tbResList Print — UA Ursolic acid

Filters: qv=164, qv2=%, rfv=%

Product

UA Ursolic acid
Description: <b>Natural compound</b> found in apples and rosemary.<br>
Ursolic acid (UA) is a pentacyclic triterpenoid found in many plants (notably apple peel, rosemary, thyme, holy basil, and other herbs). In cancer models it is best described as a multi-target signaling modulator with prominent effects on NF-κB inflammation/survival transcription, STAT3, PI3K/AKT/mTOR, and MAPK pathways, with downstream outcomes including cell-cycle arrest, apoptosis, anti-angiogenesis, and reduced invasion/EMT. A practical translational constraint is poor aqueous solubility and low oral bioavailability, so many strong in-vitro µM effects may not map cleanly to typical oral exposure without formulation.<br>
<br>

<!-- Ursolic Acid (UA) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory / survival transcription</td>
<td>NF-κB ↓; COX-2/iNOS/cytokines/Bcl-2 family/MMPs ↓ (reported)</td>
<td>Inflammation tone ↓ (context)</td>
<td>R, G</td>
<td>Anti-inflammatory + anti-survival transcription</td>
<td>One of the most frequently reported UA effects across tumor models; downstream impacts include reduced pro-survival and pro-metastatic gene programs.</td>
</tr>

<tr>
<td>2</td>
<td>STAT3 axis (JAK/STAT3 signaling)</td>
<td>STAT3 activity ↓ (reported); downstream targets ↓</td>
<td>↔</td>
<td>R, G</td>
<td>Oncogenic transcription suppression</td>
<td>UA is often reported to suppress STAT3 signaling, contributing to reduced proliferation/survival signaling.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT ↓; mTORC1 tone ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Commonly listed mechanism; direction and strength vary by cell line and exposure.</td>
</tr>

<tr>
<td>4</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK/p38 activation and ERK modulation are reported variably; avoid fixed arrows unless tied to a specific model.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle checkpoints (Cyclins/CDKs; p21/p27)</td>
<td>Cell-cycle arrest ↑ (G1/S or G2/M; reported); Cyclin D1/CDKs ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often downstream of NF-κB/STAT3/PI3K signaling suppression.</td>
</tr>

<tr>
<td>6</td>
<td>Intrinsic apoptosis (mitochondrial/caspase linked)</td>
<td>Apoptosis ↑; Bax ↑; Bcl-2 ↓; caspases ↑ (reported)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Common downstream endpoint; can be coupled to stress signaling and survival pathway suppression.</td>
</tr>

<tr>
<td>7</td>
<td>Angiogenesis signaling (VEGF / HIF-1α outputs)</td>
<td>VEGF ↓; angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically phenotype-level effects tied to NF-κB/PI3K/HIF programs.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis programs (MMPs / EMT)</td>
<td>MMP2/MMP9 ↓; EMT markers ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often downstream of NF-κB/STAT3 changes; not universal across all tumors.</td>
</tr>

<tr>
<td>9</td>
<td>ROS / redox modulation</td>
<td>ROS direction variable; redox stress or buffering reported (context)</td>
<td>Oxidative injury ↓ in some non-tumor stress models</td>
<td>P, R, G</td>
<td>Stress modulation</td>
<td>UA is not a reliable “pro-oxidant killer”; redox effects depend on dose, model, and baseline oxidative state.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / formulation constraint</td>
<td>Systemic exposure often limited (poor solubility)</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>UA is highly lipophilic with poor aqueous solubility; many formulations (e.g., nanoparticles, phospholipid complexes) are explored to improve exposure.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid signaling interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response + transcription signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   Nrf1↓, 1,   NRF2↝, 1,   ROS↝, 1,   ROS⇅, 1,   ROS↑, 5,  

