tbResList Print — VitC Vitamin C (Ascorbic Acid)

Filters: qv=166, qv2=%, rfv=%

Product

VitC Vitamin C (Ascorbic Acid)
Description: <b>High-dose vitamin C:</b> Some studies have suggested that high-dose vitamin C may be effective in treating certain types of cancer, such as ovarian cancer and pancreatic cancer.<br>
Symptoms of vitamin C deficiency include fatigue, weakness, poor wound healing, ecchymoses, xerosis, lower extremity edema, and musculoskeletal pain—most of them are often observed in end-stage cancer patients.
-Vitamin C is an essential nutrient involved in the repair of tissue, the formation of collagen, and the enzymatic production of certain neurotransmitters. It is required for the functioning of several enzymes and is important for immune system function.<br>
-Ascorbic Acid, Different levels in different Organs<br>
Homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. -(Note the Oncomagnetic success in the brain also was then under conditions of high Vitamin C)<br>
<br>
-Ascorbic acid is an electron donor<br>
Ascorbic Acid, can be a Pro-oxidant<br>
"The pro-oxidative activity of ascorbic acid (Figure 2) is associated with the interaction with transition metal ions (especially iron and copper). Under conditions of high, millimolar ascorbate concentration, vitamin C catalyzes the reduction of free transition metal ions, which causes the formation of oxygen radicals."<br>
Ascorbic Acid, formation of H2O2 (Hydrogen Peroxide)<br>
Many studies indicate the toxicity of ascorbate to cancer cells. Much evidence indicates that the underlying phenomenon is the pro-oxidative activity of ascorbate, which induces the formation of H2O2 and oxidative stress.<br>
"ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2)"<br>
-High dose VitC therapy may not be for those with kidney problems<br>
-Oral supplement up to 10g/day?<br>
-Direct regulator of <a href="tbResList.php?qv=166&wNotes=on&word=TET">TET↑</a><br>
-caution for (G6PD-) deficient patients receiving vitamin C infusions <br>



<br>
-Note plasma <a href="tbResList.php?qv=166&tsv=1109&wNotes=on&exSp=open">half-life</a> 30mins to 1hr, 1.5-2hr elimination half-life.<br>
oral <a href="tbResList.php?qv=166&tsv=792&wNotes=on&exSp=open">BioAv</a> water soluble, but has limitiations as 100mg yeilds 60uM/L in plasma, but 1000mg only yeilds 85uM/L. mM concentration are required for effectiveness on cancer cells. Hence why IV administration is common. Boosting
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=3138">HIF</a> increases the intracellular uptake of oxidized VitC
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- high dose induces
<a href="tbResList.php?qv=166&tsv=275&wNotes=on">ROS</a> production in cancer cells. Otherwise well known antioxidant in normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=166&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=166&tsv=103&wNotes=on">ER Stress↑</a>,
<!-- <a href="tbResList.php?qv=166&tsv=459&wNotes=on">UPR↑</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=356&wNotes=on">GRP78↑</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=77&wNotes=on">Cyt‑c↑</a>, -->
<a href="tbResList.php?qv=166&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=166&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=166&tsv=239&wNotes=on">cl-PARP↑</a>,
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=Prx">Prx</a>, --><!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=166&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=166&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<a href="tbResList.php?qv=166&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=166&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=166&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=166&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=166&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=166&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=166&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=166&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=166&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=166&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=166&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=166&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=166&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=166&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=166&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=166&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=166&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=166&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=166&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=166&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=166&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=166&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=166&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=166&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=166&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=166&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=166&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=166&tsv=415&wNotes=on">IGF-1↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=166&tsv=334&wNotes=on">VEGF↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=110&wNotes=on">FAK↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=166&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=1247&wNotes=on">SDF1↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=304&wNotes=on">TGF-β↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=719&wNotes=on">α-SMA↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=105&wNotes=on">ERK↓</a> -->
<!-- <a href="tbResList.php?qv=166&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<!-- <a href="tbResList.php?qv=166&tsv=140&wNotes=on">HDAC↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=85&wNotes=on">DNMT1↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=86&wNotes=on">DNMT3A↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=108&wNotes=on">EZH2↓</a>, -->
<a href="tbResList.php?qv=166&tsv=236&wNotes=on">P53↑</a>,
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=506&wNotes=on">Sp proteins↓</a>, -->
<a href="tbResList.php?qv=166&wNotes=on&word=TET">TET↑</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=166&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=166&tsv=73&wNotes=on">cyclin D1↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=378&wNotes=on">cyclin E↓</a>, -->
<a href="tbResList.php?qv=166&tsv=467&wNotes=on">CDK2↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=894&wNotes=on">CDK4↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=166&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=166&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=166&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<!-- <a href="tbResList.php?qv=166&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=166&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=166&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=1117&wNotes=on">TOP1↓</a>, -->
<a href="tbResList.php?qv=166&tsv=657&wNotes=on">TET1↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=166&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=166&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=166&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=166&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=166&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=166&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=166&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=166&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=166&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=166&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=166&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=166&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=166&tsv=847&wNotes=on">ECAR↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=230&wNotes=on">OXPHOS↓</a>, -->
<a href="tbResList.php?qv=166&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=166&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=166&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=166&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=166&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=166&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=PDGF">PDGF↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>, -->
<!-- <a href="tbResList.php?qv=166&&wNotes=on&word=ITG">Integrins↓</a>, -->
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=166&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=166&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=166&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=166&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=166&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=166&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=166&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=166&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=166&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=166&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=166&tsv=222&wNotes=on">notch2↓</a>,
<a href="tbResList.php?qv=166&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=166&tsv=508&wNotes=on">OCT4↓</a>,
<br>
-->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=166&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=166&tsv=4&wNotes=on">AKT↓</a>,
<!-- <a href="tbResList.php?qv=166&wNotes=on&word=JAK">JAK↓</a>, -->
<a href="tbResList.php?qv=166&wNotes=on&word=STAT">STAT↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=377&wNotes=on">Wnt↓</a>, -->
<!-- <a href="tbResList.php?qv=166&tsv=342&wNotes=on">β-catenin↓</a>, -->
<a href="tbResList.php?qv=166&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=166&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=166&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=166&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=166&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=166&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=166&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=166&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=166&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=166&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=166&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=166&tsv=557&wNotes=on">Cognitive</a>,
<!-- <a href="tbResList.php?qv=166&tsv=1175&wNotes=on">Renoprotection</a>, -->
<a href="tbResList.php?qv=166&tsv=1179&wNotes=on">Hepatoprotective</a>,
<!-- <a href="tbResList.php?&qv=166&tsv=1188&wNotes=on">CardioProtective</a>, -->

