tbResList Print — MF Magnetic Fields

Filters: qv=172, qv2=%, rfv=%

Product

MF Magnetic Fields
Features: Therapy
Description: <b>Magnetic Fields</b> can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.<br>
The main pathways affected are:<br>
Calcium Signaling: -influence the activity of voltage-gated calcium channels.<br>
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways<br>
Heat Shock Proteins (HSPs) and Cellular Stress Responses<br>
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.<br>
Gene Expression and Epigenetic Modifications: NF-κB<br>
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)<br>
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models<br>

<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- most reports have
<a href="tbResList.php?qv=172&tsv=275&wNotes=on">ROS</a> production increasing in cancer cells
, while decreasing in normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=172&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=172&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=172&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=172&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=172&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=172&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=172&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=172&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
<!--
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=172&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=172&word=Trx&wNotes=on">TrxR↓**</a>,
<a href="tbResList.php?qv=172&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=172&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=172&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=172&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=172&wNotes=on&word=GPx">GPx↓</a>
<br> -->

- Raises
<a href="tbResList.php?qv=172&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=172&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=172&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=172&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=172&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=172&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<!-- genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM -->
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=172&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=172&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=172&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=235&wNotes=on&word=p38↓">p38↓</a>, --> Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=172&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=172&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=172&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=172&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=172&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=172&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=172&tsv=323&wNotes=on">TumCG↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=172&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=172&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=172&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=172&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=172&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?qv=172&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=172&tsv=334&wNotes=on">VEGF↓</a>(mostly regulated up in normal cells),
<!-- <a href="tbResList.php?qv=172&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=172&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=172&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=172&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=172&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=172&tsv=1247&wNotes=on">SDF1↓</a>,
<a href="tbResList.php?qv=172&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=172&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=172&tsv=105&wNotes=on">ERK↓</a>
<a href="tbResList.php?qv=172&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
<!--
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=172&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=172&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=172&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=172&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=TET">TET↑</a>
<br> -->

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=172&tsv=322&wNotes=on">TumCCA↑</a>,
<!--
<a href="tbResList.php?qv=172&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=172&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=172&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=172&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=172&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=172&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=172&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=172&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<!-- <a href="tbResList.php?qv=172&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=172&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=172&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=TOP">TOP1↓</a>,
<a href="tbResList.php?qv=172&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=172&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=172&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=172&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=172&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=172&tsv=772&wNotes=on">PKM2↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=35&wNotes=on">cMyc↓</a>, -->
<a href="tbResList.php?qv=172&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=172&tsv=906&wNotes=on">LDH↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=175&wNotes=on&word=LDH">LDHA↓</a>, -->
<a href="tbResList.php?qv=172&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=172&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=172&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=172&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=172&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=172&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=172&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=172&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=172&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=172&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=172&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=172&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=172&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=172&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=172&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=172&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=172&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=172&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=172&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=172&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=172&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=172&wNotes=on&word=NOTCH">Notch2↓</a>,
<a href="tbResList.php?qv=172&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=172&tsv=508&wNotes=on">OCT4↓</a>,
<br> -->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=172&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=172&tsv=4&wNotes=on">AKT↓</a>,
<!-- <a href="tbResList.php?qv=172&wNotes=on&word=JAK">JAK↓</a>, -->
<a href="tbResList.php?qv=172&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=172&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=172&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=9&wNotes=on">AMPK</a>, -->
<!-- <a href="tbResList.php?qv=172&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=172&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=172&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=172&tsv=168&wNotes=on">JNK</a>,


- <a href="tbResList.php?qv=172&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=172&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=172&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=172&tsv=1233&wNotes=on">cytoProtective</a>,
<a href="tbResList.php?qv=172&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=172&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=172&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=172&tsv=1105&wNotes=on">Neuroprotective</a>,
<!-- <a href="tbResList.php?qv=172&tsv=557&wNotes=on">Cognitive</a>, -->
<!-- <a href="tbResList.php?qv=172&tsv=1175&wNotes=on">Renoprotection</a>, -->
<a href="tbResList.php?qv=172&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=172&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=172&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>


Non-Static Magnetic Fields (AC / Pulsed / Oscillating MF)

<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (P→R); often sustained (G)</td>
<td>↑ ROS (P); ↔/↓ net ROS (R→G)</td>
<td>P, R, G</td>
<td>Upstream redox perturbation</td>
<td>MF perturbs electron/radical dynamics: normal cells often adapt (ROS setpoint ↓), cancer cells less so</td>
</tr>

<tr>
<td>2</td>
<td>NRF2 antioxidant response</td>
<td>↔ / insufficient NRF2 induction (R→G)</td>
<td>↑ NRF2 activation (R→G)</td>
<td>R, G</td>
<td>Adaptive redox defense</td>
<td>Explains mixed ROS direction in normal cells (initial ↑ then adaptive ↓)</td>
</tr>

<tr>
<td>3</td>
<td>Glutathione (GSH) homeostasis</td>
<td>↓ GSH (R→G)</td>
<td>↔ or transient ↓ (R) with recovery (G)</td>
<td>R, G</td>
<td>Redox buffering capacity</td>
<td>GSH depletion reflects sustained oxidative load; recovery indicates successful adaptation</td>
</tr>

<tr>
<td>4</td>
<td>Superoxide dismutase (SOD) / antioxidant enzymes</td>
<td>↔ or inadequate enzyme upshift (G)</td>
<td>↑ SOD/GPx/CAT capacity (G)</td>
<td>G</td>
<td>Longer-term antioxidant remodeling</td>
<td>Often the “endpoint” readout that correlates with ROS-normalization in normal tissue</td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial ETC / respiration</td>
<td>↓ ETC efficiency; ↑ electron leak (P→R)</td>
<td>↔ mild, reversible ETC perturbation (P→R)</td>
<td>P, R</td>
<td>Bioenergetic destabilization</td>
<td>ETC perturbation is a mechanistic bridge between MF exposure and ROS/ΔΨm changes</td>
</tr>

<tr>
<td>6</td>
<td>Mitochondrial membrane potential (ΔΨm / MMP)</td>
<td>↓ ΔΨm (R); may progress (G)</td>
<td>↔ preserved or reversible dip (R)</td>
<td>R, G</td>
<td>Mitochondrial dysfunction thresholding</td>
<td>ΔΨm loss typically follows ROS/ETC disruption rather than preceding it</td>
</tr>

<tr>
<td>7</td>
<td>Ca²⁺ signaling (VGCC / ER–mitochondria Ca²⁺ flux)</td>
<td>↑ dysregulated Ca²⁺ influx/transfer (P→R); overload may persist (G)</td>
<td>↑ transient Ca²⁺ signaling (P); homeostasis restored (R→G)</td>
<td>P, R, G</td>
<td>Stress signal amplification</td>
<td>Ca²⁺ dysregulation links ROS/ETC perturbation to ER stress and mitochondrial dysfunction (amplifies ΔΨm loss and UPR commitment)</td>
</tr>

<tr>
<td>8</td>
<td>Mitochondrial permeability transition pore (MPTP)</td>
<td>↑ MPTP opening propensity (R); sustained opening possible (G)</td>
<td>↔ transient or closed (R→G)</td>
<td>P, R, G</td>
<td>Commitment point for mitochondrial failure</td>
<td>MPTP opening integrates ROS, Ca²⁺ overload, and ΔΨm loss; acts as a threshold event converting reversible stress into irreversible mitochondrial dysfunction</td>
</tr>


<tr>
<td>9</td>
<td>ER stress / UPR</td>
<td>↑ ER stress (R); CHOP-commitment possible (G)</td>
<td>↑ adaptive UPR (R); resolves (G)</td>
<td>R, G</td>
<td>Proteostasis stress</td>
<td>Often downstream of ROS + Ca²⁺ handling perturbations</td>
</tr>

<tr>
<td>10</td>
<td>DNA damage (oxidative)</td>
<td>↑ damage markers (R→G)</td>
<td>↔ or repaired (G)</td>
<td>R, G</td>
<td>Checkpoint pressure</td>
<td>Generally secondary to ROS; interpret as stress consequence not “direct genotoxicity”</td>
</tr>

