tbResList Print — TQ Thymoquinone

Filters: qv=162, qv2=%, rfv=%

Product

TQ Thymoquinone
Features: Anti-oxidant, anti-tumor
Description: <b>Thymoquinone</b> is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin. <br>

Pathways:<br>
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells<br>
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade<br>
-Inhibit angiogenic factors such as VEGF, MMPs<br>
-Inhibit HDACs, UHRF1, and DNMTs<br>


<br>
-Note <a href="tbResList.php?qv=162&tsv=1109&wNotes=on&exSp=open">half-life</a> 3-6hrs.<br>
<a href="tbResList.php?qv=162&tsv=792&wNotes=on&exSp=open">BioAv</a> low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.<br>
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- usually induce
<a href="tbResList.php?qv=162&tsv=275&wNotes=on">ROS</a> production in Cancer cells, and lowers ROS in normal cells<br>
- ROS↑ related:
<a href="tbResList.php?qv=162&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=162&tsv=103&wNotes=on">ER Stress↑</a>,
<!-- <a href="tbResList.php?qv=162&tsv=459&wNotes=on">UPR↑</a>, -->
<a href="tbResList.php?qv=162&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=162&tsv=38&wNotes=onon&word=Ca+2↑">Ca+2↑</a>, -->
<a href="tbResList.php?qv=162&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=162&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=162&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- May Low AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=162&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>(usually contrary),
<!-- <a href="tbResList.php?qv=162&word=Trx&wNotes=on">TrxR↓**</a>, --><!-- major antioxidant system -->
<!-- <a href="tbResList.php?qv=162&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>, -->
<a href="tbResList.php?qv=162&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<!-- <a href="tbResList.php?qv=162&tsv=46&wNotes=on">Catalase↓</a> -->
<a href="tbResList.php?qv=162&tsv=597&wNotes=on">HO1↓</a>(contrary),
<a href="tbResList.php?qv=162&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=162&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=162&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=162&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=162&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=162&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=162&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=162&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=162&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=162&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=162&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=162&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=162&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=162&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=162&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=162&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-?B and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=162&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=162&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=162&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=162&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=162&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=162&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=308&wNotes=on">TIMP2</a>, -->
<!-- <a href="tbResList.php?qv=162&tsv=415&wNotes=on">IGF-1↓</a>, -->
<!-- <a href="tbResList.php?qv=162&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=162&tsv=334&wNotes=on">VEGF↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<a href="tbResList.php?qv=162&tsv=110&wNotes=on">FAK↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=162&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=162&tsv=79&wNotes=on">CXCR4↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=162&tsv=304&wNotes=on">TGF-β↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=719&wNotes=on">α-SMA↓</a>, -->
<a href="tbResList.php?qv=162&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=162&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=162&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=162&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=162&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=162&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=TET">TET↑</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=162&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=162&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=162&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=162&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=162&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=162&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=162&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=162&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=162&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=162&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=162&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=162&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=162&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=162&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=162&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=162&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=162&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=162&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=162&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=162&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=162&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=162&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=162&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=162&tsv=773&wNotes=on">HK2↓</a>,
<!-- <a href="tbResList.php?qv=162&wNotes=on&word=PFK">PFKs↓</a>, -->
<a href="tbResList.php?qv=162&wNotes=on&word=PDK">PDKs↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=847&wNotes=on">ECAR↓</a>, -->
<!-- <a href="tbResList.php?qv=162&tsv=230&wNotes=on">OXPHOS↓</a>, -->
<a href="tbResList.php?qv=162&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=162&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=162&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=162&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=162&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=162&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=NOTCH">Notch↓</a>,
<!-- <a href="tbResList.php?qv=162&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=162&wNotes=on&word=PDGF">PDGF↓</a>, -->
<a href="tbResList.php?qv=162&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=162&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=162&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=162&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=162&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=162&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=162&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=162&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=162&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=162&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=162&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=162&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=NOTCH">Notch2↓</a>,
<a href="tbResList.php?qv=162&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=162&tsv=508&wNotes=on">OCT4↓</a>,
<br> -->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=162&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=162&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=162&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=162&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=162&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=162&tsv=9&wNotes=on">AMPK</a>,
<a href="tbResList.php?qv=162&tsv=475&wNotes=on">α↓</a>,
<a href="tbResList.php?qv=162&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=162&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=162&tsv=168&wNotes=on">JNK</a>,