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=166&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
Selenium supplementation may protect cells against iron-dependent cell death by supporting increased expression of selenoproteins, including GPX4, which defend against oxidative stress. Meaning it may decrease effectiveness of high dose VitC.(#4468)<br>



Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   Catalase↝, 1,   Fenton↑, 2,   Ferroptosis↑, 2,   GPx↓, 2,   GPx4↓, 3,   GSH↓, 4,   GSH/GSSG↓, 1,   GSR↓, 1,   H2O2↑, 7,   HO-1↓, 3,   HO-1↑, 1,   Iron↑, 2,   Iron↝, 1,   lipid-P↑, 3,   MDA↑, 1,   NQO1↓, 1,   NRF2↓, 3,   NRF2⇅, 1,   NRF2↑, 2,   ROS↑, 13,   ROS↓, 1,   ROS⇅, 1,   RPM↑, 1,   RPM↓, 1,   SOD↓, 1,   Trx1↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 5,   ETC↓, 1,   MMP↓, 3,  

Core Metabolism/Glycolysis

ACLY↓, 1,   AMPK↑, 1,   citrate↓, 1,   cMyc↓, 1,   ECAR↓, 1,   FASN↓, 1,   G6PD∅, 1,   GAPDH↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 6,   HK2↓, 2,   lactateProd↓, 2,   LDH↓, 2,   LDHA↓, 4,   NAD↓, 2,   PDH↑, 1,   PDK1↓, 3,   PFK1↓, 1,   PGK1↓, 1,   PGM1↓, 1,   p‑PKM2↓, 1,   PKM2↓, 2,   RNR↓, 1,   TCA↑, 1,   Warburg↓, 6,  

Cell Death

Akt↓, 1,   Apoptosis↑, 7,   autoS↑, 1,   BAX↑, 1,   Casp↑, 1,   proCasp3↑, 1,   Casp3↑, 1,   cl‑Casp3↑, 1,   cl‑Casp9↑, 1,   Cyt‑c↑, 1,   Ferroptosis↑, 2,   iNOS↓, 1,   JNK↑, 1,   MAPK↓, 1,   necrosis↑, 2,   TRAIL↑, 1,   TumCD↑, 3,   YAP/TEAD↓, 1,  

Transcription & Epigenetics

cJun↑, 1,   other↝, 8,   other↓, 1,   other↑, 1,   OV6↓, 1,   TET3↑, 2,   tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   GRP78/BiP↓, 1,   IRE1↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

BNIP3↓, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 8,   P53↑, 2,   PARP↑, 3,   PARP∅, 1,   PARP↓, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycD1/CCND1↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

CD133↓, 1,   CSCs↓, 1,   EMT↓, 2,   EpCAM↓, 1,   ERK↓, 2,   IGF-1↓, 1,   mTOR↓, 1,   PI3K↓, 1,   STAT3↓, 1,   STAT3⇅, 1,   p‑STAT3↓, 1,   TumCG∅, 1,   TumCG↓, 1,  

Migration

E-cadherin↑, 1,   Ki-67↓, 1,   MMP2↓, 1,   MMP9:TIMP1↑, 1,   MMPs↓, 1,   Smad1↑, 1,   TET1↑, 4,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 2,   TumMeta↑, 1,   TumMeta↓, 2,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   eNOS↑, 1,   HIF-1↓, 1,   Hif1a↝, 1,   Hif1a↓, 7,   VEGF↓, 2,  

Barriers & Transport

GLUT1↓, 6,   GLUT1↑, 1,   SVCT-2↝, 1,   SVCT-2∅, 3,   SVCT-2↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 2,   CRP↓, 1,   IFN-γ↓, 1,   IL1β↓, 1,   IL2↓, 1,   IL6↓, 1,   IL8↓, 1,   Inflam↓, 1,   NF-kB↑, 2,   NF-kB↓, 2,   PD-L1↓, 1,   PGE2↓, 1,   PSA↓, 1,   TNF-α↓, 1,  