<tr>
<td>11</td>
<td>LDH / glycolytic flux</td>
<td>↓ glycolytic performance (R→G)</td>
<td>↔ flexible substrate switching (R→G)</td>
<td>R, G</td>
<td>Metabolic vulnerability</td>
<td>Redox imbalance can destabilize high-rate glycolysis in cancer-biased contexts</td>
</tr>

<tr>
<td>12</td>
<td>Thioredoxin system (Trx / TrxR)</td>
<td>↓ functional reserve / overload (R→G)</td>
<td>↔ preserved capacity (G)</td>
<td>R, G</td>
<td>Parallel antioxidant system stress</td>
<td>Useful when GSH-only does not explain redox phenotype</td>
</tr>

</table>
<pre>
Time-Scale Flag: TSF = P / R / G
P: 0–30 min (physical / electron / radical effects)
R: 30 min–3 hr (redox signaling & stress response)
G: >3 hr (gene-regulatory adaptation)
</pre>
MPTP: opening represents a mitochondrial commitment event integrating ROS and Ca²⁺ stress; sustained opening indicates irreversible bioenergetic failure.<br>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ATF3↑, 1,   Catalase↑, 4,   Catalase↓, 1,   Fenton↑, 1,   Ferroptosis↑, 1,   GPx↓, 1,   GPx1↑, 1,   GPx1↓, 1,   GPx4↓, 1,   GSH↓, 1,   GSH↑, 1,   GSH/GSSG↓, 2,   GSR↑, 1,   mt-H2O2↑, 1,   H2O2↑, 5,   Iron↑, 1,   MDA↑, 1,   OXPHOS↑, 3,   Prx6↑, 1,   ROS↑, 8,   ROS↝, 2,   mt-ROS↑, 2,   RPM↑, 2,   RPM↓, 1,   SIRT3↑, 1,   SOD↓, 1,   SOD↑, 1,   SOD1↑, 1,   SOD1↓, 1,   SOD2↑, 2,   SOD2↓, 1,   Thiols↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 2,   ATP↑, 1,   ATP⇅, 1,   ATP↓, 2,   ATP∅, 1,   ETC↓, 5,   mitResp↓, 1,   mitResp↑, 1,   MMP?, 1,   MMP↓, 8,   MMP↑, 1,   MPT↑, 2,   mtDam↑, 1,   OCR↓, 1,   OCR↑, 1,   PGC-1α↑, 1,   PleEff↓, 1,   SDH↓, 2,   UCP1↓, 1,  

Core Metabolism/Glycolysis

ACAA1↓, 1,   ALAT↓, 2,   BCAP↓, 1,   cAMP⇅, 1,   cMyc↓, 1,   DHCR24↑, 1,   ECAR↓, 1,   FABP4↓, 1,   GlucoseCon↓, 1,   Glycolysis∅, 1,   Glycolysis↓, 3,   lactateProd↑, 1,   PCK1↓, 1,   PKM2↓, 1,   PLIN1↓, 1,   PPARγ↑, 1,   Pyruv↓, 2,   SIRT1↑, 1,   TCA?, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 4,   p‑Akt↓, 2,   Apoptosis↑, 5,   p‑BAD↓, 1,   Bak↑, 1,   BAX↑, 4,   Bcl-2↓, 2,   Casp↑, 1,   Casp↝, 1,   Casp3↑, 2,   Casp3↓, 1,   cl‑Casp3↑, 1,   Casp7↑, 4,   Casp7↓, 1,   cl‑Casp7↑, 1,   cl‑Casp8↑, 1,   Casp9↑, 3,   cl‑Casp9↑, 1,   Chk2↑, 2,   Cyt‑c↑, 4,   Cyt‑c↝, 1,   Endon↑, 1,   Fas↑, 1,   Ferroptosis↑, 1,   iNOS↑, 1,   JNK↑, 1,   lysoMP↑, 2,   lysoMP↓, 2,   MAPK↑, 3,   MAPK↓, 1,   Mcl-1↓, 1,   Necroptosis↑, 1,   necrosis↑, 1,   p38↑, 2,   survivin↓, 2,   TRAIL↓, 1,   TRPV1↑, 1,   TumCD↑, 11,   TumCD∅, 1,  

Transcription & Epigenetics

BowelM↑, 2,   ChrMod↑, 2,   miR-129-5p↑, 1,   miR-21↑, 1,   other↑, 1,   other↓, 1,   other∅, 1,   other↝, 2,   tumCV↓, 6,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 3,   ER Stress↓, 1,   GRP78/BiP↑, 2,   GRP94↑, 1,   HSP70/HSPA5↑, 5,   HSP70/HSPA5↓, 1,   HSP70/HSPA5∅, 1,   HSP90↓, 1,   HSPs∅, 1,   HSPs↑, 1,   UPR↑, 2,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 1,   LC3II↑, 1,   p62↑, 1,   TumAuto↑, 2,  

DNA Damage & Repair

ATM↑, 1,   p‑CHK1↓, 1,   DNAdam↑, 9,   P53↑, 3,   P53↝, 1,   cl‑PARP↑, 3,   p‑γH2AX↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

p‑CDK2↓, 1,   CycB/CCNB1↓, 1,   cycE/CCNE↓, 1,   E2Fs↓, 1,   P21↑, 1,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

CD133↓, 1,   CD44↓, 1,   CSCs↓, 2,   Diff↑, 1,   ERK↑, 1,   p‑ERK↑, 1,   p‑ERK↝, 1,   GSK‐3β↑, 1,   miR-125b↓, 1,   miR-34a↑, 1,   mTOR↓, 1,   Nanog↓, 1,   PI3K↓, 2,   PTEN↓, 1,   RAS↑, 1,   SOX2↓, 1,   STAT3↑, 1,   p‑STAT3↑, 1,   TumCG↓, 3,   VGCC↑, 1,  

Migration

Ca+2↑, 3,   Ca+2↓, 1,   Ca+2↝, 2,   i-Ca+2↑, 1,   CAFs/TAFs↓, 1,   Cartilage↑, 1,   CCDC150↓, 1,   COL4↓, 1,   CXCL12↓, 1,   F-actin↓, 1,   FOSB↑, 1,   ITGA1∅, 1,   ITGA11↓, 1,   ITGA5∅, 1,   ITGB1∅, 1,   ITGB3∅, 1,   ITGB4∅, 1,   LAMB3↑, 1,   miR-155↑, 1,   miR-200c↓, 1,   miR-486↑, 1,   MMP1↑, 1,   MMP2↓, 1,   MMP2↑, 2,   MMP2∅, 1,   MMP3↑, 1,   MMP9↓, 1,   MMP9↑, 1,   MMP9∅, 1,   MMPs↓, 1,   Rho↓, 1,   Slug↓, 1,   p‑SMAD2↓, 1,   SMAD3↓, 1,   p‑SMAD3↓, 1,   TGF-β↓, 2,   THBS2↓, 1,   TRPC1↑, 1,   TumCI↓, 7,   TumCMig↓, 7,   TumCP↓, 1,   TumCP∅, 1,   TumCP⇅, 1,   TumMeta↓, 7,   Twist↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↑, 1,   angioG↓, 6,   ECM/TCF↓, 1,   EGFR↓, 1,   EGFR↝, 1,   p‑EGFR↓, 1,   EPR↑, 2,   Hif1a↓, 1,   miR-126↓, 1,   miR-210↑, 1,   NO↑, 1,   nucleolin↑, 1,   VEGF↑, 1,   VEGF↓, 2,   VEGFR2↓, 2,  

Barriers & Transport

CellMemb↑, 7,   P-gp↓, 2,  

Immune & Inflammatory Signaling

CD4+↓, 1,   CD4+↑, 3,   COX2↓, 1,   CXCc↓, 1,   CXCL9↓, 1,   DCells↑, 3,   FOXP3↓, 1,   GM-CSF↓, 1,   IFN-γ↓, 1,   IL1↑, 1,   IL10↑, 1,   IL12↑, 1,   IL17↓, 2,   IL22↓, 1,   IL23↓, 1,   IL28↓, 1,   IL6↓, 2,   IL6↑, 1,   IL9↓, 1,   Imm↑, 2,   Inflam↓, 1,   LIF↑, 1,   Macrophages↑, 1,   NF-kB↑, 1,   NF-kB↓, 1,   PD-L1↑, 1,   RANTES↓, 1,   T-Cell↑, 1,   TNF-α↓, 1,   TNF-α↑, 1,  

