tbResList Print — Taur Taurine

Filters: qv=158, qv2=%, rfv=%

Product

Taur Taurine
Description: <b>Taurine (2-aminoethanesulfonic acid) </b>is a sulfur-containing “amino acid–like” molecule (not incorporated into proteins). It’s abundant in many tissues and is best thought of as a homeostatic modulator rather than a direct cytotoxin.<br>
<pre>
Core biology themes:
-Osmoregulation / membrane stabilization
-Mitochondrial support + anti-oxidant tone (indirect)
-Calcium handling modulation
-Anti-inflammatory signaling (context-dependent)
-Bile acid conjugation (tauroursodeoxycholic-type physiology, but taurine itself is a conjugating substrate)

Cancer relevance (preclinical/adjunct framing):
-Often discussed as protective (normal-tissue protection) and stress-modulating, not a primary anti-cancer agent.
-May influence redox balance, ER stress, and inflammation, which can indirectly affect tumor biology or therapy tolerance (model-dependent).
-ROS axis: tends to reduce oxidative injury (indirect)
-NRF2: sometimes reported as part of antioxidant adaptation, but not a “core direct target”
</pre>
<b>Amino acid</b> that benefits the heart, brain and immune system.<br>
<br>
Taurine, an organic compound containing sulfur in its chemical structure, possesses anti-inflammatory, anti-oxidant, and various physiological functions within the cardiovascular, kidney, endocrine, and immune systems.<br>
<pre>
Also an LDH inhibitor
-Neuroprotection: helps protect neurons against excitotoxicity (e.g., glutamate damage) and ROS stress.
-Anti-oxidative action: scavenges ROS, reducing oxidative stress seen in AD brains.
-Anti-inflammatory
-Calcium homeostasis Helps maintain intracellular calcium balance, disrupted in AD.
-Amyloid-beta toxicity May reduce Aβ-induced neurotoxicity and cell death in vitro.
-Tau pathology: possible reduction of tau hyperphosphorylation.
-Memory and cognition may improve learning and memory.
</pre>



<br>
<!-- Taurine (Tau) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Cellular osmolyte / membrane stabilization</td>
<td>Stress tolerance modulation (context-dependent)</td>
<td>Osmoregulation ↑; membrane stability ↑</td>
<td>P, R</td>
<td>Homeostatic buffering</td>
<td>Taurine is a major organic osmolyte; stabilizes membranes and can reduce stress-induced damage.</td>
</tr>

<tr>
<td>2</td>
<td>Redox tone modulation (indirect antioxidant)</td>
<td>Oxidative stress ↓ (reported in some models)</td>
<td>Oxidative injury ↓ (common in injury models)</td>
<td>R, G</td>
<td>Redox buffering</td>
<td>Taurine is not a classic radical scavenger like polyphenols; benefits are often indirect (mitochondrial + inflammation effects).</td>
</tr>

<tr>
<td>3</td>
<td>Anti-inflammatory signaling (NF-κB / cytokine tone)</td>
<td>Inflammatory tumor-support signaling ↓ (reported; model-dependent)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>Often reported to reduce pro-inflammatory cytokines and NF-κB-linked outputs in stress/injury contexts.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial function / bioenergetic stability</td>
<td>Mitochondrial stress ↓ (context)</td>
<td>ΔΨm stability ↑; mitochondrial resilience ↑</td>
<td>R, G</td>
<td>Organelle protection</td>
<td>Commonly framed as improving mitochondrial resilience under stress (ischemia/toxicity models); cancer direction is context-dependent.</td>
</tr>

<tr>
<td>5</td>
<td>Calcium handling (Ca2+ homeostasis)</td>
<td>Stress signaling modulation (context)</td>
<td>Ca2+ buffering / excitability modulation</td>
<td>P, R</td>
<td>Signal stabilization</td>
<td>Taurine is often described as modulating Ca2+ fluxes and reducing Ca2+-overload injury.</td>
</tr>

<tr>
<td>6</td>
<td>ER stress / UPR modulation</td>
<td>ER stress ↓ (reported in some systems)</td>
<td>Proteostasis protection ↑</td>
<td>R, G</td>
<td>Proteotoxic stress buffering</td>
<td>Reported to blunt ER-stress signaling in some injury models; cancer relevance depends on whether ER stress is pro-death or pro-survival in that tumor.</td>
</tr>