Cellular Microenvironment

pH↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 2,   ChemoSen↑, 8,   ChemoSen↓, 1,   Dose↑, 2,   Dose↝, 6,   Dose?, 3,   Dose∅, 1,   eff↑, 28,   eff↓, 9,   eff↝, 2,   Half-Life↝, 1,   RadioS↓, 1,   selectivity↑, 8,   TET2↑, 10,  

Clinical Biomarkers

ALP↓, 1,   CRP↓, 1,   Ferritin↓, 1,   IL6↓, 1,   Ki-67↓, 1,   LDH↓, 2,   PD-L1↓, 1,   PSA↓, 1,  

Functional Outcomes

AntiCan↑, 4,   AntiTum↑, 2,   chemoPv↑, 1,   ChemoSideEff↓, 2,   ChemoSideEff∅, 1,   cognitive↑, 1,   OS↑, 5,   Pain↓, 1,   QoL↑, 3,   radioP↑, 2,   Remission↑, 1,   Risk↓, 2,   TumVol↓, 1,   Weight↑, 1,  

Infection & Microbiome

CD8+↑, 1,   Sepsis↓, 1,  
Total Targets: 191

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 10,   Catalase↑, 2,   GPx∅, 1,   GPx↑, 2,   GPx4↑, 1,   GSH∅, 1,   GSH↑, 1,   MDA↓, 1,   MDA∅, 1,   NRF2↑, 2,   NRF2↓, 1,   RNS↓, 1,   ROS↓, 15,   mt-ROS↓, 1,   selenoP↑, 1,   SOD↑, 3,   SOD↓, 1,  

Mitochondria & Bioenergetics

MMP↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   glucose↓, 1,   LDH∅, 1,  

Cell Death

Apoptosis∅, 1,   JNK↑, 1,   MAPK↑, 1,   p38↑, 1,   p38↓, 1,  

Transcription & Epigenetics

other↓, 2,   other↑, 2,   other↝, 5,  

Protein Folding & ER Stress

ATF6↓, 1,   CHOP↑, 1,   eIF2α↓, 1,   cl‑eIF2α↑, 1,   ER Stress↓, 4,   GRP78/BiP↓, 3,   GRP78/BiP↑, 1,   p‑PERK↑, 1,   XBP-1↓, 1,  

DNA Damage & Repair

DNAdam↓, 2,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   TumCG∅, 1,  

Migration

AP-1↑, 1,   CLDN1↝, 1,   MMP2↓, 2,   MMP9↓, 2,   MMPs↓, 1,   TIMP1↓, 1,   TIMP2↑, 1,   ZO-1↝, 1,  

Barriers & Transport

BBB↑, 1,   GLUT1↓, 1,   SVCT-2↑, 1,  

Immune & Inflammatory Signaling

AIM2↓, 1,   CRP↓, 1,   IL12↑, 1,   IL1β↓, 2,   IL2↑, 1,   IL6↑, 1,   IL6↓, 2,   Inflam↓, 7,   NF-kB↓, 1,   TNF-α↓, 3,   VitD↑, 1,  

Cellular Microenvironment

pH↝, 1,  

Protein Aggregation

NLRP3↓, 3,  

Drug Metabolism & Resistance

BioAv↑, 1,   Dose↝, 10,   Dose?, 1,   eff↑, 8,   selectivity↑, 1,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BG↓, 1,   CRP↓, 1,   IL6↑, 1,   IL6↓, 2,   LDH∅, 1,   VitD↑, 1,  

Functional Outcomes

cognitive↑, 4,   Hear↑, 1,   hepatoP↑, 1,   neuroP↑, 4,   Obesity↓, 1,   OS↑, 1,   radioP↑, 2,   Risk↓, 3,   toxicity↓, 3,   toxicity↝, 1,  