Cellular Microenvironment

i-pH↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 11,   ChemoSen∅, 1,   Dose↝, 7,   Dose∅, 2,   Dose?, 1,   Dose↓, 1,   eff↓, 13,   eff↑, 30,   eff↝, 13,   eff⇅, 1,   RadioS↑, 4,   selectivity↑, 25,  

Clinical Biomarkers

ALAT↓, 2,   AST↓, 1,   BloodF↑, 1,   BMD↑, 1,   BMPs↑, 1,   Calcium↑, 1,   EGFR↓, 1,   EGFR↝, 1,   p‑EGFR↓, 1,   Ferritin↓, 1,   IL6↓, 2,   IL6↑, 1,   PD-L1↑, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 1,   Appetite↑, 2,   breath↑, 2,   chemoP↑, 2,   ChemoSideEff↓, 1,   cognitive↑, 2,   hepatoP↑, 1,   OS↑, 2,   OS⇅, 1,   Pain↓, 1,   QoL↑, 3,   radioP↑, 2,   Sleep↑, 3,   Strength↑, 4,   toxicity↓, 1,   TumVol↓, 1,   Weight↑, 2,  

Infection & Microbiome

Bacteria↓, 1,   CD8+↓, 1,   CD8+↑, 3,  
Total Targets: 314

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 9,   Catalase↑, 8,   GPx∅, 1,   GPx↑, 4,   GPx1↑, 5,   GPx3↑, 1,   GPx4↑, 5,   GSH∅, 1,   GSH↑, 1,   GSR↑, 3,   GSSG↓, 1,   HO-1↑, 1,   Keap1↓, 1,   MDA↓, 5,   MDA↑, 1,   NRF2↑, 3,   OXPHOS↓, 2,   OXPHOS↑, 2,   ROMO1↑, 1,   ROS∅, 1,   ROS↓, 28,   ROS↑, 8,   ROS↝, 1,   ROS⇅, 2,   mt-ROS↑, 2,   RPM↑, 1,   SOD↑, 9,   SOD1↑, 5,   SOD2↓, 1,   SOD2↑, 5,   TAC↑, 1,   Trx↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,   ATP↑, 3,   ETC↓, 2,   Insulin↓, 1,   mitResp↓, 1,   MMP∅, 1,   MMP↝, 1,   MMP↑, 3,   MMP⇅, 1,   MPT↑, 1,   mt-OCR↑, 1,   OCR↑, 1,   PGC-1α↑, 2,  

Core Metabolism/Glycolysis

AMPK↑, 2,   cAMP↑, 2,   p‑CREB↑, 1,   ECAR↓, 1,   ECAR↑, 1,   FABP4↓, 1,   FAO↑, 1,   FAO↓, 1,   Glycolysis↑, 2,   Glycolysis↓, 1,   HK2↑, 2,   lactateProd↓, 1,   LDH↓, 1,   LDHB↑, 1,   NAD↑, 1,   PFKL↑, 2,   PFKM↑, 2,   PFKP↑, 1,   PKM2↑, 2,   PONs↓, 1,   PPARγ↓, 1,   PPP↓, 1,   SREBP1↓, 1,   TCA↑, 1,  

Cell Death

p‑Akt↑, 1,   p‑Akt↓, 1,   Akt↑, 2,   Akt↓, 2,   Apoptosis↓, 6,   BAD↓, 1,   BAX↓, 3,   Bcl-2∅, 1,   Bcl-2↑, 1,   Bcl-xL↑, 1,   BMP2↑, 2,   proCasp1↓, 1,   cl‑Casp1↓, 1,   Casp1↓, 1,   Casp3↓, 2,   Cyt‑c↑, 2,   GSDMD↓, 1,   GSDMD?, 1,   HEY1↑, 1,   HGF/c-Met↑, 1,   iNOS↓, 3,   iNOS↑, 1,   p‑JNK↓, 1,   p‑JNK↑, 3,   MAPK↓, 1,   MAPK↑, 2,   necrosis↓, 1,   p38↑, 2,   p‑p38↓, 1,   RKIP↑, 1,   YAP/TEAD↑, 1,  

Kinase & Signal Transduction

OCN∅, 1,   OCN↑, 1,   SOX9↑, 2,  

Transcription & Epigenetics

Ach↑, 1,   other↑, 13,   other↝, 9,   other?, 2,   other↓, 2,   TREM-1↓, 1,   tumCV↑, 1,  

Protein Folding & ER Stress

ER Stress↑, 1,   HSP70/HSPA5↑, 5,   HSPs↑, 1,  

DNA Damage & Repair

P53↓, 1,  

Cell Cycle & Senescence

E2Fs↑, 1,   P21↓, 1,  

Proliferation, Differentiation & Cell State

ALDH↑, 1,   cFos↑, 1,   Diff↓, 1,   Diff↑, 9,   p‑ERK↑, 2,   p‑ERK↓, 1,   ERK↓, 1,   ERK↑, 2,   FGF↑, 5,   p‑GSK‐3β↑, 1,   GSK‐3β↓, 1,   IGF-1↑, 1,   MSCs↑, 1,   mTOR↓, 4,   mTOR↑, 2,   mTOR↝, 1,   NOTCH↑, 1,   NOTCH1↑, 1,   p‑P70S6K↑, 1,   PI3K↑, 1,   PI3K↓, 1,   PTEN↑, 1,   RUNX2∅, 1,   RUNX2↑, 1,   STAT3↓, 2,   p‑STAT3↓, 1,   TumCG∅, 1,   TumCG↑, 1,   VGCC↑, 1,   Wnt↑, 3,  

Migration

APP∅, 1,   ARG↑, 1,   Ca+2↓, 5,   Ca+2↝, 1,   Ca+2∅, 1,   Ca+2↑, 11,   i-Ca+2↓, 1,   Cartilage↑, 2,   CDK5↓, 1,   COL1∅, 1,   COL2A1↑, 2,   F-actin↑, 1,   FAK↑, 2,   ITGB1↑, 1,   MMP-10↓, 1,   MMP1↓, 1,   MMP2↑, 2,   MMP9↓, 3,   MMP9↑, 2,   MMPs↑, 1,   Netrins↑, 1,   OPN↑, 1,   PDGF↑, 1,   PKA↑, 1,   PKCδ↓, 1,   SMAD4↑, 1,   SMAD5↑, 1,   STAC2↑, 1,   TGF-β↑, 4,   TGF-β1↑, 1,   TIMP1↑, 2,   TIMP2↑, 1,   Treg lymp↓, 1,   TRPC1↑, 1,   TumCMig↑, 1,   β-catenin/ZEB1↑, 4,   β-Endo↑, 2,  

Angiogenesis & Vasculature

angioG↑, 7,   angioG↝, 1,   EGR4↑, 1,   HIF-1↓, 1,   Hif1a∅, 2,   Hif1a↑, 2,   Hif1a↝, 1,   HIF2a↑, 1,   miR-34b-5p↓, 1,   NO↓, 4,   NO↑, 5,   NPY↑, 1,   PDGFR-BB↑, 1,   VEGF↑, 11,   VEGF↓, 1,   VEGFR2↑, 1,  

Barriers & Transport

BBB↑, 1,   GLUT1↑, 2,   GLUT4↑, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 2,   CXCc↓, 1,   GM-CSF↑, 1,   IFN-γ↓, 1,   p‑IKKα↓, 2,   IL1↓, 2,   IL1↑, 1,   IL10↑, 5,   IL17↓, 1,   IL1β↓, 6,   IL1β↑, 1,   IL2↑, 1,   IL4↑, 1,   IL6↓, 6,   IL6↑, 1,   IL8↓, 2,   Inflam↓, 26,   Inflam∅, 1,   IP-10/CXCL-10↑, 1,   p‑IκB↓, 1,   MCP1↓, 1,   MCP1↑, 2,   MIP‑1α↓, 1,   mPGES-1↓, 1,   MyD88↓, 1,   NF-kB↓, 6,   p‑p65↓, 1,   PGE2↓, 3,   PGE2↑, 1,   TLR4↓, 1,   TNF-α↓, 8,   TNF-α↑, 1,  