<tr>
<td>7</td>
<td>Apoptosis modulation (context-dependent)</td>
<td>Apoptosis ↑ or ↓ depending on model</td>
<td>Often anti-apoptotic under toxic stress</td>
<td>G</td>
<td>Cell-fate modulation</td>
<td>Most consistent pattern is protection in normal tissues; direct tumor-killing is not a dominant taurine signature.</td>
</tr>

<tr>
<td>8</td>
<td>Bile acid conjugation / metabolic handling</td>
<td>Indirect systemic metabolism effects</td>
<td>Bile acid conjugation ↑; lipid handling modulation</td>
<td>G</td>
<td>Systemic metabolic support</td>
<td>Taurine is used for bile acid conjugation; may affect gut-liver signaling indirectly.</td>
</tr>

<tr>
<td>9</td>
<td>Chemo-/radioprotection signals (adjunct angle)</td>
<td>Could reduce oxidative injury (might reduce efficacy for ROS-driven modalities)</td>
<td>Normal tissue protection potential</td>
<td>G</td>
<td>Supportive-care relevance</td>
<td>If positioned, best framed as “supportive/normal-tissue buffering” and kept separate from “tumor kill” claims.</td>
</tr>

<tr>
<td>10</td>
<td>Translation constraint (not a primary anti-cancer agent)</td>
<td>Direct anti-tumor efficacy is inconsistent / model-dependent</td>
<td>Generally well-tolerated in typical dietary ranges</td>
<td>—</td>
<td>Expectation management</td>
<td>Best classified as a homeostasis modulator; cancer claims should be qualified and tied to specific models.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (osmolyte + membrane/Ca2+ effects begin)</li>
<li><b>R</b>: 30 min–3 hr (inflammation/redox/ER-stress signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (phenotype outcomes: resilience, apoptosis modulation)</li>
</ul>


<br>
<br>
<b>Alzheimer’s Disease (AD)-Oriented Time-Scale Flagged Pathway Table</b>
<!-- Taurine (Tau) — Alzheimer’s Disease (AD)-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>AD / Brain Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Neuroinflammation (microglia / cytokine tone)</td>
<td>Inflammatory signaling ↓ (reported in neuroinflammation models)</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>Taurine and taurine-derived signals are often discussed as dampening pro-inflammatory cytokine output; relevance is strongest where inflammation drives synaptic dysfunction.</td>
</tr>

<tr>
<td>2</td>
<td>Oxidative stress / redox buffering</td>
<td>ROS injury ↓; lipid peroxidation ↓ (reported)</td>
<td>R, G</td>
<td>Neuroprotection (stress buffering)</td>
<td>Taurine is not a classic polyphenol antioxidant; protective effects are typically indirect (mitochondrial stabilization, inflammation reduction).</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial function / energy stability</td>
<td>ΔΨm stability ↑; mitochondrial stress ↓ (reported)</td>
<td>R, G</td>
<td>Bioenergetic support</td>
<td>AD is associated with mitochondrial dysfunction; taurine is often positioned as improving resilience under metabolic/oxidative stress.</td>
</tr>

<tr>
<td>4</td>
<td>Calcium handling / excitotoxicity buffering</td>
<td>Ca2+ dysregulation ↓; excitotoxic pressure ↓ (reported)</td>
<td>P, R</td>
<td>Signal stabilization</td>
<td>Taurine is frequently described as modulating Ca2+ flux and reducing Ca2+-overload injury, which can be relevant to excitotoxic synapse loss.</td>
</tr>

<tr>
<td>5</td>
<td>Osmoregulation / membrane stabilization</td>
<td>Cell volume + membrane stability ↑</td>
<td>P, R</td>
<td>Cellular resilience</td>
<td>As a major osmolyte, taurine can stabilize membranes and reduce stress-induced injury in neurons and glia.</td>
</tr>

<tr>
<td>6</td>
<td>ER stress / UPR modulation</td>
<td>ER stress ↓; proteostasis pressure ↓ (reported)</td>
<td>R, G</td>
<td>Proteostasis support</td>
<td>Protein-misfolding/UPR burden is relevant in neurodegeneration; taurine is reported to buffer ER stress in several injury models.</td>
</tr>