Infection & Microbiome

AntiViral↑, 1,   Bacteria↓, 4,  
Total Targets: 91

Research papers

Year Title Authors PMID Link Flag
2018Nutrition strategies that improve cognitive functionRosa María Martínez García30351155https://pubmed.ncbi.nlm.nih.gov/30351155/0
2025Investigating the Anti-cancer Potential of Silver Nanoparticles Synthesized by Chemical Reduction of AgNO3 Using Trisodium Citrate and Ascorbic AcidK. S. Dhanyahttps://link.springer.com/chapter/10.1007/978-981-95-2697-0_130
2024Eco-friendly Synthesis of Silver Nanoparticles using Ascorbic Acid and its Optical CharacterizationBriana Andronicescuhttps://arc.ungjournals.org/articles/220
2024Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in SolutionTitilope John Jayeoyehttps://link.springer.com/article/10.1007/s11468-024-02413-20
2024Silver nanoparticles from ascorbic acid: Biosynthesis, characterization, in vitro safety profile, antimicrobial activity and phytotoxicityLailla Daianna Soltau Missio Pinheirohttps://www.sciencedirect.com/science/article/abs/pii/S025405842400840X0
2022Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability StudyKatherine Guzmanhttps://www.researchgate.net/publication/363467065_Ascorbic_Acid-assisted_Green_Synthesis_of_Silver_Nanoparticles_pH_and_Stability_Study0
2021Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health ImpactsJessica Shenghttps://carleton.scholaris.ca/server/api/core/bitstreams/3d183d09-0d42-4be8-9f30-5dbfd0cf915d/content0
2021Current Research on Silver Nanoparticles: Synthesis, Characterization, and ApplicationsSonika Dawadihttps://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/66872900
2017The Long-Term Survival of a Patient With Stage IV Renal Cell Carcinoma Following an Integrative Treatment Approach Including the Intravenous α-Lipoic Acid/Low-Dose Naltrexone ProtocolBurton M BerksonPMC6142095https://pmc.ncbi.nlm.nih.gov/articles/PMC6142095/0
2022Using Supplements During Chemo: Yes or No?Karen Sabbath, MS, RD, CSOhttps://www.leevercancercenter.org/blog/using-supplements-during-chemo-yes-or-no/0
2015Effects of Antioxidants and Pro-oxidants on Cytotoxicity of Dihydroartemisinin to Molt-4 Human Leukemia CellsTHOMAS GERHARDT25862840https://pubmed.ncbi.nlm.nih.gov/25862840/0
2017Impact of Diet on Learning, Memory and CognitionAmy C ReicheltPMC5437154https://pmc.ncbi.nlm.nih.gov/articles/PMC54371540
2017Editorial: Impact of Diet on Learning, Memory and CognitionAmy C ReicheltPMC5437154https://pmc.ncbi.nlm.nih.gov/articles/PMC54371540
2020Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancersMaira Di TanoPMC7214421https://pmc.ncbi.nlm.nih.gov/articles/PMC7214421/0
2020A fasting-mimicking diet and vitamin C: turning anti-aging strategies against cancerMaira Di TanoPMC7469657https://pmc.ncbi.nlm.nih.gov/articles/PMC7469657/0
2024Pharmacologic Ascorbate and Ferumoxytol Combined with Temozolomide and Radiation Therapy for the Treatment of Newly Diagnosed GlioblastomaNIHhttps://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2023-01753&r=10
2023Hydrogen and Vitamin C Combination Therapy: A Novel Method of RadioprotectionMichiko Miyakawahttps://www.preprints.org/manuscript/202312.1369/v10
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2017Lycopene, resveratrol, vitamin C and FeSO4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications.I. Dueñas-Garcíahttps://www.semanticscholar.org/paper/Lycopene%2C-resveratrol%2C-vitamin-C-and-FeSO4-increase-Due%C3%B1as-Garc%C3%ADa-Heres-Pulido/bda54f083ab984160e34f0c823cdc9237462da4e0
2020Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juiceJingya Qianhttps://link.springer.com/article/10.1007/s13197-020-04801-y0
2020Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapyBo Yuhttps://www.nature.com/articles/s41467-020-17380-50
2016Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicalsEmrys W. Evanshttps://pubs.aip.org/aip/jcp/article/145/8/085101/561871/Sub-millitesla-magnetic-field-effects-on-the0
2014Alternative radical pairs for cryptochrome-based magnetoreceptionAlpha A LeePMC4006233https://pmc.ncbi.nlm.nih.gov/articles/PMC4006233/0
2012Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybeanM B Shine22253132https://pubmed.ncbi.nlm.nih.gov/22253132/0
2009Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic ResonanceNadia Catallohttps://www.researchgate.net/publication/40728270_Static_Magnetic_Field_Effect_on_the_Fremy's_Salt-Ascorbic_Acid_Chemical_Reaction_Studied_by_Continuous-Wave_Electron_Paramagnetic_Resonance0
2001The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer CellsNina Mikirova, Ph.D.https://isom.ca/wp-content/uploads/2020/01/JOM_2001_16_3_10_The_Effect_of_Alternating_Magnetic_Field_Exposure_and-.pdf0
2023A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancerJ Health Popul NutrPMC10375690https://pmc.ncbi.nlm.nih.gov/articles/PMC10375690/0
2022Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathwayDi ChenPMC9087272https://pmc.ncbi.nlm.nih.gov/articles/PMC9087272/0
2006Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period methodSeiichiro Fujisawa16433026https://pubmed.ncbi.nlm.nih.gov/16433026/0
2025Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfiteRadosveta Genchevahttps://www.sciencedirect.com/science/article/pii/S08915849250019960