Cellular Microenvironment

pH↑, 1,  

Synaptic & Neurotransmission

5HT↓, 2,   5HT↑, 2,   AChE↓, 1,   BDNF↑, 10,   NGF↑, 1,   PSD95↑, 1,   p‑tau↓, 2,  

Protein Aggregation

Aβ↓, 9,   Aβ?, 1,   Aβ∅, 2,   BACE↓, 1,   NLRP3↓, 2,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   BioEnh↑, 4,   Dose↝, 18,   Dose∅, 1,   eff↝, 5,   eff↓, 6,   eff↑, 16,   selectivity↑, 2,  

Clinical Biomarkers

ALP∅, 1,   ALP↑, 2,   BMD↑, 12,   BMPs↓, 1,   BMPs↑, 1,   GutMicro↑, 1,   IL6↓, 6,   IL6↑, 1,   LDH↓, 1,   NSE↑, 1,  

Functional Outcomes

AntiAge↑, 2,   cardioP↑, 3,   cognitive↑, 19,   cognitive∅, 1,   cytoP↑, 1,   hepatoP↑, 1,   memory↑, 19,   memory∅, 2,   Mood⇅, 1,   motorD↑, 10,   neuroP↑, 18,   OS↑, 2,   Pain↓, 5,   QoL↑, 4,   toxicity∅, 9,   toxicity↓, 5,   toxicity?, 1,   Weight∅, 1,  
Total Targets: 286