<tr>
<td>7</td>
<td>Synaptic function support (neurotransmission tone)</td>
<td>Synaptic resilience ↑ (reported)</td>
<td>G</td>
<td>Functional support</td>
<td>Taurine can act as a neuromodulator (inhibitory tone) and may support synaptic stability indirectly via reduced inflammation/oxidative stress.</td>
</tr>

<tr>
<td>8</td>
<td>Aβ / Tau pathology (direct effects)</td>
<td>Mixed / limited direct evidence; indirect effects via inflammation/redox more plausible</td>
<td>G</td>
<td>Downstream pathology modulation (uncertain)</td>
<td>If included, keep conservative: taurine is more strongly supported as a stress-buffering agent than a direct anti-amyloid or anti-tau drug.</td>
</tr>

<tr>
<td>9</td>
<td>BBB / CNS exposure</td>
<td>CNS availability depends on transport; dietary taurine raises systemic levels</td>
<td>R</td>
<td>PK constraint</td>
<td>Taurine is abundant in brain but transport and distribution still matter; effects depend on achievable CNS shifts.</td>
</tr>

<tr>
<td>10</td>
<td>Translation constraint (adjunct positioning)</td>
<td>Supportive neuroprotection likely; disease-modifying AD benefit not established</td>
<td>—</td>
<td>Expectation management</td>
<td>Best positioned as neuroprotective / resilience-supporting; avoid claiming proven disease modification without trial-level support.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (membrane/osmolyte + Ca2+ signaling effects)</li>
<li><b>R</b>: 30 min–3 hr (inflammation, mitochondrial/redox, ER-stress signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (synaptic/phenotype outcomes; longer-term pathology effects if any)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Core Metabolism/Glycolysis

HK2↓, 1,  

Transcription & Epigenetics

other↑, 1,  

Proliferation, Differentiation & Cell State

TumCG↓, 1,  

Migration

E-cadherin↑, 1,   N-cadherin↓, 1,   Snail↓, 1,   Twist↓, 1,   Vim↓, 1,   Zeb1↓, 1,  

Drug Metabolism & Resistance

eff↑, 1,  
Total Targets: 10

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 1,   GSH↑, 1,   HO-1↑, 1,   lipid-P↓, 1,   MDA↓, 1,   NRF2↑, 2,   Prx↑, 1,   ROS∅, 1,   ROS↓, 3,   SOD↑, 1,   Trx↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 4,  

Core Metabolism/Glycolysis

LDH↓, 2,  

Cell Death

Apoptosis↓, 3,   BAX↑, 1,   Bcl-2↑, 2,   Bcl-xL↓, 1,   Casp3↓, 1,   Cyt‑c↑, 1,   iNOS↓, 1,  

Transcription & Epigenetics

other↝, 4,   other↑, 5,  

Protein Folding & ER Stress

ER Stress↓, 1,   UPR↓, 1,   UPR↑, 1,  

Proliferation, Differentiation & Cell State

VGCC↓, 1,  

Migration

Ca+2↝, 1,   Ca+2↓, 7,   cal2↓, 3,   PKCδ↓, 1,  

Barriers & Transport

BBB↑, 1,   GLUT1↑, 1,   GLUT3↑, 1,  

Immune & Inflammatory Signaling

CRP↓, 1,   Inflam↓, 4,   NF-kB↓, 1,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

BDNF↑, 2,   GABA↑, 4,  

Protein Aggregation

Aβ∅, 2,  

Drug Metabolism & Resistance

Dose↝, 1,   eff↝, 1,   eff↑, 1,  

Clinical Biomarkers

BP↓, 2,   CRP↓, 1,   GutMicro↑, 2,   LDH↓, 2,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 5,   memory↑, 4,   neuroP↑, 7,   Risk↓, 2,   toxicity↓, 1,  
Total Targets: 54