2025Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum in vitro studyMohamed M. Desoukyhttps://www.nature.com/articles/s41598-024-79574-x0
2025Selenium nanoparticles: influence of reducing agents on particle stability and antibacterial activity at biogenic concentrationsAneta Bužkováhttps://pubs.rsc.org/en/content/articlehtml/2025/nr/d4nr05271d0
2025Synthesis, Characterization, and Cytotoxic Evaluation of Selenium NanoparticlesZinah Ayyed Habeebhttps://biomedpharmajournal.org/vol18no1/synthesis-characterization-and-cytotoxic-evaluation-of-selenium-nanoparticles/0
2024Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysisCatherine Thamayandhihttps://www.sciencedirect.com/science/article/abs/pii/S08824010240046500
2024Ascorbic acid-mediated selenium nanoparticles as potential antihyperuricemic, antioxidant, anticoagulant, and thrombolytic agentsMuhammad Aamir Ramzan Siddiquehttps://www.degruyterbrill.com/document/doi/10.1515/gps-2023-0158/html0
2023Nano and mesosized selenium and its synthesis using the ascorbic acid routeDaniela Štefankováhttps://www.sciencedirect.com/science/article/abs/pii/S00223093230032890
2022Synthesis of a Bioactive Composition of Chitosan–Selenium NanoparticlesK V ApryatinaPMC8943790https://pmc.ncbi.nlm.nih.gov/articles/PMC8943790/0
2021Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteinsNahid ShahabadiPMC8080047https://pmc.ncbi.nlm.nih.gov/articles/PMC8080047/0
2019Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activitySafieh Boroumandhttps://www.researchgate.net/publication/333473165_Selenium_nanoparticles_Synthesis_characterization_and_study_of_their_cytotoxicity_antioxidant_and_antibacterial_activity0
2023Vitamins and Radioprotective Effect: A ReviewInés LledóPMC10045031https://pmc.ncbi.nlm.nih.gov/articles/PMC10045031/0
2025Unraveling the molecular mechanisms of vitamin deficiency in Alzheimer's disease pathophysiologyVipul Sharmahttps://www.sciencedirect.com/science/article/pii/S26670321250000710
2025High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancerJia Huanghttps://www.sciencedirect.com/science/article/pii/S01712985250002700
2024Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrestAiora Cenigaonandia-Campillohttps://febs.onlinelibrary.wiley.com/doi/full/10.1002/1878-0261.136160
2024Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysisYing Liuhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X230043740
2024Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinomaGuoqiang SunPMC11143590https://pmc.ncbi.nlm.nih.gov/articles/PMC11143590/0
2024Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancerKaiyuan Wu38385781https://pubmed.ncbi.nlm.nih.gov/38385781/0
2024Safety of High-Dose Vitamin C in Non-Intensive Care Hospitalized Patients with COVID-19: An Open-Label Clinical StudySalvatore Corraohttps://www.mdpi.com/2077-0383/13/13/39870
2024Vitamin C inhibits NLRP3 inflammasome activation and delays the development of age-related hearing loss in male C57BL/6 miceJinlan Liuhttps://www.sciencedirect.com/science/article/abs/pii/S03043940240027510
2024Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer TreatmentTaufeeque AliPMC11201821https://pmc.ncbi.nlm.nih.gov/articles/PMC11201821/0
2024The Involvement of Ascorbic Acid in Cancer TreatmentDi GuoPMC11123810https://pmc.ncbi.nlm.nih.gov/articles/PMC11123810/0
2024Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 PathwayShuli Man38419398https://pubmed.ncbi.nlm.nih.gov/38419398/0
2024Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer ModelsPing ChenPMC11528587https://pmc.ncbi.nlm.nih.gov/articles/PMC11528587/0
2023The interplay between vitamin C and thyroidBahareh Farasati FarPMC10335618https://pmc.ncbi.nlm.nih.gov/articles/PMC10335618/0
2023Vitamin C boosts DNA demethylation in TET2 germline mutation carriersAurora TairaPMC9840351https://pmc.ncbi.nlm.nih.gov/articles/PMC9840351/0
2023The NF-κB Transcriptional Network Is a High-Dose Vitamin C-Targetable Vulnerability in Breast CancerAli Mussahttps://www.mdpi.com/2227-9059/11/4/10600
2023Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effectChang Yu37702811https://pubmed.ncbi.nlm.nih.gov/37702811/0
2023ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasisMuhammad KashifPMC9945759https://pmc.ncbi.nlm.nih.gov/articles/PMC9945759/0
2023Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effectChang Yuhttps://www.researchgate.net/publication/373899916_Vitamin_C_inhibits_the_growth_of_colorectal_cancer_cell_HCT116_and_reverses_the_glucose-induced_oncogenic_effect_by_downregulating_the_Warburg_effect0
2023Selenium modulates cancer cell response to pharmacologic ascorbateConnor SR JankowskiPMC9532358https://pmc.ncbi.nlm.nih.gov/articles/PMC9532358/0
2022The Effect of Thiamine, Ascorbic Acid, and the Combination of Them on the Levels of Matrix Metalloproteinase-9 (MMP-9) and Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) in Sepsis PatientsBastian LubisPMC9531617https://pmc.ncbi.nlm.nih.gov/articles/PMC9531617/0
2022Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor MicroenvironmentWen-Ning LiPMC9179307https://pmc.ncbi.nlm.nih.gov/articles/PMC9179307/0
2022Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio)Wu Lhttps://europepmc.org/article/MED/356247980