Research papers

Year Title Authors PMID Link Flag
2024Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field Hany G AttiaPMC11401528https://pmc.ncbi.nlm.nih.gov/articles/PMC11401528/0
2022Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro studyAly Fahmy MohamedPMC8817517 https://pmc.ncbi.nlm.nih.gov/articles/PMC8817517/0
2022Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro studyAly Fahmy MohamedPMC8817517https://pmc.ncbi.nlm.nih.gov/articles/PMC8817517/0
2022The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)Agnieszka Synowiec‑Wojtarowiczhttps://www.researchgate.net/publication/357987947_The_effect_of_a_static_magnetic_field_and_baicalin_or_baicalein_interactions_on_amelanotic_melanoma_cell_cultures_C320
2019Capsaicin: Effects on the Pathogenesis of Hepatocellular CarcinomaCristian ScheauPMC6651067https://pmc.ncbi.nlm.nih.gov/articles/PMC6651067/0
2022Characterization of mesenchymal stem cells with augmented internalization of magnetic nanoparticles: The implication of therapeutic potentialChing-Hui Chienhttps://www.sciencedirect.com/science/article/abs/pii/S03048853220094530
2022Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano-Bio InterfaceSheng-Chieh HsuPMC9330565https://pmc.ncbi.nlm.nih.gov/articles/PMC9330565/0
2018Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cellsWei Xiong Siowhttps://www.researchgate.net/publication/323871065_Interaction_of_poly-l-lysine_coating_and_heparan_sulfate_proteoglycan_on_magnetic_nanoparticle_uptake_by_tumor_cells0
2014Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interactionYi-Ching Lu25069428https://pubmed.ncbi.nlm.nih.gov/25069428/0
2019In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cellsMohammed A. Alshehri 31746453https://journals.viamedica.pl/folia_histochemica_cytobiologica/article/view/641080
2025PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting NeurodegenerationStefania Merighihttps://www.mdpi.com/1422-0067/26/13/64950
2025Examining the effects of extremely low-frequency magnetic fields on cognitive functions and functional brain markers in aged miceSenka HadzibegovicPMC11897315https://pmc.ncbi.nlm.nih.gov/articles/PMC11897315/0
2025Therapeutic potential and mechanisms of repetitive transcranial magnetic stimulation in Alzheimer’s disease: a literature reviewXinlei ZhangPMC11969782https://pmc.ncbi.nlm.nih.gov/articles/PMC11969782/0
2025Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancerMargit Egghttps://www.sciencedirect.com/science/article/pii/S22132317240046100
2025Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model studyFeng Liaohttps://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-025-04792-30
2025One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot StudyJan Nikolas IversenPMC11899448https://pmc.ncbi.nlm.nih.gov/articles/PMC11899448/0
2025Early intervention using long-term rhythmic pulsed magnetic stimulation alleviates cognitive decline in a 5xFAD mouse model of Alzheimer's diseaseXue Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00144886240032850
2025Extremely Low‐Frequency and Low‐Intensity Electromagnetic Field Technology (ELF‐EMF) Sculpts MicrotubulesAlexandra LobyntsevaPMC11835790https://pmc.ncbi.nlm.nih.gov/articles/PMC11835790/0
2025Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional ReconstructionChenxi XuPMC12095915https://pmc.ncbi.nlm.nih.gov/articles/PMC12095915/0
2025Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic fieldBurcu Bayramli-Önehttps://link.springer.com/article/10.1007/s42247-025-00997-x0
2024Cellular and Molecular Effects of Magnetic FieldsMaciej TotaPMC11354277https://pmc.ncbi.nlm.nih.gov/articles/PMC11354277/0
2024Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigmMark M FusterPMC11333800https://pmc.ncbi.nlm.nih.gov/articles/PMC11333800/0
2024Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2Xuan Fanghttps://www.nature.com/articles/s42003-024-06866-30
2024The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channelshttps://juniperpublishers.com/apbij/pdf/APBIJ.MS.ID.555710.pdf0
2024Low Magnetic Field Exposure Alters Prostate Cancer Cell PropertiesSigrun Langehttps://www.mdpi.com/2079-7737/13/9/7340
2024Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic OutcomeViresh Krishnan Sukumarhttps://www.mdpi.com/2072-6694/16/22/38600
2024Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cellsRomana ZahumenskaPMC10918061https://pmc.ncbi.nlm.nih.gov/articles/PMC10918061/0
2024Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progressionLauren Fegerhttps://pemfprofessionals.com/research/pulsed-electromagnetic-fields-inhibit-il-37-to-alleviate-cd8-t-cell-dysfunction-and-suppress-cervical-cancer-progression/0
2024Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ LevelsEbru Temiz39048853https://pubmed.ncbi.nlm.nih.gov/39048853/0
2024Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA)Jolanta ZwolińskaPMC10971695https://pmc.ncbi.nlm.nih.gov/articles/PMC10971695/0
2024Alternative magnetic field exposure suppresses tumor growth via metabolic reprogrammingTaisuke Akimotohttps://onlinelibrary.wiley.com/doi/full/10.1111/cas.162430
2024Neurobiological effects and mechanisms of magnetic fields: a review from 2000 to 2023Xuejia WangPMC11545338https://pmc.ncbi.nlm.nih.gov/articles/PMC11545338/0
2024Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome AnalysisEnrica TorrettaPMC11354614https://pmc.ncbi.nlm.nih.gov/articles/PMC11354614/0
2024Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic ReviewLuigi Ciannihttps://www.mdpi.com/2077-0383/13/7/19590
2024Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer CellsPavlos PantelisPMC10931548https://pmc.ncbi.nlm.nih.gov/articles/PMC10931548/0
2024Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer CellsSung-Hun WOOhttps://www.kjcls.org/journal/view.html?doi=10.15324%2Fkjcls.2024.56.1.730
2024Cognitive Decline: Current Intervention Strategies and Integrative Therapeutic Approaches for Alzheimer's DiseaseKate S BraniganPMC11048559https://pmc.ncbi.nlm.nih.gov/articles/PMC11048559/0
2024Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectivesYinlong Liuhttps://www.sciencedirect.com/science/article/pii/S2090123224001255?via%3Dihub0
2024Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesisChengyi YangPMC11329790https://pmc.ncbi.nlm.nih.gov/articles/PMC11329790/0
2023An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healingJohn Helmyhttps://journals.cambridgemedia.com.au/wpr/volume-32-number-2/integrative-review-pulsed-electromagnetic-field-therapy-pemf-and-wound-healing0
2023Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein foldingZhizhou Huang 37717354https://www.sciencedirect.com/science/article/pii/S0147651323009867?via%3Dihub0
2023The effect of magnetic fields on tumor occurrence and progression: Recent advancesGe Zhanghttps://www.sciencedirect.com/science/article/abs/pii/S00796107230002990
2023Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma TreatmentJonas FlatscherPMC10379303https://pmc.ncbi.nlm.nih.gov/articles/PMC10379303/0
2023Cognitive improvement via a modulated rhythmic pulsed magnetic field in D-galactose-induced accelerated aging micePingping Wang37094765https://pubmed.ncbi.nlm.nih.gov/37094765/0
2023Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative StressSilvia MaiullariPMC10706358https://pmc.ncbi.nlm.nih.gov/articles/PMC10706358/0
2023Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell lineShahin Ramazihttps://www.nature.com/articles/s41598-023-35767-4#Sec140
2023Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanismJie Sunhttps://www.nature.com/articles/s41598-023-34144-50
2023The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride IonsMagdalena Kimsa-Dudek Magdalena Kimsa-Dudek0
2023Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell TherapyJuan Beltran-Huarachttps://pubs.acs.org/doi/10.1021/acsami.3c001790
2023EMAGINE-Study protocol of a randomized controlled trial for determining the efficacy of a frequency tuned electromagnetic field treatment in facilitating recovery within the subacute phase following ischemic strokeJeffrey L SaverPMC10196621https://pmc.ncbi.nlm.nih.gov/articles/PMC10196621/0
2023Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After StrokeNaohiko OkabePMC11976812https://pmc.ncbi.nlm.nih.gov/articles/PMC11976812/0
2023Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosisTian MaPMC10190032https://pmc.ncbi.nlm.nih.gov/articles/PMC10190032/0
2023Pulsed electromagnetic field attenuates bone fragility in estrogen-deficient osteoporosis in ratsTamara Popović36641696https://pubmed.ncbi.nlm.nih.gov/36641696/0
2023Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cellsÇiğdem Gökçek-Saraç36705309https://pubmed.ncbi.nlm.nih.gov/36705309/0
2023Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterizationRaffaella Lazzarini36805133https://www.sciencedirect.com/science/article/pii/S0147651323001549?via%3Dihub0
2022Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine ApproachYee Kit Taihttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.783803/full0
2022Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of DamageMattia Di BartolomeoPMC8945722https://pmc.ncbi.nlm.nih.gov/articles/PMC8945722/0
2022Enhanced effect of combining bone marrow mesenchymal stem cells (BMMSCs) and pulsed electromagnetic fields (PEMF) to promote recovery after spinal cord injury in miceLiyi Huanghttps://www.researchgate.net/publication/362472071_Enhanced_effect_of_combining_bone_marrow_mesenchymal_stem_cells_BMMSCs_and_pulsed_electromagnetic_fields_PEMF_to_promote_recovery_after_spinal_cord_injury_in_mice0
2022Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fieldsMengqian HuangPMC9939155https://pmc.ncbi.nlm.nih.gov/articles/PMC9939155/0
2022The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-AnalysisJie TongPMC9110240https://pmc.ncbi.nlm.nih.gov/articles/PMC9110240/0
