tbResList Print — docx Docetaxel

Filters: qv=178, qv2=%, rfv=%

Product

docx Docetaxel
Description: <b>Docetaxel</b>, (brand name Taxotere) is a chemotherapy medication used to treat breast cancer, head and neck cancer, stomach cancer, prostate cancer and non-small-cell lung cancer.<br>
Docetaxel is a microtubule-stabilizing agent (taxane). It binds β-tubulin and promotes microtubule polymerization / prevents depolymerization, causing mitotic arrest (G2/M) and downstream cell death.<br>
Clinically important constraints:<br>
-Neutropenia / febrile neutropenia are major dose-limiting toxicities.<br>
-Premedication with dexamethasone is standard to reduce fluid retention and hypersensitivity reactions.<br>
-Metabolism is mainly CYP3A4, so strong CYP3A4 inhibitors/inducers (and grapefruit) can materially change exposure.<br>
<br>

<br>


<!-- Docetaxel (DTX) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Microtubule stabilization (β-tubulin) → mitotic spindle dysfunction</td>
<td>Microtubule dynamics ↓; mitotic progression fails</td>
<td>Also impacts normal proliferating cells</td>
<td>P, R</td>
<td>Core cytotoxic mechanism</td>
<td>Taxane class MOA: stabilizes microtubules and blocks depolymerization, disrupting mitosis.</td>
</tr>

<tr>
<td>2</td>
<td>Mitotic arrest (G2/M checkpoint pressure)</td>
<td>G2/M arrest ↑; proliferation ↓</td>
<td>Bone marrow / GI epithelium vulnerability ↑</td>
<td>R, G</td>
<td>Cell-cycle blockade</td>
<td>Mitotic arrest is the key phenotype linking microtubule disruption to cell death outcomes.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial) secondary to mitotic catastrophe</td>
<td>Apoptosis ↑ (context); caspase activation ↑</td>
<td>↔ / tissue injury possible at high exposure</td>
<td>G</td>
<td>Death execution</td>
<td>Cell death often occurs after prolonged mitotic arrest (mitotic catastrophe → apoptosis).</td>
</tr>

<tr>
<td>4</td>
<td>Neutropenia / marrow suppression (on-target toxicity)</td>
<td>—</td>
<td>Neutrophils ↓; febrile neutropenia risk ↑</td>
<td>R, G</td>
<td>Dose-limiting toxicity</td>
<td>Major clinical constraint; risk increases with dose and interacting drugs.</td>
</tr>

<tr>
<td>5</td>
<td>Hypersensitivity reactions</td>
<td>—</td>
<td>Hypersensitivity risk ↑ (especially early infusions)</td>
<td>P, R</td>
<td>Acute infusion risk</td>
<td>Premedication is used to reduce frequency/severity of hypersensitivity reactions.</td>
</tr>

<tr>
<td>6</td>
<td>Fluid retention / capillary leak tendency</td>
<td>—</td>
<td>Fluid retention ↑ (can be severe)</td>
<td>R, G</td>
<td>Key non-hematologic toxicity</td>
<td>Dexamethasone premedication is standard to reduce incidence and severity.</td>
</tr>

<tr>
<td>7</td>
<td>Combination leverage (sensitization with other agents)</td>
<td>Synergy reported in multiple regimens</td>
<td>Toxicity may ↑ depending on partner drug</td>
<td>G</td>
<td>Regimen-driven efficacy</td>
<td>Docetaxel is commonly used in multi-agent protocols; outcome is regimen- and tumor-type-specific.</td>
</tr>

<tr>
<td>8</td>
<td>Pharmacokinetics (CYP3A4 metabolism)</td>
<td>Exposure ↑ with strong CYP3A4 inhibitors; ↓ with inducers</td>
<td>Exposure shifts → toxicity/efficacy shifts</td>
<td>P, R</td>
<td>Interaction driver</td>
<td>Docetaxel is primarily cleared by CYP3A4; strong inhibitors can raise levels substantially.</td>
</tr>

<tr>
<td>9</td>
<td>Grapefruit / intestinal CYP3A4 inhibition (interaction risk)</td>
<td>Potential exposure ↑ (context)</td>
<td>Potential toxicity ↑ (context)</td>
<td>P, R</td>
<td>Diet–drug interaction</td>
<td>Grapefruit can inhibit intestinal CYP3A4; docetaxel is a CYP3A4 substrate, so avoidance is commonly advised.</td>
</tr>