2022Antioxidative and Anti-Inflammatory Activity of Ascorbic AcidAgnieszka GęgotekPMC9598715https://pmc.ncbi.nlm.nih.gov/articles/PMC9598715/0
2022Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cellsOctavio Morante-PalaciosPMC9638940https://pmc.ncbi.nlm.nih.gov/articles/PMC9638940/0
2022High-Dose Vitamin C for Cancer TherapyAli MussaPMC9231292https://pmc.ncbi.nlm.nih.gov/articles/PMC9231292/0
2022Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinomaDing PengPMC8771844https://pmc.ncbi.nlm.nih.gov/articles/PMC8771844/0
2022The Result of Vitamin C Treatment of Patients with Cancer: Conditions Influencing the EffectivenessJános HunyadyPMC9030840https://pmc.ncbi.nlm.nih.gov/articles/PMC9030840/0
2022Antioxidants in brain tumors: current therapeutic significance and future prospectsXuchen Qihttps://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-022-01668-90
2022Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironmentTakeru MaekawaPMC9531273https://pmc.ncbi.nlm.nih.gov/articles/PMC9531273/0
2022Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytesXiaoqin Luohttps://www.sciencedirect.com/science/article/pii/S03037207220018850
2021High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer PatientsManuela GiansantiPMC8003833https://pmc.ncbi.nlm.nih.gov/articles/PMC8003833/0
2021Vitamin C affects G0/G1 cell cycle and autophagy by downregulating of cyclin D1 in gastric carcinoma cellsChenxia Renhttps://academic.oup.com/bbb/article/85/3/553/6104873?login=false0
2021High-Dose Vitamin C in Advanced-Stage Cancer PatientsAnna Zasowska-NowakPMC7996511https://pmc.ncbi.nlm.nih.gov/articles/PMC7996511/0
2021Vitamin C supplementation had no side effect in non-cancer, but had anticancer properties in ovarian cancer cellsEwa Lucja Gregoraszczuk32008465https://pubmed.ncbi.nlm.nih.gov/32008465/0
2021Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome CancerJurnal ReangPMC8392841https://pmc.ncbi.nlm.nih.gov/articles/PMC8392841/0
2021Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancerAiora Cenigaonandia-CampilloPMC7914362https://pmc.ncbi.nlm.nih.gov/articles/PMC7914362/0
2020Vitamin C: A Review on its Role in the Management of Metabolic SyndromeSok Kuan WongPMC7359392https://pmc.ncbi.nlm.nih.gov/articles/PMC7359392/0
2020Ascorbic Acid Promotes Plasma Cell Differentiation through Enhancing TET2/3-Mediated DNA DemethylationTuan Qihttps://www.cell.com/cell-reports/fulltext/S2211-1247(20)31441-80
2020Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosisChia-Yu Changhttps://www.sciencedirect.com/science/article/abs/pii/S08915849193245290
2020Chemoprevention of prostate cancer cells by vitamin C plus quercetin: role of Nrf2 in inducing oxidative stressAli Abbasihttps://www.researchgate.net/publication/344254995_Chemoprevention_of_Prostate_Cancer_Cells_by_Vitamin_C_plus_Quercetin_role_of_Nrf2_in_Inducing_Oxidative_Stress0
2020Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitateGokce Dicle KalayciogluPMC7691729https://pmc.ncbi.nlm.nih.gov/articles/PMC7691729/0
2020Therapeutic Use of Vitamin C in Cancer: Physiological ConsiderationsFrancisco J RoaPMC7063061https://pmc.ncbi.nlm.nih.gov/articles/PMC7063061/0
2020Two Faces of Vitamin C—Antioxidative and Pro-Oxidative AgentJulia Kaźmierczak-BarańskaPMC7285147https://pmc.ncbi.nlm.nih.gov/articles/PMC7285147/0
2019Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcytosine loss in renal cell carcinomaNiraj ShenoyPMC6436862https://pmc.ncbi.nlm.nih.gov/articles/PMC6436862/0
2019High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transitionLing-Hui ZengPMC6753468https://pmc.ncbi.nlm.nih.gov/articles/PMC6753468/0
2019The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stressXiaoyuan Ren30703479https://pubmed.ncbi.nlm.nih.gov/30703479/0
2019Ascorbic acid improves parthenogenetic embryo development through TET proteins in miceWei GaoPMC6328890https://pmc.ncbi.nlm.nih.gov/articles/PMC6328890/0
2019Hepatoprotective benefits of vitamin C against perfluorooctane sulfonate-induced liver damage in mice through suppressing inflammatory reaction and ER stressMin Suhttps://www.sciencedirect.com/science/article/abs/pii/S13826689183056720
2019Ascorbic Acid in Cancer Treatment: Let the Phoenix FlyNiraj ShenoyPMC6234047https://pmc.ncbi.nlm.nih.gov/articles/PMC6234047/0
2019Enhanced Anticancer Effect of Adding Magnesium to Vitamin C Therapy: Inhibition of Hormetic Response by SVCT-2 ActivationSungrae ChoPMC6940627https://pmc.ncbi.nlm.nih.gov/articles/PMC6940627/0
2019The Effect of Vitamin C (Ascorbic Acid) in the Treatment of Patients with Cancer: A Systematic ReviewGwendolyn NY van GorkomPMC6566697https://pmc.ncbi.nlm.nih.gov/articles/PMC6566697/0
2019The Levels of Ascorbic Acid in Blood and Mononuclear Blood Cells After Oral Liposome-Encapsulated and Oral Non-Encapsulated Vitamin C Supplementation, Taken Without and with IV HydrocortisoneLevy, T.https://isom.ca/article/the-levels-of-ascorbic-acid-in-blood-and-mononuclear-blood-cells-after-oral-liposome-encapsulated-and-oral-non-encapsulated-vitamin-c-supplementation-taken-without-and-with-iv-hydrocortisone/0