<!-- - <a href="tbResList.php?qv=162&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol). --><br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=162&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=162&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=162&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=162&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=162&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=162&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=162&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=162&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=162&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=162&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=162&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Label</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS</td>
<td>Driver</td>
<td>Upstream cytotoxic trigger</td>
<td>Primary studies show TQ rapidly increases ROS; antioxidant/ROS modulation attenuates downstream effects, supporting ROS as an initiating mechanism in multiple cancer contexts</td>
<td><a href="https://journals.sagepub.com/doi/abs/10.1258/ebm.2010.009369">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Glutathione (GSH) redox buffering</td>
<td>↓ GSH</td>
<td>Driver</td>
<td>Redox-collapse amplification</td>
<td>Same prostate cancer study reports early GSH depletion alongside ROS rise; together these form a redox “one-two punch” that helps explain selective stress in tumor cells</td>
<td><a href="https://journals.sagepub.com/doi/abs/10.1258/ebm.2010.009369">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Driver</td>
<td>Mitochondrial dysfunction (MOMP axis)</td>
<td>Primary leukemia/cancer study reports disruption of mitochondrial membrane potential after TQ exposure (mitochondrial events central to TQ-mediated death)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/15906362/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (caspase-9 → caspase-3; PARP)</td>
<td>↑ caspases / ↑ apoptosis</td>
<td>Driver</td>
<td>Execution-phase cell death</td>
<td>Same primary paper reports activation of caspases (8/9/3) with mitochondrial involvement—core evidence for apoptosis as the major outcome pathway</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/15906362/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activity</td>
<td>Secondary</td>
<td>Reduced pro-survival / inflammatory transcription</td>
<td>Colon cancer work: TQ induces cell death and chemosensitizes cells by inhibiting NF-κB signaling (explicit pathway-direction support)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5038441/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>STAT3 signaling</td>
<td>↓ p-STAT3 / ↓ STAT3 activation</td>
<td>Secondary</td>
<td>Reduced survival/proliferation signaling</td>
<td>Gastric cancer study explicitly reports TQ suppresses constitutive STAT3 activation and related signaling readouts</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4837432/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>NRF2 antioxidant-response axis (NRF2/HO-1 program)</td>
<td>↑ NRF2 pathway (often as stress-response)</td>
<td>Adaptive</td>
<td>Cellular antioxidant counter-response</td>
<td>In TNBC context, a primary study reports TQ upregulates NRF2 (and evaluates downstream immune/checkpoint consequences), consistent with NRF2 acting as an adaptive response to redox stress</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC9695946/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>HIF-1α hypoxia signaling</td>
<td>↓ HIF-1α protein / ↓ HIF-1α program</td>
<td>Adaptive</td>
<td>Loss of hypoxia survival signaling</td>
<td>Renal cancer hypoxia paper identifies TQ as suppressing HIF-1α and links this to selective killing under hypoxia</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6429094/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Glycolysis / Warburg output (hypoxia-linked)</td>
<td>↓ glycolysis (↓ HIF-1α–mediated glycolytic genes; ↓ glycolytic metabolism)</td>
<td>Phenotypic</td>
<td>Metabolic suppression</td>
<td>In hypoxic renal cancer, TQ suppresses HIF-1α–mediated glycolysis; in CRC, TQ inhibits glycolytic metabolism alongside tumor growth limitation</td>
<td>
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6429094/">(ref)</a>
&nbsp;|&nbsp;
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC8880628/">(ref)</a>
</td>
</tr>

</table>




Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 5,   antiOx↓, 1,   ARE/EpRE↑, 1,   Catalase↑, 3,   GCLM↑, 2,   GPx↑, 1,   GPx1⇅, 1,   GPx4↓, 1,   GSH↓, 6,   GSH↑, 3,   GSH/GSSG↓, 1,   GSR↑, 1,   GSSG↑, 2,   GSTs↑, 1,   H2O2↓, 2,   HO-1↑, 2,   lipid-P↑, 1,   MDA↑, 1,   NQO1↑, 2,   NRF2↑, 5,   NRF2↓, 1,   ROS↑, 40,   ROS⇅, 5,   ROS↓, 4,   SOD↑, 2,   SOD1↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   i-ATP↓, 1,   ATP↓, 1,   CDC2↓, 1,   CDC25↓, 1,   MEK↓, 1,   MMP↓, 10,   Raf↓, 1,   XIAP↓, 12,  

Core Metabolism/Glycolysis

ALAT↓, 2,   AMPK↑, 2,   ATG7↑, 1,   CAIX↓, 1,   cMyc↓, 8,   GlucoseCon↓, 1,   Glycolysis↓, 2,   HK2↓, 1,   e-lactateProd↓, 1,   lactateProd↓, 1,   LDH↑, 1,   LDHA↓, 2,   NADPH↓, 1,   PDH↑, 1,   PDK1↓, 1,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 3,   PPARγ↓, 2,   PPARγ↑, 3,   SIRT1↓, 1,   SIRT1↑, 1,   Warburg↓, 2,  

Cell Death

p‑Akt↓, 5,   Akt↓, 13,   Akt↑, 2,   Apoptosis↑, 1,   Apoptosis↓, 3,   Bak↑, 1,   BAX↑, 15,   BAX↓, 1,   Bax:Bcl2↑, 8,   Bcl-2↓, 26,   Bcl-2↑, 1,   Bcl-xL↓, 14,   BID↓, 1,   Casp↑, 7,   Casp1↓, 1,   Casp3?, 1,   Casp3↑, 17,   cl‑Casp3↑, 3,   Casp7?, 1,   Casp7↑, 5,   cl‑Casp7↑, 1,   Casp8↑, 6,   cl‑Casp8↑, 1,   Casp9?, 1,   Casp9↓, 1,   Casp9↑, 12,   cl‑Casp9↑, 1,   Cyt‑c↑, 11,   DR4↑, 1,   DR5↑, 3,   FADD↑, 1,   Fas↑, 1,   hTERT/TERT↓, 2,   IAP1↓, 5,   IAP2↑, 1,   IAP2↓, 4,   iNOS↓, 2,   JNK↓, 1,   JNK↑, 3,   MAPK↓, 2,   MAPK↑, 3,   p‑MAPK↑, 2,   Mcl-1↓, 2,   MDM2↓, 1,   Myc↓, 1,   p27↑, 6,   p38↑, 6,   p‑p38↑, 2,   survivin↓, 19,   Telomerase↓, 1,   TRAIL↑, 2,   TumCD↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 2,   cSrc↓, 2,   Sp1/3/4↓, 2,  

