tbResList Print — doxoR doxorubicin

Filters: qv=179, qv2=%, rfv=%

Product

doxoR doxorubicin
Description: <b>Doxorubicin</b>, (brand name Adriamycin) is a chemotherapy medication used to treat breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. Often used together with other chemotherapy agents. Given by injection into a vein.<br>
Doxorubicin is an anthracycline chemotherapy whose core anticancer activity is driven by DNA intercalation and topoisomerase II poisoning (DNA double-strand break stress), with additional contributions from redox cycling/iron-linked oxidative injury in some contexts. Its major clinical limitations are myelosuppression and cumulative dose–dependent cardiomyopathy, plus severe tissue injury if extravasated (leaks outside the vein).<br>
-Cumulative cardiomyopathy risk is real and dose-dependent; labels note higher risk at higher cumulative doses (often cited around >550 mg/m², with lower limits in higher-risk patients).<br>
-Mechanism split: tumor kill is primarily Topo II + DNA damage, while cardiotoxicity is strongly linked to TOP2β/mitochondrial pathways (redox/iron biology remains discussed, but not the only story).<br>
-Administration hazard: extravasation can cause severe local injury;<br>
<br>

<!-- Doxorubicin (DOX) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Topoisomerase II poisoning (DNA double-strand break stress)</td>
<td>Topo II–DNA cleavage complexes ↑ → DNA breaks ↑ → apoptosis/senescence ↑ (context)</td>
<td>Also affects normal proliferating tissues (marrow, mucosa)</td>
<td>P, R</td>
<td>Core cytotoxic mechanism</td>
<td>Primary anticancer mechanism: stabilization of Topo II–DNA cleavage complexes blocks repair and drives lethal DNA damage responses.</td>
</tr>

<tr>
<td>2</td>
<td>DNA intercalation → replication/transcription disruption</td>
<td>DNA/RNA synthesis ↓; replication stress ↑</td>
<td>Off-target in normal dividing cells</td>
<td>P, R</td>
<td>Replication/transcription blockade</td>
<td>Intercalation contributes to replication fork stress and complements Topo II poisoning.</td>
</tr>

<tr>
<td>3</td>
<td>Redox cycling / iron-associated oxidative injury (context-dependent)</td>
<td>ROS / oxidative damage ↑ (reported; model-dependent)</td>
<td>Oxidative injury risk in sensitive tissues (esp. heart) ↑</td>
<td>P, R, G</td>
<td>Stress amplification</td>
<td>Often described as semiquinone redox cycling and iron interactions; the relative importance vs Topo II varies by tissue/model.</td>
</tr>

<tr>
<td>4</td>
<td>Cardiotoxicity axis (TOP2β + mitochondrial injury; cumulative-dose dependent)</td>
<td>—</td>
<td>Risk of cardiomyopathy/heart failure ↑ with cumulative exposure</td>
<td>R, G</td>
<td>Major dose-limiting toxicity</td>
<td>Clinically important boxed-warning toxicity; risk increases with cumulative dose (labels cite higher risk above ~550 mg/m²; higher-risk patients often use lower limits).</td>
</tr>

<tr>
<td>5</td>
<td>Myelosuppression (bone marrow progenitors)</td>
<td>—</td>
<td>Neutropenia/anemia/thrombocytopenia risk ↑</td>
<td>R, G</td>
<td>Dose-limiting toxicity</td>
<td>Expected on-target effect in rapidly dividing marrow cells; infection risk increases when neutrophils are low.</td>
</tr>

<tr>
<td>6</td>
<td>p53 / DNA-damage response programs</td>
<td>DDR signaling ↑; p53 pathway engagement ↑ (context)</td>
<td>DDR activation in normal tissues contributes to toxicity</td>
<td>R, G</td>
<td>Cell fate commitment</td>
<td>Downstream of DNA breaks: checkpoint activation, apoptosis, senescence, or mitotic catastrophe depending on genotype and dose.</td>
</tr>

<tr>
<td>7</td>
<td>Immunogenic cell death signals (DAMP exposure; context-dependent)</td>
<td>Potential ICD features ↑ (reported in some systems)</td>
<td>—</td>
<td>G</td>
<td>Immune engagement (conditional)</td>
<td>Anthracyclines are often discussed as capable of immunogenic cell death in certain settings; not universal across regimens.</td>
</tr>

<tr>
<td>8</td>
<td>Extravasation tissue injury (local)</td>
<td>—</td>
<td>Severe local tissue damage risk if IV leakage occurs</td>
<td>P, R</td>
<td>Administration hazard</td>
<td>Boxed warning emphasizes severe tissue injury with extravasation; requires strict IV administration controls.</td>
</tr>

<tr>
<td>9</td>
<td>Secondary malignancy risk (therapy-related AML/MDS; exposure-dependent)</td>
<td>—</td>
<td>Rare long-term risk signal ↑</td>
<td>—</td>
<td>Late toxicity constraint</td>
<td>Listed in boxed warnings/labels as a potential late effect, especially with combination regimens.</td>
</tr>