2019Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological ConcentrationsElzbieta Pawlowskahttps://www.researchgate.net/publication/338155754_Pro-_and_Antioxidant_Effects_of_Vitamin_C_in_Cancer_in_correspondence_to_Its_Dietary_and_Pharmacological_Concentrations0
2018Ascorbic Acid in Colon Cancer: From the Basic to the Clinical ApplicationsIbrahim El HalabiPMC6164730https://pmc.ncbi.nlm.nih.gov/articles/PMC6164730/0
2018Systematic Review of Intravenous Ascorbate in Cancer Clinical TrialsGina NaumanPMC6071214https://pmc.ncbi.nlm.nih.gov/articles/PMC6071214/0
2018Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia ProgressionLuisa CimminoPMC5755977https://pmc.ncbi.nlm.nih.gov/articles/PMC5755977/0
2018Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2Hongwei Lvhttps://www.nature.com/articles/s41698-017-0044-80
2018Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and BarasertibDONIKA IVANOVAhttps://ar.iiarjournals.org/content/38/3/14070
2018Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expressionDavid W. Santhttps://www.nature.com/articles/s41598-018-23714-70
2018Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stressBin YinPMC6045543https://pmc.ncbi.nlm.nih.gov/articles/PMC6045543/0
2017The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cellsZohreh Mostafavi-PourPMC5403368https://pmc.ncbi.nlm.nih.gov/articles/PMC5403368/0
2017Low levels of catalase enzyme make cancer cells vulnerable to high-dose ascorbateUniversity of Iowahttps://medicine.uiowa.edu/content/why-high-dose-vitamin-c-kills-cancer-cells0
2017Vitamin C Status and Cognitive Function: A Systematic ReviewNikolaj TravicaPMC5622720https://pmc.ncbi.nlm.nih.gov/articles/PMC5622720/0
2017Suppression of alkaline phosphatase in prostate cancer patients by high dose intravenous Vitamin C Treatment: Three casesNina A Mikirovahttps://www.researchgate.net/publication/324771538_Suppression_of_alkaline_phosphatase_in_prostate_cancer_patients_by_high_dose_intravenous_Vitamin_C_Treatment_Three_cases0
2017High Dose IV Vitamin C and Metastatic Breast Cancer: A Case ReportBerdiel MJhttps://isom.ca/article/high-dose-iv-vitamin-c-metastatic-breast-cancer-case-report/0
2017Acute Effects of Vitamin C Exposure On Colonic Crypts: Direct Modulation of pH RegulationMohammed M. Aldajanihttps://karger.com/cpb/article/44/1/377/153257/Acute-Effects-of-Vitamin-C-Exposure-On-Colonic0
2017Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cellsN Shenoyhttps://www.nature.com/articles/bcj2017650
2017Effect of Vitamin C on Reactive Oxygen Species Formation in Erythrocytes of Sickle Cell Anemia PatientsOgechukwu Egini, MD MSchttps://ashpublications.org/blood/article/130/Supplement%201/4778/72513/Effect-of-Vitamin-C-on-Reactive-Oxygen-Species0
2016Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancerOscar AguileraPMC5216991https://pmc.ncbi.nlm.nih.gov/articles/PMC5216991/0
2016Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo−/− miceLucie AumailleyPMC4833140https://pmc.ncbi.nlm.nih.gov/articles/PMC4833140/0
2016Vitamin C inhibits the activation of the NLRP3 inflammasome by scavenging mitochondrial ROSXuesong Sanghttps://www.researchgate.net/publication/305624280_Vitamin_C_inhibits_the_activation_of_the_NLRP3_inflammasome_by_scavenging_mitochondrial_ROS0
2015Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stressMegumi UetakiPMC4563566https://pmc.ncbi.nlm.nih.gov/articles/PMC4563566/0
2015https://pmc.ncbi.nlm.nih.gov/articles/PMC4492638/Mohammed S ElluluPMC4492638https://pmc.ncbi.nlm.nih.gov/articles/PMC4492638/0
2015Treatment of Pancreatic Cancer with Pharmacological AscorbateJohn A CieslakPMC4895694https://pmc.ncbi.nlm.nih.gov/articles/PMC4895694/0
2015High-Dose Vitamin C Promotes Regression of Multiple Pulmonary Metastases Originating from Hepatocellular CarcinomaMin-Seok SeoPMC4541681https://pmc.ncbi.nlm.nih.gov/articles/PMC4541681/0
2015Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cellsSarah L MilesPMC4636772https://pmc.ncbi.nlm.nih.gov/articles/PMC4636772/0
2014Vitamin C Mitigates Oxidative Stress and Tumor Necrosis Factor-Alpha in Severe Community-Acquired Pneumonia and LPS-Induced MacrophagesYuanyuan ChenPMC4165740https://pmc.ncbi.nlm.nih.gov/articles/PMC4165740/0
2014Antioxidant Vitamin C attenuates experimental abdominal aortic aneurysm development in an elastase-induced rat modelTao Shang24484904https://pubmed.ncbi.nlm.nih.gov/24484904/0
2014Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, IV. S. Ghole https://www.researchgate.net/publication/303016925_Effect_of_Magnetic_Field_on_Ascorbic_Acid_Oxidase_Activity_I0
2013Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cellsKathryn Blaschkehttps://www.nature.com/articles/nature123620
2013The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced ToxicityWeihua TianPMC3916538https://pmc.ncbi.nlm.nih.gov/articles/PMC3916538/0
2013Vitamin C and Cancer: Is There A Use For Oral Vitamin C?Steve Hickey, PhDhttps://isom.ca/article/vitamin-c-cancer-use-oral-vitamin-c/0
2013Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in MammalsRuichuan Yinhttps://pubs.acs.org/doi/10.1021/ja40283460
2013Role of Vitamin C in the Function of the Vascular EndotheliumJames M MayPMC3869438https://pmc.ncbi.nlm.nih.gov/articles/PMC3869438/0