Mitochondria & Bioenergetics

ATP↓, 3,   mitResp↓, 1,   MMP↓, 4,   mtDam↑, 1,   PGC-1α↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   AMPK↑, 3,   Cav1↑, 1,   cMyc↓, 2,   FAO↑, 1,   FASN↓, 1,   glut↓, 1,   GlutMet↑, 1,   Glycolysis↓, 4,   HK2↓, 3,   lactateProd↓, 3,   LDHA↓, 1,   PKM2↓, 2,   TCA↑, 1,  

Cell Death

Akt↝, 1,   Akt↓, 4,   Apoptosis↝, 1,   Apoptosis↑, 7,   BAX↝, 1,   BAX↑, 2,   Bcl-2↝, 1,   Bcl-2↓, 5,   Bcl-xL↝, 1,   Bcl-xL↓, 1,   Casp↑, 1,   Casp3↝, 1,   Casp3↑, 3,   cl‑Casp3↑, 1,   Casp7↑, 1,   Casp8↑, 2,   Casp9↑, 2,   Chk2↓, 1,   Cyt‑c↝, 1,   Cyt‑c↑, 1,   DR5↑, 1,   iNOS↓, 1,   JNK↝, 1,   JNK↑, 1,   MAPK↓, 1,   survivin↓, 1,  

Kinase & Signal Transduction

Sp1/3/4↑, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

EZH2↓, 1,   tumCV↓, 2,  

Autophagy & Lysosomes

LC3II↑, 1,   p62↓, 1,   TumAuto↑, 2,  

DNA Damage & Repair

ATM↑, 1,   BRCA1↓, 1,   CHK1↓, 1,   DNAdam↑, 2,   P53↝, 1,   P53↑, 4,   cl‑PARP↑, 2,  

Cell Cycle & Senescence

Cyc↝, 1,   cycD1/CCND1↝, 1,   cycD1/CCND1↓, 2,   E2Fs↑, 1,   P21↝, 1,   P21↓, 1,   P21↑, 2,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   CTNNB1↓, 1,   Diff↑, 1,   EMT↓, 1,   ERK↓, 2,   p‑ERK↓, 1,   mTOR↝, 1,   mTOR↓, 1,   PI3K↝, 1,   PI3K↓, 1,   PTEN↝, 1,   Src↓, 1,   p‑STAT3↓, 1,   STAT3↓, 2,   TCF↓, 1,   TumCG↓, 2,  

Migration

AEG1↓, 1,   AP-1↝, 2,   CD31↓, 1,   E-cadherin↑, 2,   Ki-67↓, 1,   MMP2↝, 1,   N-cadherin↓, 2,   PKA↓, 1,   TGF-β↓, 1,   TumCI↓, 1,   TumCMig↓, 3,   TumCP↓, 4,   TumMeta↓, 3,   Twist↓, 1,   Vim↓, 2,   β-catenin/ZEB1↝, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   angioG↑, 1,   EGFR↝, 1,   EGFR↓, 1,   Hif1a↓, 1,   NO↑, 2,   VEGF↝, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↝, 1,   COX2↓, 2,   IL17↓, 1,   IL6↝, 1,   IL6↓, 1,   Inflam↓, 3,   NF-kB↝, 1,   NF-kB↓, 3,   PSA↝, 1,   TNF-α↝, 1,   TNF-α↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↝, 1,   GR↝, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   eff↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AR↝, 1,   AST↓, 1,   BRCA1↓, 1,   EGFR↝, 1,   EGFR↓, 1,   EZH2↓, 1,   GutMicro↑, 1,   IL6↝, 1,   IL6↓, 1,   Ki-67↓, 1,   PSA↝, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiDiabetic↑, 1,   chemoPv↑, 1,   neuroP↑, 1,  

Infection & Microbiome

AntiViral↑, 1,  
Total Targets: 148

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 1,   GPx↑, 1,   GSH↑, 1,   GSTs↑, 1,   ROS↓, 3,   SOD↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 1,   PGC-1α↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 2,  

Synaptic & Neurotransmission

BDNF↑, 2,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   Dose↝, 1,   Half-Life↓, 2,  