<tr>
<td>10</td>
<td>Parameter dependence (dose/schedule; weekly vs q3wk)</td>
<td>Mechanism constant; tolerability differs by schedule</td>
<td>Toxicity profile differs by schedule</td>
<td>—</td>
<td>Translation constraint</td>
<td>Clinical outcomes and toxicity balance are schedule-dependent (protocol-specific).</td>
</tr>

<tr>
<td>11</td>
<td>ROS generation (secondary to mitotic stress)</td>
<td>ROS ↑ (mitochondrial); lipid peroxidation ↑ (reported)</td>
<td>Oxidative injury possible</td>
<td>R, G</td>
<td>Stress amplification</td>
<td>ROS increase is secondary to mitotic arrest and mitochondrial dysfunction, not a primary redox drug effect.</td>
</tr>

<tr>
<td>12</td>
<td>NRF2 antioxidant response</td>
<td>NRF2 ↑ (adaptive; reported in resistant models)</td>
<td>Protective antioxidant upshift</td>
<td>R, G</td>
<td>Resistance mechanism</td>
<td>NRF2 activation may reduce docetaxel sensitivity by increasing antioxidant capacity (GSH, NQO1, HO-1).</td>
</tr>


</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (binding and immediate microtubule dynamic suppression begins)</li>
<li><b>R</b>: 30 min–3 hr (mitotic checkpoint engagement; acute infusion effects)</li>
<li><b>G</b>: &gt;3 hr (mitotic catastrophe, apoptosis, tissue-level toxicities)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 1,   GSH/GSSG↓, 1,   NRF2↓, 1,   ROS↑, 3,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   PI3K/Akt↓, 2,  

Cell Death

p‑Akt↓, 1,   Apoptosis↑, 1,   BAD↓, 1,   BAX↑, 2,   Bax:Bcl2↑, 2,   Bcl-2↓, 2,   Bcl-xL↓, 1,   BID↑, 2,   Casp3↑, 2,   Casp7↑, 1,   Casp8↑, 1,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   Mcl-1↓, 1,   survivin↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   RTK-RAS↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 1,   XBP-1↑, 1,  

DNA Damage & Repair

P53↑, 1,   cl‑PARP↑, 2,   PARP↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,  

Proliferation, Differentiation & Cell State

EpCAM↓, 1,   FGF↓, 1,   SCF↓, 1,  

Migration

E-cadherin↑, 1,   Ki-67↓, 2,   TGF-β↓, 1,   TregCell↓, 1,   TRIB3↑, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 2,   Twist↓, 1,  

Angiogenesis & Vasculature

ATF4↑, 1,   EGFR↓, 2,   VEGF↓, 1,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL10↓, 1,   IL6↓, 1,   IL8↑, 1,   IκB↓, 1,   MDSCs↓, 1,   NF-kB↓, 4,   NK cell↑, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioEnh↑, 1,   ChemoSen↑, 8,   eff↑, 2,  

Clinical Biomarkers

EGFR↓, 2,   HER2/EBBR2↓, 1,   IL6↓, 1,   Ki-67↓, 2,   TRIB3↑, 1,  

Functional Outcomes

chemoP↑, 1,   TumVol↓, 1,  
Total Targets: 68

Pathway results for Effect on Normal Cells

Functional Outcomes

toxicity↓, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2019Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cellsShiva Mahmoudihttps://www.sciencedirect.com/science/article/abs/pii/S17732247183092620
2021Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLCUyanga BatboldPMC8658962https://pmc.ncbi.nlm.nih.gov/articles/PMC8658962/0
2020Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In VivoAnqi ZengPMC7311669https://pmc.ncbi.nlm.nih.gov/articles/PMC7311669/0
2021Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer Xiongjie Zhu 34127219https://pubmed.ncbi.nlm.nih.gov/34127219/0
2017Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancerSaswati BanerjeePMC5545125https://pmc.ncbi.nlm.nih.gov/articles/PMC5545125/0
2016Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapyPiwen Wanghttps://www.researchgate.net/publication/301933430_Green_tea_and_quercetin_sensitize_PC-3_xenograft_prostate_tumors_to_docetaxel_chemotherapy0
2014Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer CellsAditi MathurPMC4133210https://pmc.ncbi.nlm.nih.gov/articles/PMC4133210/0
2016Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple negative breast cancerKetan Patelhttps://pmc.ncbi.nlm.nih.gov/articles/PMC4706797/0
2020Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathwaysXinxing LuPMC7053318https://pmc.ncbi.nlm.nih.gov/articles/PMC7053318/0
2025Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell LinesAna Peñata-TabordaPMC11817897https://pmc.ncbi.nlm.nih.gov/articles/PMC11817897/0
2022Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cellsJoseph P BurnettPMC8892390https://pmc.ncbi.nlm.nih.gov/articles/PMC8892390/0