tbResList Print — VitB12 Vitamin B12

Filters: qv=165, qv2=%, rfv=%

Product

VitB12 Vitamin B12
Description: <p><b>Vitamin B12</b> = cobalamin (water-soluble vitamin; forms: methylcobalamin, adenosylcobalamin, cyanocobalamin, hydroxocobalamin). Sources: animal-derived foods; requires intrinsic factor–mediated absorption; transport via transcobalamin (TCII). Primary mechanisms (ranked):<br>
1) <b>Methionine synthase cofactor</b> → homocysteine → methionine → SAM → DNA/RNA/histone methylation (one-carbon metabolism integration).<br>
2) <b>Methylmalonyl-CoA mutase cofactor</b> → odd-chain FA / branched-chain AA metabolism; mitochondrial anaplerosis support.<br>
3) <b>Genome stability support</b> (via nucleotide synthesis + methylation balance).<br>
Bioavailability/PK relevance: Active absorption saturable (~1–2 µg/meal via IF); passive diffusion at high oral doses (~1%); serum levels tightly regulated; intracellular utilization depends on TCII uptake and lysosomal processing.<br>
In-vitro vs oral exposure: Most cancer cell studies use supraphysiologic cobalamin or manipulate one-carbon flux; effects typically reflect <b>methylation / nucleotide synthesis dependency</b> rather than direct cytotoxicity.<br>
Clinical evidence status: Essential nutrient; deficiency correction clearly beneficial; no established anticancer efficacy; epidemiology mixed (very high serum B12 sometimes correlates with cancer presence—likely reverse causality/biomarker phenomenon rather than causation).</p>



<b>Helps</b> make red blood cells, metabolize food and prevent nerve damage.<br>


<br>
<h3>Vitamin B12 (Cobalamin) — Cancer vs Normal Pathway Effects</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells (↑ / ↓ / ↔)</th>
<th>Normal Cells (↑ / ↓ / ↔)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>One-carbon metabolism (Methionine synthase → SAM)</td>
<td>↑ methylation capacity; ↑ nucleotide synthesis (proliferation support)</td>
<td>↑ genome stability; ↑ normal DNA synthesis</td>
<td>R→G</td>
<td>Methyl donor cycling</td>
<td>Supports SAM production; in rapidly dividing tumors may facilitate growth if not limiting.</td>
</tr>

<tr>
<td>2</td>
<td>DNA methylation / Epigenetics</td>
<td>↔ / ↑ (context-dependent; can restore normal methylation if deficient)</td>
<td>↑ methylation homeostasis</td>
<td>G</td>
<td>Epigenetic stability</td>
<td>Deficiency → hypomethylation/genomic instability; supplementation restores baseline rather than inducing supraphysiologic hypermethylation in most settings.</td>
</tr>

<tr>
<td>3</td>
<td>Nucleotide synthesis (via folate cycle coupling)</td>
<td>↑ proliferation support (if B12 limiting)</td>
<td>↑ normal hematopoiesis</td>
<td>R→G</td>
<td>DNA replication capacity</td>
<td>Mechanistically linked to folate; deficiency leads to megaloblastic anemia.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial metabolism (Methylmalonyl-CoA mutase)</td>
<td>↔ (supports baseline metabolism)</td>
<td>↑ mitochondrial function</td>
<td>R</td>
<td>Anaplerotic support</td>
<td>Prevents methylmalonic acid accumulation; preserves mitochondrial efficiency.</td>
</tr>

<tr>
<td>5</td>
<td>ROS</td>
<td>↔ (indirect)</td>
<td>↓ oxidative stress (deficiency correction)</td>
<td>R</td>
<td>Redox balance (secondary)</td>
<td>Effects mediated through improved mitochondrial and methylation balance.</td>
</tr>

<tr>
<td>6</td>
<td>NRF2</td>
<td>↔ (no direct axis)</td>
<td>↔</td>
<td>G</td>
<td>Adaptive response (indirect)</td>
<td>No primary NRF2-targeting activity established.</td>
</tr>

<tr>
<td>7</td>
<td>Ca<sup>2+</sup></td>
<td>↔</td>
<td>↔</td>
<td>P</td>
<td>Not a core pathway</td>
<td>No meaningful Ca²⁺ modulation axis.</td>
</tr>