<tr>
<td>10</td>
<td>Cardioprotection strategy (dexrazoxane; selected settings)</td>
<td>—</td>
<td>Cardiotoxicity risk ↓ (when used appropriately)</td>
<td>R, G</td>
<td>Risk mitigation</td>
<td>Dexrazoxane is used to reduce anthracycline cardiotoxicity; mechanistic literature includes TOP2β-linked protection and other hypotheses.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (direct DNA/Topo interactions begin rapidly)</li>
<li><b>R</b>: 30 min–3 hr (acute DNA-damage response + stress signaling)</li>
<li><b>G</b>: &gt;3 hr (gene programs, apoptosis/senescence, phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   HO-1↓, 1,   Keap1↓, 1,   MDA↓, 1,   NRF2↓, 2,   NRF2∅, 1,   ROS↑, 1,   SOD↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 4,   mtDam↑, 1,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   HK2↓, 1,   LDH↑, 1,   LDHA↓, 1,   PI3K/Akt↓, 1,  

Cell Death

p‑Akt↓, 2,   Apoptosis↑, 4,   Apoptosis∅, 1,   p‑BAD↓, 1,   BAX↓, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   Bcl-2↑, 1,   Casp↑, 1,   Casp3↑, 4,   Casp3↓, 1,   cl‑Casp3↑, 1,   Casp7↓, 1,   Casp9↑, 1,   necrosis↑, 2,   p38↑, 1,   survivin↓, 1,  

Transcription & Epigenetics

tumCV↓, 3,  

Autophagy & Lysosomes

LC3B↑, 1,  

DNA Damage & Repair

p‑CHK1↓, 1,   DNAdam↑, 2,   DNAdam↓, 1,   DNMTs↓, 1,   P53↑, 1,   cl‑PARP↑, 3,   PARP↝, 1,   γH2AX↑, 1,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CycB/CCNB1↑, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   E2Fs↓, 1,   P21↑, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CD133↓, 1,   cMET↓, 1,   CSCs↓, 1,   HDAC↓, 1,   mTOR↓, 1,   PI3K↓, 1,   PTEN↑, 1,   PTEN↓, 1,   TumCG↓, 2,   TumCG∅, 2,  

Migration

Ca+2↑, 2,   ER-α36↓, 1,   Ki-67↓, 1,   NeuroT↓, 1,   TRPC1↑, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,  

Angiogenesis & Vasculature

EPR↑, 1,   Hif1a↓, 1,  

Barriers & Transport

P-gp↓, 2,  

Immune & Inflammatory Signaling

TNF-α↓, 1,  

Hormonal & Nuclear Receptors

BNP↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioEnh↑, 6,   ChemoSen↑, 14,   ChemoSen∅, 2,   Dose↓, 1,   Dose↝, 1,   eff↑, 8,   eff↓, 2,   MRP1↓, 1,   selectivity?, 1,   selectivity↑, 7,  

Clinical Biomarkers

Ki-67↓, 1,   LDH↑, 1,  

Functional Outcomes

AntiCan↑, 2,   antiNeop∅, 1,   cardioP↑, 3,   CardioT↓, 1,   chemoP↑, 3,   hepatoP↑, 2,   neuroP↑, 1,   OS↑, 3,   Remission↑, 1,   RenoP↑, 1,   toxicity↝, 1,   TumVol↓, 5,  
Total Targets: 99

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   Ferroptosis↓, 1,   GPx4↑, 1,   GSH↑, 3,   HO-1↑, 2,   MDA↓, 1,   NOX4↓, 1,   NQO1↑, 1,   NRF2↑, 7,   ROS↓, 9,   ROS∅, 1,   SIRT3↑, 2,   SOD↑, 2,   SOD2↑, 2,  

Metal & Cofactor Biology

FTH1↑, 1,  

Mitochondria & Bioenergetics

mitResp↑, 2,   MMP↑, 1,  

Core Metabolism/Glycolysis

LDH↓, 1,   PPARγ↑, 2,  

Cell Death

Ferroptosis↓, 1,  

Proliferation, Differentiation & Cell State

Mst1↓, 1,   p‑mTOR↓, 1,  

Migration

TGF-β↓, 1,  

Angiogenesis & Vasculature

Hif1a↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 2,   TNF-α↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioEnh↑, 1,   eff↓, 2,  