Transcription & Epigenetics

cJun↑, 2,   EZH2↓, 1,   ac‑H4↑, 1,   H4↑, 1,   tumCV↓, 12,   tumCV↑, 1,  

Protein Folding & ER Stress

ATF6↑, 1,   CHOP↑, 1,   p‑eIF2α↑, 1,   eIF2α↓, 1,   ER Stress↑, 2,   GRP78/BiP↑, 2,   HSP70/HSPA5↑, 2,   HSP70/HSPA5↓, 1,   IRE1↑, 1,   PERK↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 2,   LC3II↑, 1,   p62↓, 1,  

DNA Damage & Repair

BRCA1↑, 1,   CYP1B1↑, 2,   DNAdam↑, 4,   DNAdam↓, 1,   DNMT1↓, 8,   DNMT3A↓, 2,   DNMTs↓, 1,   G9a↓, 2,   GADD45A↑, 2,   p16↑, 2,   P53⇅, 1,   P53↑, 19,   cl‑PARP↑, 13,   PARP↓, 1,   PCNA↓, 1,   UHRF1↓, 4,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 2,   CDK4↓, 3,   cycA1/CCNA1↓, 3,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 18,   CycD3↑, 1,   cycE/CCNE↓, 2,   E2Fs↓, 1,   P21↑, 19,   TumCCA↑, 24,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

CD34↓, 1,   cDC2↓, 1,   cMET↓, 1,   EMT↓, 9,   EP2↓, 1,   EP4↓, 1,   ERK↓, 7,   ERK↑, 1,   p‑ERK↓, 1,   FOXO↑, 2,   Gli1↓, 1,   p‑GSK‐3β↓, 1,   GSK‐3β↑, 2,   GSK‐3β↓, 2,   HDAC↓, 14,   HDAC1↓, 8,   HDAC2↓, 2,   HDAC3↓, 2,   HDAC4↓, 3,   HH↓, 1,   Jun↓, 1,   miR-34a↑, 1,   mTOR↓, 7,   p‑mTOR↓, 1,   NOTCH↓, 3,   P70S6K↓, 1,   p‑PI3K↓, 1,   PI3K↓, 12,   PI3K↑, 1,   PTEN↑, 9,   RAS↓, 1,   Shh↓, 1,   c-Src↓, 1,   STAT3↓, 11,   p‑STAT3↓, 5,   TumCG↓, 4,   Wnt↓, 1,  

Migration

5LO↓, 2,   AP-1↓, 1,   DLC1↑, 3,   E-cadherin↑, 5,   E-cadherin↓, 1,   FAK↓, 2,   ITGA5↓, 1,   Ki-67↓, 5,   MET↓, 1,   miR-29b↑, 1,   MMP2↓, 5,   MMP7↓, 2,   MMP9↓, 10,   MMPs↓, 3,   MUC4↓, 5,   N-cadherin↓, 4,   PRNP↑, 1,   Rac1↓, 2,   Slug↓, 2,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 1,   TGF-β↓, 2,   TGF-β↑, 1,   TumCI↓, 7,   TumCI↑, 1,   TumCMig↓, 7,   TumCP↓, 1,   TumMeta↓, 11,   Twist↓, 8,   uPAR↓, 1,   Vim↓, 3,   Zeb1↓, 4,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 11,   angioG↑, 1,   ATF4↑, 1,   EGFR↓, 1,   Hif1a↓, 4,   NO↑, 1,   VEGF↓, 13,   VEGFR2↓, 2,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

B2M↓, 1,   COX2↓, 13,   CXCL1↓, 1,   CXCR4↓, 3,   IL1↓, 1,   IL10↓, 1,   IL12↓, 1,   IL18↓, 1,   IL1β↓, 2,   IL2↑, 1,   IL6↓, 1,   IL8↓, 1,   Inflam↓, 5,   IκB↓, 1,   JAK2↓, 6,   p‑JAK2↓, 1,   MCP1↓, 2,   MyD88↓, 1,   NF-kB↓, 26,   NF-kB↑, 1,   p‑NF-kB↑, 1,   NK cell↑, 1,   p‑p65↓, 2,   p65↓, 3,   PD-L1↓, 3,   PGE1↓, 1,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 6,   TRIF↓, 1,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 5,   BioAv↑, 4,   BioAv↝, 3,   ChemoSen↑, 14,   ChemoSen↓, 1,   Dose↝, 5,   eff↑, 23,   eff↓, 10,   eff↝, 4,   MDR1↓, 1,   RadioS↑, 5,   selectivity↑, 15,   TET2↑, 2,  

Clinical Biomarkers

ALAT↓, 2,   AR↓, 2,   AST↓, 1,   B2M↓, 1,   BRCA1↑, 1,   creat↓, 1,   EGFR↓, 1,   EZH2↓, 1,   hTERT/TERT↓, 2,   IL6↓, 1,   Ki-67↓, 5,   LDH↑, 1,   Maspin↑, 2,   Myc↓, 1,   PD-L1↓, 3,  

Functional Outcomes

AntiCan↑, 9,   cardioP↑, 3,   chemoP↑, 6,   chemoPv↑, 4,   hepatoP↑, 11,   neuroP↑, 4,   RenoP↑, 4,   TumVol↓, 4,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 310