<tr>
<td>8</td>
<td>HIF-1α / Warburg</td>
<td>↔ (indirect via proliferation capacity)</td>
<td>↔</td>
<td>G</td>
<td>Metabolic permissiveness</td>
<td>No direct hypoxia pathway targeting; effects are permissive rather than suppressive.</td>
</tr>

<tr>
<td>9</td>
<td>Ferroptosis</td>
<td>↔</td>
<td>↔</td>
<td>R</td>
<td>Not established</td>
<td>No defined ferroptotic mechanism.</td>
</tr>

<tr>
<td>10</td>
<td><b>Clinical Translation Constraint</b></td>
<td colspan="2">Essential nutrient; correction of deficiency critical. No validated anticancer benefit; very high serum B12 often reflects disease state rather than supplementation causality.</td>
<td>—</td>
<td>Evidence</td>
<td>Interpret epidemiologic associations cautiously (reverse causation common).</td>
</tr>

</table>

<p><b>TSF legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Core Metabolism/Glycolysis

homoC↓, 4,   homoC↝, 1,  

Transcription & Epigenetics

other?, 1,   other↓, 1,   other↝, 2,  

Drug Metabolism & Resistance

eff↝, 5,   eff↑, 3,  

Functional Outcomes

neuroP↑, 1,   Risk↓, 1,  
Total Targets: 9

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   GSH↑, 1,   ROS↓, 1,   SAM-e↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,  

Core Metabolism/Glycolysis

homoC↓, 13,  

Transcription & Epigenetics

other↑, 9,   other↓, 2,   other↝, 7,  

Migration

APP↓, 1,  

Immune & Inflammatory Signaling

IL6↓, 1,   Inflam↓, 2,   TNF-α↓, 2,  

Synaptic & Neurotransmission

BDNF↑, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 1,   BACE↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,   eff↑, 2,   eff↝, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

cognitive↑, 21,   cognitive∅, 4,   cognitive↝, 1,   memory↑, 4,   Mood↑, 1,   neuroP↑, 3,   QoL∅, 1,   Risk∅, 2,   Risk↓, 9,  
Total Targets: 30