Clinical Biomarkers

LDH↓, 1,  

Functional Outcomes

cardioP↑, 8,   CardioT↓, 1,   toxicity↓, 1,  
Total Targets: 34

Research papers

Year Title Authors PMID Link Flag
2022Oxidative Stress-Induced Silver Nano-Carriers for ChemotherapyMinh Phuong Nguyenhttps://pmc.ncbi.nlm.nih.gov/articles/PMC9783686/0
2024Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway Guojian Shi 38411783https://pubmed.ncbi.nlm.nih.gov/38411783/0
2022Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patientsRehab H WeridaPMC9385783 https://pmc.ncbi.nlm.nih.gov/articles/PMC9385783/0
2021Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammationQijing Wu33556877https://pubmed.ncbi.nlm.nih.gov/33556877/0
2019Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cellsAgnieszka KorgaPMC6499973https://pmc.ncbi.nlm.nih.gov/articles/PMC6499973/0
2015Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell linesAA MahbubPMC4979421https://pmc.ncbi.nlm.nih.gov/articles/PMC4979421/0
2013Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathwayAi-Mei Gao23563091https://pubmed.ncbi.nlm.nih.gov/23563091/0
2024Dihydroartemisinin alleviates doxorubicin-induced cardiotoxicity and ferroptosis by activating Nrf2 and regulating autophagyZhi-Hui Lin38775792https://pubmed.ncbi.nlm.nih.gov/38775792/0
2012Withaferin A Synergizes the Therapeutic Effect of Doxorubicin through ROS-Mediated Autophagy in Ovarian CancerMiranda Y FongPMC3408484https://pmc.ncbi.nlm.nih.gov/articles/PMC3408484/0
2024Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer CellsJoanna Bernasinska-SlomczewskaPMC11173533https://pmc.ncbi.nlm.nih.gov/articles/PMC11173533/0
2023treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358.Yiyang WangPMC9966753https://pmc.ncbi.nlm.nih.gov/articles/PMC9966753/0
2013Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathwayAi-Mei Gao23994249https://pubmed.ncbi.nlm.nih.gov/23994249/0
2012Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell CulturesHeather GreenleePMC3840161https://pmc.ncbi.nlm.nih.gov/articles/PMC3840161/0
2015Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expressionShengpeng Wang25824409https://pubmed.ncbi.nlm.nih.gov/25824409/0
2013Gambogic acid sensitizes ovarian cancer cells to doxorubicin through ROS-mediated apoptosisJianxia Wang23436279https://pubmed.ncbi.nlm.nih.gov/23436279/0
2017Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse heartsLizhen HuangPMC5607346https://pmc.ncbi.nlm.nih.gov/articles/PMC5607346/0
2017Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse heartsLizhen Huanghttps://www.nature.com/articles/s41598-017-12095-y0
2017Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in miceVinodkumar B PillaiPMC5470953https://pmc.ncbi.nlm.nih.gov/articles/PMC5470953/0
2021Hyperthermia Enhances Doxorubicin Therapeutic Efficacy against A375 and MNT-1 Melanoma CellsDiana Serenela Salvadorhttps://www.researchgate.net/publication/357237472_Hyperthermia_Enhances_Doxorubicin_Therapeutic_Efficacy_against_A375_and_MNT-1_Melanoma_Cells0
2008Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cellsGang-Jun Du18503759https://pubmed.ncbi.nlm.nih.gov/18503759/0
2024Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer CellsNima Rastegar-PouyaniPMC11822234https://pmc.ncbi.nlm.nih.gov/articles/PMC11822234/0
2024Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic OutcomeViresh Krishnan Sukumarhttps://www.mdpi.com/2072-6694/16/22/38600
2023Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell lineShahin Ramazihttps://www.nature.com/articles/s41598-023-35767-4#Sec140
2022Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine ApproachYee Kit Taihttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.783803/full0
2017Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma CellsYOSHITAKA MURAMATSUPMC5354149https://pmc.ncbi.nlm.nih.gov/articles/PMC5354149/0
2024Piperine enhances doxorubicin sensitivity in triple-negative breast cancer by targeting the PI3K/Akt/mTOR pathway and cancer stem cellsAndrew N HakeemPMC11303729https://pmc.ncbi.nlm.nih.gov/articles/PMC11303729/0
2017Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-metYan ShuPMC5777119https://pmc.ncbi.nlm.nih.gov/articles/PMC5777119/0
2015Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicinShekoufeh AtashpourPMC4556754https://pmc.ncbi.nlm.nih.gov/articles/PMC4556754/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2010Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cellsGangjun Du19466611https://pubmed.ncbi.nlm.nih.gov/19466611/0
2022Selenium Attenuates Doxorubicin-Induced Cardiotoxicity Through Nrf2-NLRP3 PathwayHai-Bing Yanghttps://link.springer.com/article/10.1007/s12011-021-02891-z0
2018pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cellsUrarika Luesakul29254044https://pubmed.ncbi.nlm.nih.gov/29254044/0
2018Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer modelChhanda BosePMC5843244https://pmc.ncbi.nlm.nih.gov/articles/PMC5843244/0
2017Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 UpregulationYang Bai28636290https://pubmed.ncbi.nlm.nih.gov/28636290/0
2024Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in miceHu TuoPMC10776756https://pmc.ncbi.nlm.nih.gov/articles/PMC10776756/0
2025Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanismYi Chenhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X240037880
2019Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanismsMaamoun Fatfat31278946https://pubmed.ncbi.nlm.nih.gov/31278946/0
2012Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cellsEl-Shaimaa A ArafaPMC3037029https://pmc.ncbi.nlm.nih.gov/articles/PMC3037029/0