Functional Outcomes

AntiDiabetic↑, 1,   cardioP↑, 1,   cognitive↑, 2,   hepatoP↑, 2,   memory↑, 2,   neuroP↑, 2,  
Total Targets: 22

Research papers

Year Title Authors PMID Link Flag
2017Naturally occurring anti-cancer agents targeting EZH2Fahimeh Shahabipourhttps://www.sciencedirect.com/science/article/abs/pii/S03043835173018420
2023Effects of curcumin and ursolic acid in prostate cancer: A systematic reviewBenjamin D BesasiePMC10976464https://pmc.ncbi.nlm.nih.gov/articles/PMC10976464/0
2025Therapeutic applications of ursolic acid: a comprehensive review and utilization of predictive toolsSherien M. Bakryhttps://fjps.springeropen.com/articles/10.1186/s43094-025-00796-5?utm_source=chatgpt.com0
2024Therapeutic Effect of Rosemary and Its Active Constituent on Nervous System DisordersVaidehi Bhaladharehttps://ijpsjournal.com/article/Therapeutic+Effect+of+Rosemary+and+Its+Active+Constituent+on+Nervous+System+Disorders#0
2024Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directionsHuici Zhanghttps://link.springer.com/article/10.1007/s43440-024-00684-40
2023Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer HallmarksYouness Limamihttps://www.mdpi.com/1420-3049/28/23/78970
2023Combined Ursolic Acid and Resistance/Endurance Training Improve Type 3 Diabetes Biomarkers-Related Memory Deficits in Hippocampus of Aged Male Wistar RatsNeda Ghadirihttps://www.researchgate.net/publication/371810588_Combined_Ursolic_Acid_and_ResistanceEndurance_Training_Improve_Type_3_Diabetes_Biomarkers-Related_Memory_Deficits_in_Hippocampus_of_Aged_Male_Wistar_Rats0
2022Ursolic acid and rosmarinic acid ameliorate alterations in hippocampal neurogenesis and social memory induced by amyloid beta in mouse model of Alzheimer’s diseaseFatima Javed MirzaPMC9817136https://pmc.ncbi.nlm.nih.gov/articles/PMC9817136/0
2021Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cellsLaxminarayan RawatPMC8201588https://pmc.ncbi.nlm.nih.gov/articles/PMC8201588/0
2021Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin PathwayGeu Rim SongPMC9706038https://pmc.ncbi.nlm.nih.gov/articles/PMC9706038/0
2021Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 SignalingShengqi WangPMC8457520https://pmc.ncbi.nlm.nih.gov/articles/PMC8457520/0
2020Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathwayWumei Lin32521863https://pubmed.ncbi.nlm.nih.gov/32521863/0
2019Anticancer effect of ursolic acid via mitochondria-dependent pathwaysXue-Min FengPMC6507317https://pmc.ncbi.nlm.nih.gov/articles/PMC6507317/0
2018Ursolic acid in health and diseaseDae Yun Seohttps://www.researchgate.net/publication/324838846_Ursolic_acid_in_health_and_disease0
2017Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cellsAnna LewinskaPMC5401707https://pmc.ncbi.nlm.nih.gov/articles/PMC5401707/0
2017Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolismAlessia LodiPMC5705091https://pmc.ncbi.nlm.nih.gov/articles/PMC5705091/0
2016Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studiesMuthu K. Shanmugamhttps://www.sciencedirect.com/science/article/abs/pii/S00062952130018710
2013Ursolic acid inhibits epithelial-mesenchymal transition by suppressing the expression of astrocyte-elevated gene-1 in human nonsmall cell lung cancer A549 cellsKunmei Liu23511428https://pubmed.ncbi.nlm.nih.gov/23511428/0
2009Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cellsE Kassi19440893https://pubmed.ncbi.nlm.nih.gov/19440893/0
2004Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1Shigeru Murakami15147868https://pubmed.ncbi.nlm.nih.gov/15147868/0