tbResList Print — PacT Paclitaxel

Filters: qv=182, qv2=%, rfv=%

Product

PacT Paclitaxel
Description: <b>Paclitaxel</b> (brand name Taxol) is a chemotherapy medication used to treat ovarian cancer, esophageal cancer, breast cancer, lung cancer, Kaposi's sarcoma, cervical cancer, and pancreatic cancer. Administered by intravenous injection.<br>
Derived from a natural product, Taxol (from Pacific Yew Tree).<br>
Paclitaxel is a drug (chemotherapy; a taxane). Its dominant anticancer mechanism is microtubule stabilization, which disrupts normal mitosis and drives mitotic arrest/stress signaling that can culminate in apoptosis.<br>

<br>
<br>

<h3>Paclitaxel – Cancer Pathway Matrix</h3>

<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Microtubule stabilization → Mitotic arrest</td>
<td>Mitotic progression ↓; spindle dynamics impaired; cell division blocked</td>
<td>Proliferating normal cells affected</td>
<td>R, G</td>
<td>Core cytotoxic mechanism</td>
<td>Binds β-tubulin and stabilizes microtubules, preventing normal depolymerization required for mitosis.</td>
</tr>

<tr>
<td>2</td>
<td>Spindle assembly checkpoint activation</td>
<td>Prolonged mitotic arrest → mitotic catastrophe or apoptosis</td>
<td>Checkpoint stress in dividing tissues</td>
<td>R, G</td>
<td>Mitotic stress execution</td>
<td>Cell fate depends on whether arrest resolves via apoptosis or mitotic slippage.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Caspase activation ↑; BAX/mitochondrial signaling engaged (context)</td>
<td>Limited unless stressed</td>
<td>G</td>
<td>Cell death execution</td>
<td>Often downstream of prolonged mitotic stress and mitochondrial perturbation.</td>
</tr>

<tr>
<td>4</td>
<td>ROS generation (secondary)</td>
<td>ROS ↑ (context-dependent); oxidative stress amplification</td>
<td>Oxidative stress possible in sensitive tissues</td>
<td>R, G</td>
<td>Stress amplifier</td>
<td>ROS rise appears secondary to mitotic and mitochondrial dysfunction; may enhance apoptosis.</td>
</tr>

<tr>
<td>5</td>
<td>Nrf2 antioxidant response (adaptive)</td>
<td>Nrf2 ↑ in some tumors; antioxidant buffering ↑; resistance potential</td>
<td>Protective antioxidant signaling</td>
<td>G</td>
<td>Adaptive resistance axis</td>
<td>Not a direct paclitaxel target; elevated Nrf2 may reduce drug sensitivity.</td>
</tr>

<tr>
<td>6</td>
<td>Drug resistance mechanisms</td>
<td>P-glycoprotein (MDR1) ↑; β-tubulin alterations; survival rewiring</td>
<td>—</td>
<td>G</td>
<td>Treatment failure driver</td>
<td>Efflux pumps and tubulin adaptations are major clinical resistance mechanisms.</td>
</tr>

<tr>
<td>7</td>
<td>Myelosuppression</td>
<td>—</td>
<td>Neutropenia risk ↑</td>
<td>G</td>
<td>Dose-limiting toxicity</td>
<td>Bone marrow suppression is a primary clinical constraint.</td>
</tr>

<tr>
<td>8</td>
<td>Peripheral neuropathy</td>
<td>—</td>
<td>Sensory neuropathy risk ↑</td>
<td>G</td>
<td>Dose-limiting toxicity</td>
<td>Likely related to microtubule disruption in axonal transport.</td>
</tr>

</table>

<p><strong>Time-Scale Flag (TSF):</strong><br>
P = 0–30 min (drug binding begins)<br>
R = 30 min–3 hr (mitotic stress signaling, ROS changes)<br>
G = &gt;3 hr (apoptosis, resistance adaptation, tissue toxicities)
</p>

Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

NA?, 1,  

Redox & Oxidative Stress

MDA↓, 1,   ROS↑, 2,  

Mitochondria & Bioenergetics

MMP↓, 2,  

Core Metabolism/Glycolysis

PI3K/Akt↓, 1,  

Cell Death

p‑Akt↓, 3,   Apoptosis↑, 1,   Apoptosis↓, 1,   BAD↑, 1,   BAX↑, 4,   Bcl-2↓, 5,   Bcl-xL↓, 1,   Casp10↑, 1,   Casp3↑, 4,   cl‑Casp9↑, 1,   Casp9↑, 1,   Cyt‑c↑, 1,   MAPK↓, 1,  

Transcription & Epigenetics

HATs↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   GRP78/BiP↑, 1,  

DNA Damage & Repair

P53↑, 1,   cl‑PARP↑, 2,  

Cell Cycle & Senescence

CDK1↓, 1,   cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   ERK↓, 1,   p‑ERK↓, 1,   IGF-1↓, 1,   IGF-1R↓, 2,   IGF-2↓, 1,   IGFBP3↑, 1,   Let-7↑, 1,   NOTCH1↓, 1,   PI3K↓, 1,   SAL↑, 1,   STAT3↓, 1,   TumCG↓, 1,   TumCG↑, 1,   Wnt/(β-catenin)↓, 1,  

Migration

AXL↓, 1,   E-cadherin↑, 1,   MMP11↓, 1,   MMP9↓, 2,   NeuroT↓, 1,   TGF-β↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 2,   Tyro3↓, 1,   Vim↓, 1,   Zeb1↓, 1,   ZEB2↓, 1,   ac‑α-tubulin↑, 1,  

Angiogenesis & Vasculature

VEGF↓, 1,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL6↓, 2,   IL8↑, 1,   NF-kB↓, 2,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

BNP↓, 1,  

Drug Metabolism & Resistance

BioEnh↑, 6,   ChemoSen↑, 4,   eff↑, 1,  

Clinical Biomarkers

IL6↓, 2,  

Functional Outcomes

ChemoSideEff↓, 1,   ChemoSideEff∅, 1,  
Total Targets: 70

Pathway results for Effect on Normal Cells

Drug Metabolism & Resistance

BioAv↑, 1,   BioEnh↑, 2,  
Total Targets: 2

Research papers

Year Title Authors PMID Link Flag
2024Anti-cancer effects of alpha lipoic acid, cisplatin and paclitaxel combination in the OVCAR-3 ovarian adenocarcinoma cell lineHatice Şiyzen Çoban38578399https://pubmed.ncbi.nlm.nih.gov/38578399/0
2022Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patientsRehab H WeridaPMC9385783 https://pmc.ncbi.nlm.nih.gov/articles/PMC9385783/0
2015Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cellsYoung-Ah Suh25544427https://www.spandidos-publications.com/ijo/46/3/14050
2010Boric acid as a protector against paclitaxel genotoxicityHasan Turkez20300661https://pubmed.ncbi.nlm.nih.gov/20300661/0
2020Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylationHuanhuan Xu32580047https://pubmed.ncbi.nlm.nih.gov/32580047/1
2019Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivoShuifang ChenPMC6489594https://pmc.ncbi.nlm.nih.gov/articles/PMC6489594/0
2021Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell lineNora M Aborehab33002289https://pubmed.ncbi.nlm.nih.gov/33002289/0
2020Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor CellsVaishali AggarwalPMC7277375https://pmc.ncbi.nlm.nih.gov/articles/PMC7277375/0
2017Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor modelShih-Hsin Tu28145547https://pubmed.ncbi.nlm.nih.gov/28145547/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2014Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cellsShundong CangPMC3927854https://pmc.ncbi.nlm.nih.gov/articles/PMC3927854/0
2020Quercetin Enhanced Paclitaxel Therapeutic Effects Towards PC-3 Prostate Cancer Through ER Stress Induction and ROS ProductionXiangyu Zhang32021294https://pubmed.ncbi.nlm.nih.gov/32021294/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2010Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)Kalimuthu Senthilkumar20658310https://pubmed.ncbi.nlm.nih.gov/20658310/0
2022Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cellsJoseph P BurnettPMC8892390https://pmc.ncbi.nlm.nih.gov/articles/PMC8892390/0