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 20,   Catalase↑, 15,   GCLC↑, 1,   GPx↑, 8,   GPx4↑, 1,   GSH↑, 23,   GSH/GSSG↑, 1,   GSR↑, 2,   GSSG↓, 2,   GSTA1↓, 1,   GSTA1↑, 4,   GSTs↑, 3,   H2O2↓, 3,   HO-1↑, 12,   HO-1↓, 1,   Keap1↓, 1,   lipid-P↓, 13,   MDA↓, 14,   MPO↑, 1,   MPO↓, 1,   NOX4↓, 1,   NQO1↑, 3,   NRF2↑, 15,   NRF2↓, 1,   Prx↑, 1,   ROS↓, 35,   ROS⇅, 1,   SIRT3↑, 1,   SOD↑, 23,   SOD1↑, 3,   TAC↑, 3,   Thiols↑, 2,   VitC↑, 1,   VitE↑, 1,  

Metal & Cofactor Biology

FTH1↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 5,  

Core Metabolism/Glycolysis

ALAT↓, 4,   BUN↓, 1,   cMyc↓, 1,   p‑CREB↑, 1,   CREB↑, 1,   LDH↓, 2,   LDL↓, 1,   NAD↑, 1,   NADPH↑, 1,   PPARγ↑, 1,   SIRT1↑, 3,  

Cell Death

p‑Akt↓, 2,   p‑Akt↑, 1,   e-Akt↑, 1,   Apoptosis↓, 3,   BAX↓, 3,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Casp1?, 1,   Casp1↓, 1,   proCasp3↓, 1,   cl‑Casp3↓, 1,   Casp3↓, 7,   Casp7↓, 1,   iNOS↓, 3,   iNOS↑, 2,   JNK↑, 2,   MAPK↓, 1,   MAPK↑, 1,   p‑p38↓, 1,   p38↓, 1,   Pyro?, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,  

Transcription & Epigenetics

Ach↑, 3,   p‑cJun↓, 1,   other↝, 1,   other↓, 1,   tumCV∅, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,  

Proliferation, Differentiation & Cell State

Diff↑, 1,   e-ERK↑, 1,   ERK↑, 1,   FOXO↑, 1,   p‑mTOR↓, 1,   neuroG↑, 1,   PI3K↑, 1,  

Migration

mt-ATPase↑, 1,   MMP13↓, 2,   MMP7↓, 1,   MMP9↑, 1,   MMP9↓, 1,   MMPs↓, 1,   TGF-β↓, 4,   TumCI∅, 1,   TumCI↓, 1,   TumCMig∅, 1,   TumCP↓, 1,   TXNIP↓, 1,  

Angiogenesis & Vasculature

angioG↑, 2,   eNOS↑, 1,   Hif1a↑, 2,   LOX1↓, 1,   NO↑, 1,   NO↓, 3,   VEGF↑, 2,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 2,   MRP↓, 1,  

Immune & Inflammatory Signaling

ASC?, 1,   COX2↓, 10,   CRP↓, 3,   CXCc↓, 1,   IFN-γ↓, 2,   IFN-γ↑, 1,   IL10↑, 3,   IL12↓, 3,   IL18↓, 1,   IL1β↓, 16,   IL6↓, 7,   Inflam↓, 23,   IP-10/CXCL-10↓, 1,   IκB↑, 1,   MCP1↓, 2,   MyD88↓, 3,   NF-kB↓, 17,   PGE2↓, 4,   TLR1↓, 1,   TLR2↓, 4,   TLR4↓, 4,   TNF-α↓, 14,   TRIF↓, 2,  

Synaptic & Neurotransmission

AChE↓, 8,   AChE↝, 1,   BDNF↑, 1,   BDNF∅, 1,   ChAT↑, 1,   GABA↑, 1,   p‑tau↓, 3,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 8,   BACE↓, 1,   NLRP3↓, 2,  

Hormonal & Nuclear Receptors

GR↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 4,   BioAv↝, 2,   eff↑, 6,   eff↓, 1,   Half-Life↝, 2,  

Clinical Biomarkers

ALAT↓, 4,   ALP↓, 1,   AST↓, 4,   creat↓, 1,   CRP↓, 3,   IL6↓, 7,   LDH↓, 2,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↑, 2,   cardioP↑, 8,   chemoP↑, 1,   chemoPv↑, 1,   cognitive↑, 11,   GFR↑, 1,   hepatoP↑, 10,   memory↑, 10,   motorD↑, 2,   neuroP↑, 17,   OS↑, 2,   radioP↑, 6,   RenoP↑, 10,   toxicity↓, 3,   toxicity∅, 1,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   IRF3↓, 4,  
Total Targets: 172