2022Tumor-specific inhibition with magnetic fieldyang guanghuahttps://www.researchgate.net/publication/358628498_Tumor-specific_inhibition_with_magnetic_field0
2022The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironmentJun Zhouahttps://www.tandfonline.com/doi/full/10.1080/15368378.2024.23140930
2022Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysisViktoria Thönihttps://www.sciencedirect.com/science/article/pii/S2589004222018089?pes=vor&utm_source=sciencedirect_contenthosting&getft_integrator=sciencedirect_contenthosting0
2022Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damageDan Stratton35994829https://www.sciencedirect.com/science/article/pii/S0006291X22011548?via%3Dihub0
2022Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondriaTakuro Todahttps://www.nature.com/articles/s42003-022-03389-70
2022Magnetic field effects in biology from the perspective of the radical pair mechanismHadi Zadeh-HaghighiPMC9346374https://pmc.ncbi.nlm.nih.gov/articles/PMC9346374/0
2022High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic fieldDan Wanghttps://www.science.org/doi/10.1126/sciadv.abq02220
2022Increase of intracellular Ca2+ concentration in Listeria monocytogenes under pulsed magnetic fieldhttps://www.sciencedirect.com/science/article/abs/pii/S03048853220022190
2022Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's diseaseShahid BashirPMC8845030https://pmc.ncbi.nlm.nih.gov/articles/PMC8845030/0
2022Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell deathSung-Hun WooPMC8972140https://pmc.ncbi.nlm.nih.gov/articles/PMC8972140/0
2022Chronic-Exposure Low-Frequency Magnetic Fields (Magnetotherapy and Magnetic Stimulation) Influence Serum Serotonin Concentrations in Patients with Low Back Pain-Clinical Observation StudyMarta Woldańska-OkońskaPMC9368470https://pmc.ncbi.nlm.nih.gov/articles/PMC9368470/0
2022Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral IschemiaFioravante Capone MD 1https://www.sciencedirect.com/science/article/pii/S10947159210642660
2022Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory PathwayHaofuzi Zhanghttps://www.researchgate.net/publication/361976845_Pulsed_Electromagnetic_Fields_Protect_Against_Brain_Ischemia_by_Modulating_the_Astrocytic_Cholinergic_Anti-inflammatory_Pathway0
2022In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer CellsMike Y ChenPMC9523832https://pmc.ncbi.nlm.nih.gov/articles/PMC9523832/0
2022Pulsed electromagnetic therapy in cancer treatment: Progress and outlookWenjun Xuhttps://onlinelibrary.wiley.com/doi/full/10.1002/VIW.202200290
2022A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposureMaria Elexpuru-ZabaletaPMC9889515https://pmc.ncbi.nlm.nih.gov/articles/PMC9889515/0
2022Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trialBatsheva WeisingerPMC9702345https://pmc.ncbi.nlm.nih.gov/articles/PMC9702345/0
2022The Effect of Time-Dependence of 10 Hz Electromagnetic Field on Spatial Learning and Memory in RatsFarzaneh ZarrinPMC10082904https://pmc.ncbi.nlm.nih.gov/articles/PMC10082904/0
2021Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancerMin-Haw Wang33632057https://pubmed.ncbi.nlm.nih.gov/33632057/0
2021Pulsed electromagnetic field alleviates synovitis and inhibits the NLRP3/Caspase-1/GSDMD signaling pathway in osteoarthritis ratsJing Liuhttps://www.ivysci.com/en/articles/6552742__Pulsed_electromagnetic_field_alleviates_synovitis_and_inhibits_the_NLRP3Caspase1GSDMD_signaling_path0
2021The Effect of Pulsed Electromagnetic Fields on AngiogenesisLihong Peng 33675261https://pubmed.ncbi.nlm.nih.gov/33675261/0
2021Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative StressChao SongPMC8670934https://pmc.ncbi.nlm.nih.gov/articles/PMC8670934/0
2021Pulsed electromagnetic fields synergize with graphene to enhance dental pulp stem cell-derived neurogenesis by selectively targeting TRPC1 channelsT T Madanagopal33644848https://pubmed.ncbi.nlm.nih.gov/33644848/0
2021Electromagnetic Field as a Treatment for Cerebral Ischemic StrokeAmanda Moya Gómezhttps://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2021.742596/full0
2021Long-term effect of full-body pulsed electromagnetic field and exercise protocol in the treatment of men with osteopenia or osteoporosis: A randomized placebo-controlled trialAnwar Ebidhttps://f1000research.com/articles/10-6490
2021Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult RatsNafiseh FarajiPMC9168822https://pmc.ncbi.nlm.nih.gov/articles/PMC9168822/0
2021Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro StudiesMahsa MansourianPMC8342182https://pmc.ncbi.nlm.nih.gov/articles/PMC8342182/0
2021Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength DependentSilvia GroissPMC8471206https://pmc.ncbi.nlm.nih.gov/articles/PMC8471206/0
2021Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repairAlex M. Hollenberghttps://www.nature.com/articles/s41598-021-98625-10
2021Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in OncologyAoshu XuPMC8010190https://pmc.ncbi.nlm.nih.gov/articles/PMC8010190/0
2021Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosisMojdeh BaratiPMC8666288https://pmc.ncbi.nlm.nih.gov/articles/PMC8666288/0
2021Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic FieldsFereshteh Mansouryhttps://brieflands.com/articles/ijcm-1110790
2020The role of magnetic fields in neurodegenerative diseasesJavier Rianchohttps://link.springer.com/article/10.1007/s00484-020-01896-y0
2020Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemiaQiang GaoPMC8284293https://pmc.ncbi.nlm.nih.gov/articles/PMC8284293/0
2020Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disordersHongzhi Huhttps://www.sciencedirect.com/science/article/pii/S07533322203096040
2020Changes in Ca2+ release in human red blood cells under pulsed magnetic fieldMin Hyung Seohttps://www.sciencedirect.com/science/article/abs/pii/S03048853193367040
2020Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juiceJingya Qianhttps://link.springer.com/article/10.1007/s13197-020-04801-y0
2020Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapyBo Yuhttps://www.nature.com/articles/s41467-020-17380-50
2020Pulsed Electromagnetic Fields Alleviates Hepatic Oxidative Stress and Lipids Accumulation in db/db miceYing Liuhttps://www.biorxiv.org/content/10.1101/2020.04.06.028621v10
2020Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in MiceLihong Penghttps://www.jstage.jst.go.jp/article/circj/advpub/0/advpub_CJ-19-0758/_html/-char/en0
2020Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose DeprivationFabrizio VincenzPMC7663527https://pmc.ncbi.nlm.nih.gov/articles/PMC7663527/0
2020Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regenerationDinesh Paratehttps://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-1566-50
2020Therapeutic use of pulsed electromagnetic field therapy reduces prostate volume and lower urinary tract symptoms in benign prostatic hyperplasiaMarta TenutaPMC7496682https://pmc.ncbi.nlm.nih.gov/articles/PMC7496682/0
2020Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α LevelsHanie MahakiPMC7024597https://pmc.ncbi.nlm.nih.gov/articles/PMC7024597/0
2020Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer CellsAoshu XuPMC7215396https://pmc.ncbi.nlm.nih.gov/articles/PMC7215396/0
2020Magnetic fields and angiogenesisXin Zhanghttps://www.researchgate.net/publication/341046662_Magnetic_fields_and_angiogenesis0
2020Electromagnetic Field in Alzheimer's Disease: A Literature Review of Recent Preclinical and Clinical StudiesReem Habib Mohamad Ali Ahmad33256578https://pubmed.ncbi.nlm.nih.gov/33256578/0
2020Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell ViabilityChristopher P AshdownPMC7136334https://pmc.ncbi.nlm.nih.gov/articles/PMC7136334/0
2020Pulsed electromagnetic fields improve the healing process of Achilles tendinopathy: a pilot study in a rat modelCarlotta Perucca OrfeiPMC7533373https://pmc.ncbi.nlm.nih.gov/articles/PMC7533373/0
2020Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic studyYee Kit Tai32627872https://pubmed.ncbi.nlm.nih.gov/32627872/0
2019The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A ReviewChristina L RossPMC8370292https://pmc.ncbi.nlm.nih.gov/articles/PMC8370292/0
2019Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injuryChunyan WangPMC6390012https://pmc.ncbi.nlm.nih.gov/articles/PMC6390012/0
2019Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer's DiseasePatrizia Turriziani31609693https://pubmed.ncbi.nlm.nih.gov/31609693/0
2019Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanismJasmine Lye Yee YapPMC6902701https://pmc.ncbi.nlm.nih.gov/articles/PMC6902701/0
2019Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid ArthritisChristina L RossPMC6409305https://pmc.ncbi.nlm.nih.gov/articles/PMC6409305/0
2019Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male ratsSeyed Asaad Karimi30290199https://pubmed.ncbi.nlm.nih.gov/30290199/0
2019Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injuryChunyan WangPMC6390012https://pmc.ncbi.nlm.nih.gov/articles/PMC6390012/0
2019The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shiftLoredana Bergandihttps://www.sciencedirect.com/science/article/pii/S01674889193009410
2018Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro studyLetizia Ferronihttps://www.nature.com/articles/s41598-018-23499-90
2018Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathwayShaoyu Wu29909008https://pubmed.ncbi.nlm.nih.gov/29909008/0
2018Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposureZeinab Akbarnejad29185809https://pubmed.ncbi.nlm.nih.gov/29185809/0
2018RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD ratHongyan ZuoPMC6299414https://pmc.ncbi.nlm.nih.gov/articles/PMC6299414/0
2018A review on the use of magnetic fields and ultrasound for non-invasive cancer treatmentSomoshree SenguptaPMC6090088https://pmc.ncbi.nlm.nih.gov/articles/PMC6090088/0