Research papers

Year Title Authors PMID Link Flag
2018Nutrition strategies that improve cognitive functionRosa María Martínez García30351155https://pubmed.ncbi.nlm.nih.gov/30351155/0
2023Revisiting the Role of Vitamins and Minerals in Alzheimer’s DiseaseHarsh Shahhttps://www.mdpi.com/2076-3921/12/2/4150
2014Systemic Chemotherapy Interferes in Homocysteine Metabolism in Breast Cancer PatientsEliana K YamashitaPMC6807486https://pmc.ncbi.nlm.nih.gov/articles/PMC6807486/0
2019B-Vitamin and Choline Supplementation Changes the Ischemic BrainPrerana J. Keerthihttps://www.jyi.org/2019-april/2019/4/1/b-vitamin-and-choline-supplementation-changes-the-ischemic-brain0
2024Elevated serum homocysteine levels associated with poor recurrence-free and overall survival in patients with colorectal cancerHailun Xiehttps://www.nature.com/articles/s41598-024-60855-40
2021Hyperhomocysteinemia and Cancer: The Role of Natural Products and Nutritional InterventionsWamidh H. Talibhttps://link.springer.com/chapter/10.1007/978-3-030-57839-8_20
2016Dr.Sindu.P.Chttps://www.iosrjournals.org/iosr-jdms/papers/Vol15-Issue%206/Version-9/S1506098891.pdf0
2015Associations between Alzheimer's disease and blood homocysteine, vitamin B12, and folate: a case-control studyHui Chen25523421https://pubmed.ncbi.nlm.nih.gov/25523421/0
2009High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trialPaul S AisenPMC2684821https://pmc.ncbi.nlm.nih.gov/articles/PMC2684821/0
2018Homocysteine and Dementia: An International Consensus StatementA David SmithPMC5836397https://pmc.ncbi.nlm.nih.gov/articles/PMC5836397/0
2008Efficacy of a Vitamin/Nutriceutical Formulation for Moderate-stage to Later-stage Alzheimer's disease: A Placebo-controlled Pilot StudyRuth Remington, PhDhttps://journals.sagepub.com/doi/10.1177/15333175083250940
2025Unraveling the molecular mechanisms of vitamin deficiency in Alzheimer's disease pathophysiologyVipul Sharmahttps://www.sciencedirect.com/science/article/pii/S26670321250000710
2025Role of B vitamins in modulating homocysteine and metabolic pathways linked to brain atrophy: Metabolomics insights from the VITACOG trialTereza Kacerovahttps://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.705210
2024Vitamin B12 and Age-Related Cognitive Decline—Dementia and “Alzheimer’s Disease”Irwin H. Rosenberg, MDhttps://journals.sagepub.com/doi/full/10.1177/037957212412280600
2024Role of vitamin B12 and folic acid in treatment of Alzheimer’s disease: a meta-analysis of randomized control trialsChih-Ying LeePMC11132008https://pmc.ncbi.nlm.nih.gov/articles/PMC11132008/0
2024Vitamin B6, B12, and Folate’s Influence on Neural Networks in the UK Biobank CohortTianqi LiPMC11243472https://pmc.ncbi.nlm.nih.gov/articles/PMC11243472/0
2022Plasma Vitamin B-12 Levels and Risk of Alzheimer’s Disease: A Case-Control StudyLochana ShresthaPMC8832580https://pmc.ncbi.nlm.nih.gov/articles/PMC8832580/0
2022Mechanistic Link between Vitamin B12 and Alzheimer’s DiseaseAnna Andrea LauerPMC8774227https://pmc.ncbi.nlm.nih.gov/articles/PMC8774227/0
2022Plants, Plants, and More Plants: Plant-Derived Nutrients and Their Protective Roles in Cognitive Function, Alzheimer's Disease, and Other DementiasHelen DingPMC9414574https://pmc.ncbi.nlm.nih.gov/articles/PMC9414574/0
2021The preventive efficacy of vitamin B supplements on the cognitive decline of elderly adults: a systematic review and meta-analysisShufeng Lihttps://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-021-02253-30
2020Vitamins in Alzheimer’s Disease—Review of the Latest ReportsAnita MielechPMC7696081https://pmc.ncbi.nlm.nih.gov/articles/PMC7696081/0
2020Vitamin B12, B6, or Folate and Cognitive Function in Community-Dwelling Older Adults: A Systematic Review and Meta-AnalysisChenbo Zhang32773392https://pubmed.ncbi.nlm.nih.gov/32773392/0
2019Genetic determinants of low vitamin B12 levels in Alzheimer's disease riskSarah A Gagliano TaliunPMC6558085https://pmc.ncbi.nlm.nih.gov/articles/PMC6558085/0
2017Plasma Homocysteine and Serum Folate and Vitamin B12 Levels in Mild Cognitive Impairment and Alzheimer’s Disease: A Case-Control StudyFei MaPMC5537839https://pmc.ncbi.nlm.nih.gov/articles/PMC5537839/0
2016Nutrient intake, nutritional status, and cognitive function with agingKatherine L Tucker27116240https://pubmed.ncbi.nlm.nih.gov/27116240/0
2013Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatmentGwenaëlle DouaudPMC3677457https://pmc.ncbi.nlm.nih.gov/articles/PMC3677457/0
2012Cognitive impairment and vitamin B12: a reviewEileen Moore22221769https://pubmed.ncbi.nlm.nih.gov/22221769/0
2012Thoughts on B-vitamins and dementiaMartha Clare MorrisPMC3428233https://pmc.ncbi.nlm.nih.gov/articles/PMC3428233/0
2012Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trialCeleste A de Jager21780182https://pubmed.ncbi.nlm.nih.gov/21780182/0
2022Vitamin B6, B9, and B12 Intakes and Cognitive Performance in Elders: National Health and Nutrition Examination Survey, 2011–2014Hui XuPMC8962758https://pmc.ncbi.nlm.nih.gov/articles/PMC8962758/0
2016Vitamin Supplementation as an Adjuvant Treatment for Alzheimer’s DiseaseAdnan Bashir BhattiPMC5028542https://pmc.ncbi.nlm.nih.gov/articles/PMC5028542/0
2014Folate, Vitamin B6 and Vitamin B12 Intake and Mild Cognitive Impairment and Probable Dementia in the Women’s Health Initiative Memory StudyJessica C Agnew-BlaisPMC4312724https://pmc.ncbi.nlm.nih.gov/articles/PMC4312724/0
2007Vitamin B6, B12, and Folic Acid Supplementation and Cognitive FunctionEthan M. Balk, MD, MPHhttps://jamanetwork.com/journals/jamainternalmedicine/fullarticle/4114890