Research papers

Year Title Authors PMID Link Flag
2025Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulationAkhmed Aslamhttps://link.springer.com/content/pdf/10.1186/s43046-025-00261-7.pdf0
2024Protective effects of Nigella sativa L. seeds aqueous extract-based silver nanoparticles on sepsis-induced damages in ratsWen Daihttps://www.sciencedirect.com/science/article/abs/pii/S138770032400577X0
2022Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell linePrasad Narayanan35253318https://pubmed.ncbi.nlm.nih.gov/35253318/0
2025Targeting aging pathways with natural compounds: a review of curcumin, epigallocatechin gallate, thymoquinone, and resveratrolMohamed AhmedPMC12225039https://pmc.ncbi.nlm.nih.gov/articles/PMC12225039/0
2025Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo StudiesBeauden Johnhttps://www.researchgate.net/publication/389739620_Cytotoxicity_of_Nigella_sativa_Extracts_Against_Cancer_Cells_A_Review_of_In_Vitro_and_In_Vivo_Studies0
2025HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potentialAbdullah Algaissi37948309https://pubmed.ncbi.nlm.nih.gov/37948309/0
2025Behavioral and histological study on the neuroprotective effect of thymoquinone on the cerebellum in AlCl3-induced neurotoxicity in rats through modulation of oxidative stress, apoptosis, and autophagyAmira I Shrief39912993https://pubmed.ncbi.nlm.nih.gov/39912993/0
2025Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathwayJianxin Yanghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1567762/full0
2025Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivoSummya RashidPMC12146898https://pmc.ncbi.nlm.nih.gov/articles/PMC12146898/0
2025A study to determine the effect of nano-selenium and thymoquinone on the Nrf2 gene expression in Alzheimer’s diseaseDoha El-Sayed Ellakwahttps://www.tandfonline.com/doi/full/10.1080/20565623.2025.2458434#summary-abstract0
2025Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanismYi Chenhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X240037880
2025Enhanced Apoptosis in Pancreatic Cancer Cells through Thymoquinone-rich Nigella sativa L. Methanol Extract: Targeting NRF2/HO-1 and TNF-α PathwaysSümeyra Çetinkayahttps://pubmed.ncbi.nlm.nih.gov/40304335/0
2024Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cellsİrfan Çınarhttps://link.springer.com/article/10.1007/s11033-024-09453-10
2024Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathwayBingxin Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S0161813X240001600
2024Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal CancerNatalia Kurowskahttps://www.mdpi.com/1467-3045/46/1/100
2024The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigationsKhan, Mahjabinhttps://journals.lww.com/cancerjournal/fulltext/2024/20040/the_anti_neoplastic_impact_of_thymoquinone_from.14.aspx#:~:text=Depletion%20of%20ROS%20was%20induced,TQ%20in%20SCLC%20cell%20lines0
2024Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathwaysZhan-Xue ZhaoPMC11185293https://pmc.ncbi.nlm.nih.gov/articles/PMC11185293/0
2023Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a reviewEhsan Sadeghihttps://link.springer.com/article/10.1007/s11033-023-08363-y0
2023Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in RatsMarwa M QadriPMC10342029https://pmc.ncbi.nlm.nih.gov/articles/PMC10342029/0
2023Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC PatientsSawsan ElgoharyPMC10531892https://pmc.ncbi.nlm.nih.gov/articles/PMC10531892/0
2023Advances in research on the relationship between thymoquinone and pancreatic cancerZhanxue Zhaohttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.1092020/full0
2023Thymoquinone protects against lipopolysaccharides-induced neurodegeneration and Alzheimer-like model in mice.Olusegun Adebayo Adeoluwahttps://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.0752550
2023The Potential Neuroprotective Effect of Thymoquinone on Scopolamine-Induced In Vivo Alzheimer's Disease-like Condition: Mechanistic InsightsHend E Abo MansourPMC10534545https://pmc.ncbi.nlm.nih.gov/articles/PMC10534545/0
2023Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer CellsAhmed SalahPMC10772774https://pmc.ncbi.nlm.nih.gov/articles/PMC10772774/0
2023Modulation of Nrf2/HO1 Pathway by Thymoquinone to Exert Protection Against Diazinon-induced Myocardial Infarction in RatsGang Wanghttps://journals.sagepub.com/doi/full/10.1177/097312962311906860
2022Therapeutic implications and clinical manifestations of thymoquinoneManzar Alam35472482https://pubmed.ncbi.nlm.nih.gov/35472482/0
2022The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studiesMonica Butnariuhttps://www.sciencedirect.com/science/article/pii/S07533322220075330
2022Thymoquinone has a synergistic effect with PHD inhibitors to ameliorate ischemic brain damage in miceNashwa Amin35797865https://pubmed.ncbi.nlm.nih.gov/35797865/0
2022Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer CellsGetinet M AdinewPMC9695946https://pmc.ncbi.nlm.nih.gov/articles/PMC9695946/0
2022PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal CancerShahid KarimPMC8880628https://pmc.ncbi.nlm.nih.gov/articles/PMC8880628/0
2022Thymoquinone: Review of Its Potential in the Treatment of Neurological DiseasesFaheem Hyder PottooPMC9026861https://pmc.ncbi.nlm.nih.gov/articles/PMC9026861/0
2022Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasisMina HomayoonfalPMC8903697https://pmc.ncbi.nlm.nih.gov/articles/PMC8903697/0
