tbResList Print — SRF Sorafenib (brand name Nexavar)

Filters: qv=16, qv2=%, rfv=%

Product

SRF Sorafenib (brand name Nexavar)
Features: kinase inhibitor drug
Description: <p><b>Sorafenib</b> (brand: <b>Nexavar</b>) — an oral multikinase inhibitor targeting RAF kinases and multiple receptor tyrosine kinases (VEGFR-1/2/3, PDGFR-β, FLT3, KIT, RET). Approved for advanced hepatocellular carcinoma (HCC), renal cell carcinoma (RCC), and differentiated thyroid carcinoma (DTC).</p>
<p><b>Primary mechanisms (conceptual rank):</b><br>
1) RAF (CRAF/BRAF) inhibition → ↓ MAPK/ERK signaling<br>
2) VEGFR/PDGFR blockade → anti-angiogenesis<br>
3) Induction of mitochondrial apoptosis (Mcl-1↓; caspases↑)<br>
4) Metabolic/redox stress modulation (ROS shifts; ferroptosis sensitization reported)<br>
5) Tumor microenvironment effects (vascular normalization / hypoxia interplay)</p>
<p><b>Bioavailability / PK relevance:</b> Oral; variable absorption; highly protein-bound; metabolized mainly by CYP3A4 and UGT1A9; half-life ~25–48 h. Achievable plasma levels are within low-micromolar range.</p>
<p><b>In-vitro vs oral exposure:</b> Many mechanistic studies use concentrations within or slightly above clinical plasma range; off-target cytotoxicity typically at higher doses.</p>
<p><b>Clinical evidence status:</b> FDA-approved for HCC, RCC, DTC; established survival benefit in advanced disease (modest median OS improvement).</p>


<b>Inhibitors</b> of vascular endothelial growth factor receptor (VEGFR); used to treat kidney, liver and thyroid cancers.<br>


<br>
<h3>Sorafenib (Nexavar) — Cancer vs Normal Cell Pathway Map</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>RAF → MEK → ERK (MAPK)</td>
<td>↓ (primary)</td>
<td>↔ / ↓ (proliferating cells)</td>
<td>R/G</td>
<td>Reduced proliferative signaling</td>
<td>Core intracellular target; inhibits CRAF and wild-type BRAF (not selective for BRAF V600E like vemurafenib).</td>
</tr>

<tr>
<td>2</td>
<td>VEGFR / PDGFR (angiogenesis)</td>
<td>↓ tumor vascularization</td>
<td>↓ endothelial proliferation</td>
<td>R/G</td>
<td>Anti-angiogenic effect</td>
<td>Major driver of clinical efficacy in HCC/RCC; affects tumor microenvironment.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (Mcl-1↓, caspases↑)</td>
<td>↑</td>
<td>↔ / ↑ (dose-dependent)</td>
<td>R/G</td>
<td>Mitochondrial apoptosis</td>
<td>Mcl-1 downregulation is characteristic; enhances chemosensitivity in some models.</td>
</tr>

<tr>
<td>4</td>
<td>ROS</td>
<td>↑ (dose-dependent)</td>
<td>↔ / ↑ (high exposure)</td>
<td>P/R</td>
<td>Oxidative stress contribution</td>
<td>Redox stress may contribute to cytotoxicity and resistance mechanisms.</td>
</tr>

<tr>
<td>5</td>
<td>Ferroptosis</td>
<td>↑ (context-dependent)</td>
<td>↔</td>
<td>R/G</td>
<td>Lipid peroxidation vulnerability</td>
<td>Reported to sensitize HCC cells to ferroptosis via system Xc⁻ / SLC7A11 modulation.</td>
</tr>

<tr>
<td>6</td>
<td>PI3K/AKT/mTOR</td>
<td>↓ (secondary; model-dependent)</td>
<td>↔</td>
<td>R/G</td>
<td>Reduced survival signaling</td>
<td>Often compensatory pathway in resistance; combination target in trials.</td>
</tr>

<tr>
<td>7</td>
<td>HIF-1α</td>
<td>↓ (anti-angiogenic coupling)</td>
<td>↔</td>
<td>G</td>
<td>Reduced hypoxia signaling</td>
<td>Indirect via vascular effects; hypoxia may paradoxically increase in resistant tumors.</td>
</tr>

<tr>
<td>8</td>
<td>NRF2</td>
<td>↑ (resistance-associated; context-dependent)</td>
<td>↔</td>
<td>R/G</td>
<td>Adaptive antioxidant response</td>
<td>NRF2 upregulation linked to sorafenib resistance in HCC.</td>
</tr>

<tr>
<td>9</td>
<td>Ca²⁺ signaling</td>
<td>↔ (stress-related)</td>
<td>↔</td>
<td>P/R</td>
<td>Not primary axis</td>
<td>Secondary to mitochondrial stress; not direct target.</td>
</tr>

<tr>
<td>10</td>
<td>Clinical Translation Constraint</td>
<td>↓ (constraint)</td>
<td>↓ (toxicity)</td>
<td>—</td>
<td>Resistance + tolerability limits</td>
<td>Common AEs: hand-foot skin reaction, hypertension, diarrhea; resistance frequent via MAPK reactivation or NRF2 upshift.</td>
</tr>

</table>

<p><b>TSF legend:</b><br>
P: 0–30 min (kinase inhibition onset)<br>
R: 30 min–3 hr (signaling cascade suppression)<br>
G: &gt;3 hr (gene regulation, angiogenesis suppression, apoptosis)</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

HK1↓, 1,   ROS↑, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   HK2↓, 1,   SREBF2↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 1,   Mcl-1↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,  

DNA Damage & Repair

DNA-PK↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

CSCsMark↓, 1,   EMT↓, 1,   mTOR↓, 1,   STAT3↓, 2,   TumCG↓, 1,  

Migration

MMP9↓, 1,   TumCP↓, 1,   TumMeta↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 2,   ChemoSen↓, 1,   eff↓, 1,   selectivity↑, 1,  
Total Targets: 27

Pathway results for Effect on Normal Cells

Total Targets: 0

Research papers

Year Title Authors PMID Link Flag
2019The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cellsLi WangPMC6635829https://pmc.ncbi.nlm.nih.gov/articles/PMC6635829/0
20152-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cellsMinoru TomizawaPMC5351389https://pmc.ncbi.nlm.nih.gov/articles/PMC5351389/0
2021Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclaxBlake S. Moseshttps://ashpublications.org/bloodadvances/article/5/3/711/475059/Antileukemic-efficacy-of-a-potent-artemisinin0
2024Withaferin A, a natural thioredoxin reductase 1 (TrxR1) inhibitor, synergistically enhances the antitumor efficacy of sorafenib through ROS-mediated ER stress and DNA damage in hepatocellular carcinoma cellsXi Chen38537439https://pubmed.ncbi.nlm.nih.gov/38537439/0
2018Emodin Sensitizes Hepatocellular Carcinoma Cells to the Anti-Cancer Effect of Sorafenib through Suppression of Cholesterol MetabolismYoung-Seon KimPMC6213641https://pmc.ncbi.nlm.nih.gov/articles/PMC6213641/0
2022Ivermectin synergizes sorafenib in hepatocellular carcinoma via targeting multiple oncogenic pathwaysHaofeng LuPMC9107598https://pmc.ncbi.nlm.nih.gov/articles/PMC9107598/0