2018Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cellRichard HW FunkPMC5992548https://pmc.ncbi.nlm.nih.gov/articles/PMC5992548/0
2018Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cellsCarly A Buckner 29125193https://pubmed.ncbi.nlm.nih.gov/29125193/0
2018Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patientsNatalia Cichon30755096https://pubmed.ncbi.nlm.nih.gov/30755096/0
2018Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen speciesRachel M SherrardPMC6168118https://pmc.ncbi.nlm.nih.gov/articles/PMC6168118/0
2018Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patientsNatalia Cichoń30024661https://pubmed.ncbi.nlm.nih.gov/30024661/0
2018Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 CellsAlfredo Errico Provenzanohttps://karger.com/cpb/article-pdf/46/1/389/2449782/000488473.pdf0
20186-mT 0-120-Hz magnetic fields differentially affect cellular ATP levelsDongmei Wang30074140https://pubmed.ncbi.nlm.nih.gov/30074140/0
2018Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke PatientsNatalia Cichońhttps://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2018.00294/full0
2018Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cellsK Spyridopoulouhttps://iopscience.iop.org/article/10.1088/1361-6528/aaaea90
2017A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 CellsXin Lihttps://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00042/full0
2017Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patientsNatalia Cichoń28430370https://pubmed.ncbi.nlm.nih.gov/28430370/0
2017Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?Olga ZeniPMC5651525https://pmc.ncbi.nlm.nih.gov/articles/PMC5651525/0
2017Magnetic Fields and Reactive Oxygen SpeciesHuizhen Wanghttps://www.mdpi.com/1422-0067/18/10/21750
2017Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2Sabrina Ehnerthttps://www.nature.com/articles/s41598-017-14983-90
2017Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma CellsYOSHITAKA MURAMATSUPMC5354149https://pmc.ncbi.nlm.nih.gov/articles/PMC5354149/0
2017Gamma rhythm low field magnetic stimulation alleviates neuropathologic changes and rescues memory and cognitive impairments in a mouse model of Alzheimer's diseaseJunli Zhenhttps://www.sciencedirect.com/science/article/pii/S235287371730046X0
2017HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian CancerKarem A. Courthttps://aacrjournals.org/mct/article/16/5/966/92217/HSP70-Inhibition-Synergistically-Enhances-the0
2017Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke RehabilitationNatalia CichońPMC5613626https://pmc.ncbi.nlm.nih.gov/articles/PMC5613626/0
2016Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.)Barbara Benassi26223801https://pubmed.ncbi.nlm.nih.gov/26223801/0
2016Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD miceYu Hu26945731https://pubmed.ncbi.nlm.nih.gov/26945731/0
2016EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESSE. KECZANhttps://www.jpp.krakow.pl/journal/archive/10_16/articles/14_article.html0
2016How a High-Gradient Magnetic Field Could Affect Cell LifeVitalii ZablotskiiPMC5114642https://pmc.ncbi.nlm.nih.gov/articles/PMC5114642/0
2016Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncologyMaria VadalàPMC5119968https://pmc.ncbi.nlm.nih.gov/articles/PMC5119968/0
2016Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseasesFabio GuerrieroPMC5270416https://pmc.ncbi.nlm.nih.gov/articles/PMC5270416/0
2016Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferationLei ZhangPMC5173076https://pmc.ncbi.nlm.nih.gov/articles/PMC5173076/0
2016Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathwayBaihuan Feng26850078https://pubmed.ncbi.nlm.nih.gov/26850078/0
2016BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA DamageKatja StorchPMC5154536https://pmc.ncbi.nlm.nih.gov/articles/PMC5154536/0
2016Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury ratsFenfen MaPMC5137536https://pmc.ncbi.nlm.nih.gov/articles/PMC5137536/0
2016The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literatureJolanta ZwolińskaPMC5090029https://pmc.ncbi.nlm.nih.gov/articles/PMC5090029/0
2016Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicalsEmrys W. Evanshttps://pubs.aip.org/aip/jcp/article/145/8/085101/561871/Sub-millitesla-magnetic-field-effects-on-the0
2016Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric TissuesBahadır ÖztürkPMC4904108https://pmc.ncbi.nlm.nih.gov/articles/PMC4904108/0
2015Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membraneSelma Leulmi26364870https://pubmed.ncbi.nlm.nih.gov/26364870/0
2015Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fieldsYong LiuPMC4943694https://pmc.ncbi.nlm.nih.gov/articles/PMC4943694/0
2015mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human KeratinocytesAntonia PatrunoPMC4592237https://pmc.ncbi.nlm.nih.gov/articles/PMC4592237/0
2015Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2 O2 -induced ROS production by increasing MnSOD activityCecilia Osera25708841https://pubmed.ncbi.nlm.nih.gov/25708841/0
2015Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium ChannelsCarly A BucknerPMC4397079https://pmc.ncbi.nlm.nih.gov/articles/PMC4397079/0
2015Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer's disease in ratsYemao Zhang25118893https://pubmed.ncbi.nlm.nih.gov/25118893/0
2014Alternative radical pairs for cryptochrome-based magnetoreceptionAlpha A LeePMC4006233https://pmc.ncbi.nlm.nih.gov/articles/PMC4006233/0
2014Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 PathwayChao-Ying HuangPMC4128733https://pmc.ncbi.nlm.nih.gov/articles/PMC4128733/0
2014Electromagnetic field investigation on different cancer cell linesNenad Filipovichttps://link.springer.com/content/pdf/10.1186/s12935-014-0084-x.pdf0
2014Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell BarriersKyoung Ah MinPMC3609927https://pmc.ncbi.nlm.nih.gov/articles/PMC3609927/0
2014Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neuronsYuan Li24937769https://pubmed.ncbi.nlm.nih.gov/24937769/0
2014Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularityIvan L CameronPMC4272545https://pmc.ncbi.nlm.nih.gov/articles/PMC4272545/0
2013Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effectsMartin L PallPMC3780531https://pmc.ncbi.nlm.nih.gov/articles/PMC3780531/0
2013Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell ViabilitySara CrocettiPMC3770670https://pmc.ncbi.nlm.nih.gov/articles/PMC3770670/0
2013Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs)Simona Delle MonachePMC3828379https://pmc.ncbi.nlm.nih.gov/articles/PMC3828379/0
2012Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosisJiyeon Kim 22180328https://pubmed.ncbi.nlm.nih.gov/22180328/0
2012Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybeanM B Shine22253132https://pubmed.ncbi.nlm.nih.gov/22253132/0
2012Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo studyAbraham O Rodríguez-De la FuentePMC3476825https://pmc.ncbi.nlm.nih.gov/articles/PMC3476825/0
2011No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell linesDaguang Zhang21480303https://pubmed.ncbi.nlm.nih.gov/21480303/0
2011Effect of Magnetic Fields on Tumor Growth and ViabilityIvan TatarovPMC3155400https://pmc.ncbi.nlm.nih.gov/articles/PMC3155400/0
2010Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cellsAnn-Christine Mannerling 20582429https://pubmed.ncbi.nlm.nih.gov/20582429/0
2010Pulsed Magnetic Field Induces Angiogenesis and Improves Cardiac Function of Surgically Induced Infarcted Myocardium in Sprague-Dawley RatsYuan Yuan20924179https://pubmed.ncbi.nlm.nih.gov/20924179/0
2010Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiationCaterina Morabito 21220925https://pubmed.ncbi.nlm.nih.gov/21220925/0
2010Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cellsJiyeon Kim 20816755https://pubmed.ncbi.nlm.nih.gov/20816755/0
2010Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro studyJustus HW JansenPMC2936347https://pmc.ncbi.nlm.nih.gov/articles/PMC2936347/0
2009Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approachAlexandre BarbaultPMC2672058https://pmc.ncbi.nlm.nih.gov/articles/PMC2672058/0
2009Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic ResonanceNadia Catallohttps://www.researchgate.net/publication/40728270_Static_Magnetic_Field_Effect_on_the_Fremy's_Salt-Ascorbic_Acid_Chemical_Reaction_Studied_by_Continuous-Wave_Electron_Paramagnetic_Resonance0
2005Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasisIvan L CameronPMC1190196https://pmc.ncbi.nlm.nih.gov/articles/PMC1190196/0
2004Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fieldsMaria Radeva15376245https://pubmed.ncbi.nlm.nih.gov/15376245/0
2004Weak electromagnetic fields (50 Hz) elicit a stress response in human cells Sergey V Tokalov 14757377https://pubmed.ncbi.nlm.nih.gov/14757377/0
2002Anticancer Activity by Magnetic Fields: Inhibition of Metastatic Spread and Growth in a Breast Cancer ModelSanti Tofani0
2002Mechanism for action of electromagnetic fields on cellsDimitris J Panagopoulos12379225https://pubmed.ncbi.nlm.nih.gov/12379225/0
2001Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cellsG P Pessina11568936https://pubmed.ncbi.nlm.nih.gov/11568936/0
2001Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic fieldB Glück11936855https://pubmed.ncbi.nlm.nih.gov/11936855/0
2001Therapeutic electromagnetic field effects on angiogenesis and tumor growthC D Williams 11911264https://pubmed.ncbi.nlm.nih.gov/11911264/0
2000A mechanism for action of oscillating electric fields on cellsD J Panagopoulos10860806https://pubmed.ncbi.nlm.nih.gov/10860806/0
1999Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cellsG Tsurita10441487https://pubmed.ncbi.nlm.nih.gov/10441487/0
1994Non-ionizing Electromagnetic Radiation: A Study of Carcinogenic and Cancer Treatment PotentialJ R. Salvatore7724878https://pubmed.ncbi.nlm.nih.gov/7724878/0