2022Study Effectiveness and Stability Formulation Nanoemulsion of Black Cumin Seed (Nigella sativa L.) Essential Oil: A ReviewDadih Supriadihttps://www.iosrjournals.org/iosr-jpbs/papers/Vol17-issue1/Ser-1/E1701013241.pdf0
2022Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascadeShoaib Alam34636440https://pubmed.ncbi.nlm.nih.gov/34636440/0
2022Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s diseaseFabiha Zaheen KhanPMC9272348https://pmc.ncbi.nlm.nih.gov/articles/PMC9272348/0
2022Studi In Silico Potensi Piperine, Piperlongumine, dan Thymoquinone Sebagai Obat AlzheimerMutiarahttps://repository.ubaya.ac.id/43063/0
2022The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of CancerSafialdin AlsanosiPMC9101516https://pmc.ncbi.nlm.nih.gov/articles/PMC9101516/0
2022The Role of Thymoquinone in Inflammatory Response in Chronic DiseasesYan LiuPMC9499585https://pmc.ncbi.nlm.nih.gov/articles/PMC9499585/0
2022Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by ThymoquinoneAmmad Ahmad FarooqiPMC9181073https://pmc.ncbi.nlm.nih.gov/articles/PMC9181073/0
2022Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD-L1 in MDA-MB-231 Triple-Negative Breast Cancer CellsGetinet Adinew35723877https://pubmed.ncbi.nlm.nih.gov/35723877/0
2022Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD‐L1 in MDA‐MB‐231 Triple‐Negative Breast Cancer CellsGetinet Mequanint Adinewhttps://www.researchgate.net/publication/361433177_Thymoquinone_Anticancer_Effects_Through_the_Upregulation_of_NRF2_and_the_Downregulation_of_PD-L1_in_MDA-MB-231_Triple-Negative_Breast_Cancer_Cells0
2022Chronic Administration of Thymoquinone Enhances Adult Hippocampal Neurogenesis and Improves Memory in Rats Via Regulating the BDNF Signaling PathwayAbdullah Al Mamun34855048https://pubmed.ncbi.nlm.nih.gov/34855048/0
2021Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer ApoptosisAhmed A Abd-RabouPMC8850882https://pmc.ncbi.nlm.nih.gov/articles/PMC8850882/0
2021Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER StressMutay Aslan32286088https://pubmed.ncbi.nlm.nih.gov/32286088/0
2021Targeting microRNAs with thymoquinone: a new approach for cancer therapyMina Homayoonfal,https://cmbl.biomedcentral.com/articles/10.1186/s11658-021-00286-50
2021Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathwayNashwa Amin34236288https://pubmed.ncbi.nlm.nih.gov/34236288/0
2021Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein ComplexOmeima AbdullahPMC8143546https://pmc.ncbi.nlm.nih.gov/articles/PMC8143546/0
2021Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma CellsXuejian ZhouPMC8416733https://pmc.ncbi.nlm.nih.gov/articles/PMC8416733/0
2021Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathwayMarjan Talebi33051921https://pubmed.ncbi.nlm.nih.gov/33051921/0
2021Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cellsPawan Kumar Raut34627931https://pubmed.ncbi.nlm.nih.gov/34627931/0
2021Anti-inflammatory effects of thymoquinone and its protective effects against several diseasesZeynab Kohandelhttps://www.sciencedirect.com/science/article/pii/S07533322210027780
2021Thymoquinone, as a Novel Therapeutic Candidate of CancersBelal AlmajaliPMC8074212https://pmc.ncbi.nlm.nih.gov/articles/PMC8074212/0
2021Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid ArthritisRavi Raj PalPMC8224699https://pmc.ncbi.nlm.nih.gov/articles/PMC8224699/0
2021Thymoquinone as a potential therapeutic for Alzheimer’s disease in transgenic Drosophila melanogaster modelNARAYANAN NAMPOOTHIRI V. P. 1https://www.sciencedirect.com/org/science/article/pii/S03279545210018820
2021Thymoquinone: A small molecule from nature with high therapeutic potentialSafiya Malik https://www.sciencedirect.com/science/article/abs/pii/S13596446210032020
2021Thymoquinone and its pharmacological perspective: A reviewShabana Tabassumhttps://www.sciencedirect.com/science/article/pii/S26671425210001910
2020Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients?Sawsan Elgoharyhttps://www.mdpi.com/2073-4409/10/2/3020
2020Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructsC Rathore32003249https://pubmed.ncbi.nlm.nih.gov/32003249/0
2020Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular TargetsRohini Gomathinayagamhttps://www.researchgate.net/publication/345783312_Chemopreventive_and_Anticancer_Effects_of_Thymoquinone_Cellular_and_Molecular_Targets0
2020Selective Targeting of the Hedgehog Signaling Pathway by PBM Nanoparticles in Docetaxel-Resistant Prostate CancerSantosh Kumar Singh32867229https://pubmed.ncbi.nlm.nih.gov/32867229/0
2020Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signallingMajed Al Fayihttps://www.tandfonline.com/doi/full/10.1080/1061186X.2020.17221360
2020Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosisAjaz Ahmad32053036https://pubmed.ncbi.nlm.nih.gov/32053036/0
2020Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat modelBirsen Elibol32920292https://pubmed.ncbi.nlm.nih.gov/32920292/0
2020A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cellsJ G Costa31883990https://pubmed.ncbi.nlm.nih.gov/31883990/0
2019Thymoquinone (TQ) demonstrates its neuroprotective effect via an anti-inflammatory action on the Aβ(1–42)-infused rat model of Alzheimer's diseaseBirsen Elibolhttps://www.tandfonline.com/doi/full/10.1080/24750573.2019.16739450
2019Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanismsMaamoun Fatfat31278946https://pubmed.ncbi.nlm.nih.gov/31278946/0
