com/articles/aps20071670
2007Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extractsAlbena T Dinkova-Kostova17416783https://pubmed.ncbi.nlm.nih.gov/17416783/0
2007Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breastBrian S Cornblatt17347138https://pubmed.ncbi.nlm.nih.gov/17347138/0
2006Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphaneS. Karmakarhttps://www.sciencedirect.com/science/article/abs/pii/S03064522060061300
2004A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylaseMelinda C Myzak15313918https://pubmed.ncbi.nlm.nih.gov/15313918/0
2004The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient miceNhu-An Pham15486191https://pubmed.ncbi.nlm.nih.gov/15486191/0
1997Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogensJed W FaheyPMC23369https://pmc.ncbi.nlm.nih.gov/articles/PMC23369/0