1991Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and the 460 Hz frequenciesA Bellossi 1932623https://pubmed.ncbi.nlm.nih.gov/1932623/0
1990Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells2221045https://pubmed.ncbi.nlm.nih.gov/2221045/0
207Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer's DiseaseEnrica Capellihttps://pmc.ncbi.nlm.nih.gov/articles/PMC5434238/0
2025The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's diseaseAnnibale Antonionihttps://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.70337?utm_source=chatgpt.com0
2025Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathwayMengqing Lhttps://pubmed.ncbi.nlm.nih.gov/39461710/0
2024Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling PathwayGe ZhangPMC10900498https://pmc.ncbi.nlm.nih.gov/articles/PMC10900498/0
2024Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growthZhaoxian YanPMC11310191https://www.nature.com/articles/s41598-024-67437-4.pdf0
2024Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma CellsYan MiPMC11117552https://pmc.ncbi.nlm.nih.gov/articles/PMC11117552/0
2024Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic fieldShilong Zhang38801615https://pubmed.ncbi.nlm.nih.gov/38801615/0
2024Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.Ruo-Wen Guohttps://ngdc.cncb.ac.cn/openlb/publication/OLB-PM-390210810
2024The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic ReviewRenata MarchewkaPMC11119128https://pmc.ncbi.nlm.nih.gov/articles/PMC11119128/0
2024Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarizationMengqing LiPMC11493917https://pmc.ncbi.nlm.nih.gov/articles/PMC11493917/0
2024Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer CellsCristina StavilăPMC11256100https://pmc.ncbi.nlm.nih.gov/articles/PMC11256100/0
2024The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary studyElżbieta Cecerska-HeryćPMC11018782https://pmc.ncbi.nlm.nih.gov/articles/PMC11018782/0
2024Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease miceRuo-Wen GuoRuo-Wen Guohttps://pmc.ncbi.nlm.nih.gov/articles/PMC11298676/0
2024Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticlesCristina Stavilă PhD studenthttps://www.sciencedirect.com/science/article/pii/S15499634240003520
2024The Effect of a Rotating Magnetic Field on the Regenerative Potential of PlateletsElżbieta Cecerska-HeryćPMC11012199https://pmc.ncbi.nlm.nih.gov/articles/PMC11012199/0
2023Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune DysfunctionsYu HanPMC10093245https://pmc.ncbi.nlm.nih.gov/articles/PMC10093245/0
2023Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer MetastasisXinmiao JiPMC10017101https://pmc.ncbi.nlm.nih.gov/articles/PMC10017101/0
2023Biological effects of rotating magnetic field: A review from 1969 to 2021Yunpeng Wei36574882https://pubmed.ncbi.nlm.nih.gov/36574882/0
2023Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cellsShashank HambardePMC10630398https://pmc.ncbi.nlm.nih.gov/articles/PMC10630398/0
2023Magnetically controlled cyclic microscale deformation of in vitro cancer invasion modelsDaphne Osk Asgeirssonhttps://www.researchgate.net/publication/374768956_Magnetically_Controlled_Cyclic_Microscale_Deformation_of_In_Vitro_Cancer_Invasion_Models0
2023Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubesXIAN WANGhttps://www.science.org/doi/10.1126/sciadv.ade53210
2022EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGEShashank HambardePMC9661114https://pmc.ncbi.nlm.nih.gov/articles/PMC9661114/0
2022Method and apparatus for oncomagnetic treatmentHelekar et alhttps://patents.google.com/patent/US12186575B2/en0
2022Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in miceShashank Hambarde36154345https://pubmed.ncbi.nlm.nih.gov/36154345/0
2022Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell SurfaceBartłomiej GrygorcewiczPMC8947294https://pmc.ncbi.nlm.nih.gov/articles/PMC8947294/0
2021Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing StudyMagdalena Jedrzejczak-SilickaPMC8199476https://pmc.ncbi.nlm.nih.gov/articles/PMC8199476/0
2021Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer CellsMartyn A SharpePMC8631329https://pmc.ncbi.nlm.nih.gov/articles/PMC8631329/0
2021Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fieldsSantosh A Helekar34477946https://pubmed.ncbi.nlm.nih.gov/34477946/0
2021Case Report: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic DeviceDavid S BaskinPMC8341943https://pmc.ncbi.nlm.nih.gov/articles/PMC8341943/0
2021Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fieldsSara LopezPMC9417452https://pmc.ncbi.nlm.nih.gov/articles/PMC9417452/0
2021Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic ImplicationsKatia VaraniPMC7830993https://pmc.ncbi.nlm.nih.gov/articles/PMC7830993/0
2021Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trialsHuanhuan LvPMC7941227https://pmc.ncbi.nlm.nih.gov/articles/PMC7941227/0
2020Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibitionYong Qianhttps://www.sciencedirect.com/science/article/abs/pii/S13858947203195130
2020Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistanceYao Chenyanghttps://m.x-mol.net/paper/article/13077384348683182080
2020Cancer treatment by magneto-mechanical effect of particles, a reviewCécile NaudPMC9419242https://pmc.ncbi.nlm.nih.gov/articles/PMC9419242/0
2020The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trialMinghui Zhu32238091https://pubmed.ncbi.nlm.nih.gov/32238091/0
2020Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17Tianying ZhanPMC7185125https://pmc.ncbi.nlm.nih.gov/articles/PMC7185125/0
2020Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian CellsMagdalena Jędrzejczak-Silickahttps://www.researchgate.net/publication/341242877_Study_on_the_Effect_of_Rotating_Magnetic_Field_on_Cellular_Response_of_Mammalian_Cells0
2019Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegansJiangyao Xuhttps://www.researchgate.net/publication/337466667_Rotating_magnetic_field_delays_human_umbilical_vein_endothelial_cell_aging_and_prolongs_the_lifespan_of_Caenorhabditis_elegans0
2018Effect of low-frequency rotary magnetic fields on advanced gastric cancerChen, Zheng29970658https://journals.lww.com/cancerjournal/fulltext/2018/14040/effect_of_low_frequency_rotary_magnetic_fields_on.15.aspx0
2018Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm PathogensA. F. Junkahttps://www.nature.com/articles/s41598-017-18557-70
2017Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic FieldYajing ShenPMC5436524https://pmc.ncbi.nlm.nih.gov/articles/PMC5436524/0
2017Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling PathwayYujun XuPMC5603574https://pmc.ncbi.nlm.nih.gov/articles/PMC5603574/0
2017LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathwayJing RenPMC5429732https://pmc.ncbi.nlm.nih.gov/articles/PMC5429732/0
2016Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in miceMeng Zha30142006https://www.researchgate.net/publication/327213612_Moderate_intensity_low_frequency_rotating_magnetic_field_inhibits_breast_cancer_growth_in_mice0
2016Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensisQiang Chen27061713https://pubmed.ncbi.nlm.nih.gov/27061713/0
2016Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKTRuijing Tang26807660https://pubmed.ncbi.nlm.nih.gov/26807660/0
2015Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant GliomaYu ChengPMC4724455https://pmc.ncbi.nlm.nih.gov/articles/PMC4724455/0
2015Modification of bacterial cellulose through exposure to the rotating magnetic fieldKarol Fijałkowski26344254https://pubmed.ncbi.nlm.nih.gov/26344254/0
2014Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cellsLeilei Du25196555https://pubmed.ncbi.nlm.nih.gov/25196555/0
2013Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulationYunzhong NiePMC4029221https://pmc.ncbi.nlm.nih.gov/articles/PMC4029221/0
2013Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular CarcinomaYunzhong NiePMC3835892https://pmc.ncbi.nlm.nih.gov/articles/PMC3835892/0
2012A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: Effects on survival and palliation of general symptomsCHENGTAO SUNPMC3499610https://pmc.ncbi.nlm.nih.gov/articles/PMC3499610/0
2011Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cellsTingting Wang21360556https://pubmed.ncbi.nlm.nih.gov/21360556/0
2008The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fieldsMarek Masiuk18821389https://pubmed.ncbi.nlm.nih.gov/18821389/0
2006Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh BonesXiao-yun Zhanghttp://www.zgkjcx.com/Article/UploadFiles/200807/20080710121302169.pdf0
2001The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer CellsNina Mikirova, Ph.D.https://isom.ca/wp-content/uploads/2020/01/JOM_2001_16_3_10_The_Effect_of_Alternating_Magnetic_Field_Exposure_and-.pdf0
2001Molecular mechanism of effect of rotating constant magnetic field on organismsX Zhang18726401https://pubmed.ncbi.nlm.nih.gov/18726401/0
1993The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigsE Schwartz8353767https://pubmed.ncbi.nlm.nih.gov/8353767/0
2016Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell linesHuixiang JuPMC4859912https://pmc.ncbi.nlm.nih.gov/articles/PMC4859912/0
2020Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitateGokce Dicle KalayciogluPMC7691729https://pmc.ncbi.nlm.nih.gov/articles/PMC7691729/0
2014Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, IV. S. Ghole https://www.researchgate.net/publication/303016925_Effect_of_Magnetic_Field_on_Ascorbic_Acid_Oxidase_Activity_I0
2011Extremely low frequency magnetic field induces oxidative stress in mouse cerebellumLi Y Chu22131325https://pubmed.ncbi.nlm.nih.gov/22131325/0
2007Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field Induced by Magnetic FieldNahed S. Hassanhttps://www.researchgate.net/publication/46028576_Protective_Effect_of_Ascorbic_Acid_on_Molecular_Behavior_Changes_of_Hemoglobin_Induced_by_Magnetic_Field_Induced_by_Magnetic_Field0