2019ACETYLCHOLINESTERASE AND GROWTH INHIBITORY EFFECTS–VARIOUS GRADES OF N. SATIVA OILSJyoti Harindranhttps://www.researchgate.net/publication/330825216_ACETYLCHOLINESTERASE_AND_GROWTH_INHIBITORY_EFFECTS-VARIOUS_GRADES_OF_N_SATIVA_OILS0
2019Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservativesAhmed Mohsen Hamdanhttps://www.nature.com/articles/s41598-019-43568-x0
2019Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neuronsAH AlhibshiPMC6317145https://pmc.ncbi.nlm.nih.gov/articles/PMC6317145/0
2019Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeuticsMd. Asaduzzaman Khanhttps://www.sciencedirect.com/science/article/pii/S13596446193035140
2019Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3Ji Eun Parkhttps://www.researchgate.net/publication/335229026_Thymoquinone_induces_apoptosis_of_human_epidermoid_carcinoma_A431_cells_through_ROS-mediated_suppression_of_STAT30
2019Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedyYasmina K. Mahmoudhttps://www.sciencedirect.com/science/article/pii/S075333221838404X0
2019Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cellsİbrahim Halil Yildirimhttps://www.researchgate.net/publication/335840334_Thymoquinone_induces_apoptosis_via_targeting_the_BaxBAD_and_Bcl-2_pathway_in_breast_cancer_cells0
2019Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic MechanismsShahad A Qadihttps://journals.sagepub.com/doi/full/10.1177/25168657198390110
2019Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on In Vitro Wound Healing ModelsHenna Roshini AlexanderPMC6935463https://pmc.ncbi.nlm.nih.gov/articles/PMC6935463/0
2018Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathwayMengzhao Zhanghttps://www.sciencedirect.com/science/article/pii/S00092797183016740
2018Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling PathwaysFabliha Ahmed ChowdhuryPMC5831880https://pmc.ncbi.nlm.nih.gov/articles/PMC5831880/0
2018The Neuroprotective Effects of Thymoquinone: A ReviewTahereh FarkhondehPMC5898665https://pmc.ncbi.nlm.nih.gov/articles/PMC5898665/0
2018Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's DiseaseMarco CascellaPMC5811465https://pmc.ncbi.nlm.nih.gov/articles/PMC5811465/0
2018Nigella sativa L. and Its Bioactive Constituents as Hepatoprotectant: A ReviewHeena Tabassum29701149https://pubmed.ncbi.nlm.nih.gov/29701149/0
2018Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signalingYS Abulfadlhttps://journals.sagepub.com/doi/full/10.1177/09603271187552560
2018Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changesYasmin S Abulfadl29464986https://pubmed.ncbi.nlm.nih.gov/29464986/0
2018Potential role of Nigella sativa (NS) in abating oxidative stress-induced toxicity in rats: a possible protection mechanismMohammed Abdulabbas Hasanhttps://www.iosrjournals.org/iosr-jpbs/papers/Vol13-issue5/Version-3/F1305032942.pdf0
2018Thymoquinone Can Improve Neuronal Survival and Promote Neurogenesis in Rat Hippocampal NeuronsMerve Beker29277983https://pubmed.ncbi.nlm.nih.gov/29277983/0
2018Chronic diseases, inflammation, and spices: how are they linked?Ajaikumar B KunnumakkaraPMC5785894https://pmc.ncbi.nlm.nih.gov/articles/PMC5785894/0
2018Thymoquinone alleviates the experimentally induced Alzheimer's disease inflammation by modulation of TLRs signalingY S Abulfadl29405769https://pubmed.ncbi.nlm.nih.gov/29405769/0
2017Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathwayBo Kou29039572https://pubmed.ncbi.nlm.nih.gov/29039572/0
2017Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical StudiesAGM MostofaPMC5466966https://pmc.ncbi.nlm.nih.gov/articles/PMC5466966/0
2017Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of ApoptosisHamid MollazadehPMC5633668https://pmc.ncbi.nlm.nih.gov/articles/PMC5633668/0
2017Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activationHsi-Hsien HsuPMC5323442https://pmc.ncbi.nlm.nih.gov/articles/PMC5323442/0
2017Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativaAmin F. Majdalawiehhttps://www.tandfonline.com/doi/abs/10.1080/10408398.2016.1277971?src=recsys&journalCode=bfsn200
2017Thymoquinone, as an anticancer molecule: from basic research to clinical investigationMd. Asaduzzaman Khanhttps://www.oncotarget.com/article/17206/text/0
2017Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cellsM.M. Al-Oqailhttps://www.sciencedirect.com/science/article/pii/S02546299173008930
2017Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cellsAyman I Elkadyhttps://www.oatext.com/pdf/BTT-1-111.pdf0
2017Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in MiceMahdieh Jafari ShahroudiPMC5374336https://pmc.ncbi.nlm.nih.gov/articles/PMC5374336/0
2017Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Modelhttps://pmc.ncbi.nlm.nih.gov/articles/PMC5384046/0
2017Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cellsJiuxia PangPMC5470982https://pmc.ncbi.nlm.nih.gov/articles/PMC5470982/0
2016Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancerSabnam Parbinhttps://pubs.rsc.org/en/content/articlehtml/2016/mb/c5mb00412h0
2016Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κBLida ZhangPMC5038441https://pmc.ncbi.nlm.nih.gov/articles/PMC5038441/0
2016Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cellsIn Gyeong Chaehttps://aacrjournals.org/cancerres/article/76/14_Supplement/4844/612218/Abstract-4844-Thymoquinone-induces-apoptosis?utm_source=chatgpt.com0
2016Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone AcetylationDaniel RellesPMC5220391https://pmc.ncbi.nlm.nih.gov/articles/PMC5220391/0
2016Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell lineM M E Taha27262811https://pubmed.ncbi.nlm.nih.gov/27262811/0