2012Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stressChristoph Klingelhoefferhttps://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/1472-6882-12-610
2011Extremely low frequency magnetic field induces oxidative stress in mouse cerebellumLi Y Chu22131325https://pubmed.ncbi.nlm.nih.gov/22131325/0
2011Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?Thomas E IchimPMC3061919https://pmc.ncbi.nlm.nih.gov/articles/PMC3061919/0
2010The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: implications for chemotherapeutic action against cancerM F Ullah20213077https://pubmed.ncbi.nlm.nih.gov/20213077/0
2010Effect of high-dose vitamin C on MMP2 expression and invasive ability in human pancreatic cancer cell line PANC-1Xiong CHENhttps://search.bvsalud.org/gim/resource/pt/wpr-3890940
2009High-dose Vitamin C (Ascorbic Acid) Therapy in the Treatment of Patients with Advanced CancerSATOSHI OHNOhttps://ar.iiarjournals.org/content/29/3/809.long0
2008Vitamin C stimulates or attenuates reactive oxygen and nitrogen species (ROS, RNS) production depending on cell state: Quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell levelChristian Amatorehttps://www.sciencedirect.com/science/article/abs/pii/S002207280700561X0
2008Protective effect of vitamin C on oxidative stress: a randomized controlled trialShizuka Sasazuki19003734https://pubmed.ncbi.nlm.nih.gov/19003734/0
2007Vitamin C promotes human endothelial cell growth via the ERK-signaling pathwayGudrun Ulrich-Merzenich17225921https://pubmed.ncbi.nlm.nih.gov/17225921/0
2007Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field Induced by Magnetic FieldNahed S. Hassanhttps://www.researchgate.net/publication/46028576_Protective_Effect_of_Ascorbic_Acid_on_Molecular_Behavior_Changes_of_Hemoglobin_Induced_by_Magnetic_Field_Induced_by_Magnetic_Field0
2007Some characteristics of Rabbit muscle phosphofructokinase-1 inhibition by ascorbatePercy Russellhttps://www.tandfonline.com/doi/full/10.1080/147563607016116210
2006Intravenously administered vitamin C as cancer therapy: three casesSebastian Jhttps://www.cmaj.ca/content/174/7/9370
2006Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 productionEduardo Candelario-Jalil16529823https://pubmed.ncbi.nlm.nih.gov/16529823/0
2005Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissuesQi Chenhttps://www.pnas.org/doi/full/10.1073/pnas.05063901020
2004Vitamin C Pharmacokinetics: Implications for Oral and Intravenous UseSebastian J. Padayattyhttps://www.acpjournals.org/doi/10.7326/0003-4819-140-7-200404060-000100
2004Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell lineTakahisa Tarumoto15050748https://pubmed.ncbi.nlm.nih.gov/15050748/0
2004The Use of Vitamin C with Chemotherapy in Cancer Treatment: An Annotated BibliographyJudith O. Stoutehttps://isom.ca/wp-content/uploads/2020/01/JOM_2004_19_4_02_The_Use_of_Vitamin_C_with_Chemotherapy_in_Cancer-.pdf0
2003Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancerEduardo Lasalvia-Prisco12665684https://pubmed.ncbi.nlm.nih.gov/12665684/0
2003The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapyJulien Verrax12767595https://pubmed.ncbi.nlm.nih.gov/12767595/0
2002Sixteen-Year History with High Dose Intravenous Vitamin C Treatment for Various Types of Cancer and Other DiseasesJames A. Jackson,https://riordanclinic.org/wp-content/uploads/2014/12/89023765_jom.pdf0
2000Vitamin C Inhibits NF-kB Activation by TNF Via the Activation of p38 Mitogen-Activated Protein KinaseAndrew G. Bowiehttps://www.tara.tcd.ie/bitstream/handle/2262/33699/Vitamin%20C%20inhibits%20NF-kappa%20B%20activation%20by%20TNF%20via%20the%20activation%20of%20p38%20mitogen-activated%20protein%20kinase.pdf;sequence=10
1990Case Study: High-Dose Intravenous Vitamin C in the Treatment of a Patient with Adenocarcinoma of the KidneyRiordan, Hhttps://isom.ca/article/case-study-high-dose-intravenous-vitamin-c-in-the-treatment-of-a-patient-with-adenocarcinoma-of-the-kidney/0
1990Characterization of a new malignant human T-cell line (PFI-285) sensitive to ascorbic acidJ Helgestad2307225https://pubmed.ncbi.nlm.nih.gov/2307225/0
1989Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 actionVincenzo Noto MDhttps://acsjournals.onlinelibrary.wiley.com/doi/10.1002/1097-0142(19890301)63:5%3C901::AID-CNCR2820630518%3E3.0.CO;2-G/abstract;jsessionid=E9C4FE55BE79464AB9945EAFA0709A5D.f02t020
2002Effects of fruits and vegetables on levels of vitamins E and C in the brain and their association with cognitive performanceA Martin12459890https://pubmed.ncbi.nlm.nih.gov/12459890/0
2018Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effectDonika Ivanovahttps://www.sciencedirect.com/science/article/pii/S22132317183009340
2012Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell DeathMarco TomasettiPMC3525640https://pmc.ncbi.nlm.nih.gov/articles/PMC3525640/0
2011Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanismAngelica R Bonilla-Porrashttps://cancerci.biomedcentral.com/articles/10.1186/1475-2867-11-190
2010Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin CMarina F VitaPMC3171656https://pmc.ncbi.nlm.nih.gov/articles/PMC3171656/0
2002Potential therapeutic application of the association of vitamins C and K3 in cancer treatmentP Buc Calderon12470246https://pubmed.ncbi.nlm.nih.gov/12470246/0