Research papers

Year Title Authors PMID Link Flag
2018Anti-fibrosis activity of combination therapy with epigallocatechin gallate, taurine and genistein by regulating glycolysis, gluconeogenesis, and ribosomal and lysosomal signaling pathways in HSC-T6 cellsYan LiPMC6257822https://pmc.ncbi.nlm.nih.gov/articles/PMC6257822/0
2024Taurine Supplementation Alleviates Blood Pressure via Gut–Brain Communication in Spontaneously Hypertensive RatsQing SuPMC11673895https://pmc.ncbi.nlm.nih.gov/articles/PMC11673895/0
2022Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell functionYu PingPMC10991389https://pmc.ncbi.nlm.nih.gov/articles/PMC10991389/0
2022Versatile Triad Alliance: Bile Acid, Taurine and MicrobiotaKalina DuszkaPMC9367564https://pmc.ncbi.nlm.nih.gov/articles/PMC9367564/0
2022The Effects of Dietary Taurine-Containing Jelly Supplementation on Cognitive Function and Memory Ability of the Elderly with Subjective Cognitive DeclineMi Ae Bae35882813https://pubmed.ncbi.nlm.nih.gov/35882813/0
2022Taurine and Astrocytes: A Homeostatic and Neuroprotective RelationshipSofía Ramírez-GuerreroPMC9294388https://pmc.ncbi.nlm.nih.gov/articles/PMC9294388/0
2022Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and DiabetesZeinab RafieePMC8952284https://pmc.ncbi.nlm.nih.gov/articles/PMC8952284/0
2020Taurine and Ginsenoside Rf Induce BDNF Expression in SH-SY5Y Cells: A Potential Role of BDNF in Corticosterone-Triggered Cellular DamageWon Jin LeePMC7356094https://pmc.ncbi.nlm.nih.gov/articles/PMC7356094/0
2020Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative DiseasesMujtaba Aamir BhatPMC7355587https://pmc.ncbi.nlm.nih.gov/articles/PMC7355587/0
2020Evaluation of the neuroprotective effect of taurine in Alzheimer’s disease using functional molecular imagingSe Jong OhPMC7511343https://pmc.ncbi.nlm.nih.gov/articles/PMC7511343/0
2019Taurine-Related Nutritional Knowledge Has a Positive Effect on Intake of Taurine and Cognitive Function in the ElderlyMi Ae Bae31468411https://pubmed.ncbi.nlm.nih.gov/31468411/0
2019Effects of Dietary Taurine Supplementation on Blood and Urine Taurine Concentrations in the Elderly Women with DementiaRanran Gao31468402https://pubmed.ncbi.nlm.nih.gov/31468402/0
2019The Development of Taurine Supplementary Menus for the Prevention of Dementia and Their Positive Effect on the Cognitive Function in the Elderly with DementiaMi Ae Bae31468412https://pubmed.ncbi.nlm.nih.gov/31468412/0
2018The Effects of Oral Taurine on Resting Blood Pressure in Humans: a Meta-AnalysisMark Waldron30006901https://pubmed.ncbi.nlm.nih.gov/30006901/0
2017Comparison of Urinary Excretion of Taurine Between Elderly with Dementia and Normal ElderlyRanran Gao28849443https://pubmed.ncbi.nlm.nih.gov/28849443/0
2017Past Taurine Intake Has a Positive Effect on Present Cognitive Function in the ElderlyMi Ae Bae28849444https://pubmed.ncbi.nlm.nih.gov/28849444/0
2017Taurine Attenuates Epithelial-Mesenchymal Transition-Related Genes in Human Prostate Cancer CellsYujiao Tang28849534https://pubmed.ncbi.nlm.nih.gov/28849534/0
2017Taurine Directly Binds to Oligomeric Amyloid-β and Recovers Cognitive Deficits in Alzheimer Model MiceHoChung Jang28849459https://pubmed.ncbi.nlm.nih.gov/28849459/0
2015Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic ratsGreice Caletti25612506https://pubmed.ncbi.nlm.nih.gov/25612506/0
2013Mechanisms underlying taurine protection against glutamate-induced neurotoxicityHai-Bo Ye23968934https://pubmed.ncbi.nlm.nih.gov/23968934/0
2009Mechanism of neuroprotective function of taurineJang-Yen Wu19239147https://pubmed.ncbi.nlm.nih.gov/19239147/0
2005Mode of action of taurine as a neuroprotectorHeng Wu15757628https://pubmed.ncbi.nlm.nih.gov/15757628/0
2004Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disordersPaulo Roberto Louzada15003996https://pubmed.ncbi.nlm.nih.gov/150039960
2001Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neuronsW Q Chen11746381https://pubmed.ncbi.nlm.nih.gov/11746381/0