2016Effect of Nigella sativa (black seeds) against methotrexate-induced nephrotoxicity in miceJawad Hassan AhmedPMC5289094https://pmc.ncbi.nlm.nih.gov/articles/PMC5289094/0
2016Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in ratsZeynep Nur Orhonhttps://www.sciencedirect.com/science/article/abs/pii/S03440338163002790
2016Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liverZeba Farooquihttps://www.sciencedirect.com/science/article/pii/S22147500163001780
2015Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling GenesNorsharina IsmailPMC4707358https://pmc.ncbi.nlm.nih.gov/articles/PMC4707358/0
2015Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell linesSamira ShahrakiPMC4737945https://pmc.ncbi.nlm.nih.gov/articles/PMC4737945/0
2015Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seedRiad Agbariahttps://www.tandfonline.com/doi/full/10.2147/DDDT.S829380
2014Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targetsJuthika Kundu24355171https://pubmed.ncbi.nlm.nih.gov/24355171/0
2014Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinaseJuthika Kunduhttps://www.spandidos-publications.com/10.3892/or.2014.3223?utm_source=chatgpt.com0
2014Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated GlycolysisYoon-Mi LeePMC6429094https://pmc.ncbi.nlm.nih.gov/articles/PMC6429094/0
2014Thymoquinone: an emerging natural drug with a wide range of medical applicationsMohannad KhaderPMC4387230https://pmc.ncbi.nlm.nih.gov/articles/PMC4387230/0
2014Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidantNadia Wajidhttps://www.als-journal.com/manuscriptid28-80-2/0
2014Dual properties of Nigella Sativa: anti-oxidant and pro-oxidantNadia Wajidhttps://www.als-journal.com/articles/vol1issue2/Nigella_Sativa_anti-oxidant_pro-oxidant.pdf0
2014Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell lineEbtesam Saad Al-Sheddi24568529https://pubmed.ncbi.nlm.nih.gov/24568529/0
2013Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasomeIsrar Ahmadhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X130013610
2013Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic ratsRana J Al Wafai23429494https://pubmed.ncbi.nlm.nih.gov/23429494/0
2013Thymoquinone in the clinical treatment of cancer: Fact or fiction?Majed M AbuKhaderPMC3841989https://pmc.ncbi.nlm.nih.gov/articles/PMC3841989/0
2013A review on therapeutic potential of Nigella sativa: A miracle herbAftab AhmadPMC3642442https://pmc.ncbi.nlm.nih.gov/articles/PMC3642442/0
2013Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in VitroLanda Zeenelabdin Ali SalimPMC6269888https://pmc.ncbi.nlm.nih.gov/articles/PMC6269888/0
2013Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivoJoydeb Kumar Kundu23911786https://pubmed.ncbi.nlm.nih.gov/23911786/0
2013Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROSChern Chiuh Woohttps://www.researchgate.net/publication/257464100_Thymoquinone_Inhibits_Tumor_Growth_and_Induces_Apoptosis_in_a_Breast_Cancer_Xenograft_Mouse_Model_The_Role_of_p38_MAPK_and_ROS0
2012Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cellsEl-Shaimaa A ArafaPMC3037029https://pmc.ncbi.nlm.nih.gov/articles/PMC3037029/0
2012Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cellsAyman I. Elkadyhttps://www.ajol.info/index.php/ajb/article/view/1290750
2012Thymoquinone: potential cure for inflammatory disorders and cancerChern Chiuh Woo22005518https://pubmed.ncbi.nlm.nih.gov/22005518/0
2011Anticancer Activities of Nigella Sativa (Black Cumin)Asaduzzaman KhanPMC3252704https://pmc.ncbi.nlm.nih.gov/articles/PMC3252704/0
2011Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphomaAzhar R Hussain21215312https://pubmed.ncbi.nlm.nih.gov/21215312/0
2011Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitroWen-Qian ZhuPMC4837432https://pmc.ncbi.nlm.nih.gov/articles/PMC4837432/0
2010Review on Molecular and Therapeutic Potential of Thymoquinone in CancerSanjeev Banerjeehttps://www.researchgate.net/publication/47350393_Review_on_Molecular_and_Therapeutic_Potential_of_Thymoquinone_in_Cancer0
2010Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivoSyed H Jafrihttps://jeccr.biomedcentral.com/articles/10.1186/1756-9966-29-870
2010Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen speciesPadma Sandeep Koka20511679https://pubmed.ncbi.nlm.nih.gov/20511679/0
2010Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic ratsMaznah Ismail20005291https://pubmed.ncbi.nlm.nih.gov/20005291/0
2009Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cellsNavdeep ChehlPMC2742606https://pmc.ncbi.nlm.nih.gov/articles/PMC2742606/0
2009Effects of Nigella sativa L. on Lipid Peroxidation and Reduced Glutathione Levels in Erythrocytes of Broiler ChickensYasin Tulucehttps://dergipark.org.tr/en/pub/sducmfrr/issue/20738/2217030
2008Cardioprotective effects of Nigella sativa oil on cyclosporine A-induced cardiotoxicity in ratsUz Ebru18801029https://pubmed.ncbi.nlm.nih.gov/18801029/0
2006In vivo radioprotective effects of Nigella sativa L oil and reduced glutathione against irradiation-induced oxidative injury and number of peripheral blood lymphocytes in ratsMustafa Cemekhttps://pubmed.ncbi.nlm.nih.gov/17387769/0
2005Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cellsMohamed A El-Mahdy15906362https://pubmed.ncbi.nlm.nih.gov/15906362/0
2005Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in ratsMehmet KanterPMC4355761https://pmc.ncbi.nlm.nih.gov/articles/PMC4355761/0