tbResList Print — 5-FU 5-fluorouracil

Filters: qv=191, qv2=%, rfv=%

Product

5-FU 5-fluorouracil
Description: <b>5-FU</b> is a chemotherapy medication used to treat various types of cancer, including colorectal, breast, stomach, and pancreatic cancer. It belongs to a class of drugs known as antimetabolites, which work by interfering with the growth and replication of cancer cells.<br>
<b>Mechanisms:</b><br>
- functionally irreversibly inhibits Thymidylate Synthase (TS), thereby depleting the deoxythymidine monophosphate (dTMP) pool required for DNA synthesis. The resulting “thymineless death” prevents DNA replication and repair, particularly affecting rapidly proliferating tumor cells.<br>
<br>
5-FU is a cornerstone in chemotherapy with a dual mechanism of action—primarily inhibiting thymidylate synthase (leading to disruption of DNA synthesis) and interfering with RNA processing by misincorporation. Its metabolism via activation (OPRT) and degradation (DPD) plays a crucial role in both its effectiveness and toxicity. Clinically, 5-FU is extensively used in treating a variety of cancers, most notably colorectal cancer, and remains a mainstay in multi-agent chemotherapeutic regimens due to its proven efficacy across diverse cancer types.<br>
<br>
5-FU is one of the most common chemotherapeutic agents worldwide, particularly noted in gastrointestinal (GI) cancers.<br>
<br>


<!-- 5-Fluorouracil (5-FU) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Thymidylate synthase (TS) inhibition → dTMP depletion</td>
<td>dTMP ↓ → DNA synthesis ↓ → replication stress ↑</td>
<td>Also affects normal proliferating tissues (marrow, GI mucosa)</td>
<td>P, R</td>
<td>Core cytotoxic mechanism</td>
<td>5-FU is converted to FdUMP, which forms a ternary complex with TS and folate, blocking thymidylate production (“thymineless death”).</td>
</tr>

<tr>
<td>2</td>
<td>RNA misincorporation (FUTP incorporation)</td>
<td>RNA processing/translation defects ↑</td>
<td>Contributes to mucositis and systemic toxicity</td>
<td>P, R</td>
<td>Transcription/translation disruption</td>
<td>RNA effects are a major contributor to cytotoxicity, particularly with bolus dosing.</td>
</tr>

<tr>
<td>3</td>
<td>DNA misincorporation (FdUTP incorporation)</td>
<td>DNA damage signaling ↑; apoptosis ↑ (context)</td>
<td>DDR activation in normal tissues contributes to toxicity</td>
<td>R, G</td>
<td>Genome instability</td>
<td>Misincorporation triggers mismatch repair and DNA damage responses.</td>
</tr>

<tr>
<td>4</td>
<td>S-phase specificity (cell-cycle dependence)</td>
<td>Greater killing in actively cycling/S-phase cells</td>
<td>Bone marrow & GI epithelium vulnerability ↑</td>
<td>R, G</td>
<td>Cell-cycle–linked cytotoxicity</td>
<td>Antimetabolite activity is strongest in proliferating cells.</td>
</tr>

<tr>
<td>5</td>
<td>Folate modulation (leucovorin synergy)</td>
<td>TS inhibition ↑ when combined with leucovorin</td>
<td>—</td>
<td>R</td>
<td>Mechanism amplification</td>
<td>Leucovorin stabilizes the FdUMP–TS–folate complex, enhancing cytotoxicity.</td>
</tr>

<tr>
<td>6</td>
<td>Myelosuppression</td>
<td>—</td>
<td>Neutropenia/anemia risk ↑</td>
<td>R, G</td>
<td>Dose-limiting toxicity</td>
<td>Expected on-target effect in rapidly dividing marrow progenitors.</td>
</tr>

<tr>
<td>7</td>
<td>Gastrointestinal toxicity (mucositis/diarrhea)</td>
<td>—</td>
<td>GI epithelial injury ↑</td>
<td>R, G</td>
<td>Dose-limiting toxicity</td>
<td>Reflects RNA/DNA effects in rapidly renewing GI mucosa.</td>
</tr>

<tr>
<td>8</td>
<td>Cardiotoxicity (vasospasm; rare cardiomyopathy)</td>
<td>—</td>
<td>Chest pain/ischemia risk ↑ (rare but important)</td>
<td>R</td>
<td>Serious adverse effect</td>
<td>Coronary vasospasm is the most recognized mechanism; monitoring required in symptomatic patients.</td>
</tr>

<tr>
<td>9</td>
<td>DPD metabolism (DPYD enzyme)</td>
<td>Severe toxicity risk ↑ if DPD deficient</td>
<td>—</td>
<td>—</td>
<td>Pharmacogenetic constraint</td>
<td>Dihydropyrimidine dehydrogenase (DPD) metabolizes 5-FU; deficiency can cause life-threatening toxicity. Pre-treatment DPYD testing is increasingly recommended.</td>
</tr>

<tr>
<td>10</td>
<td>Infusion vs bolus pharmacodynamics</td>
<td>Continuous infusion → more TS-driven DNA effect</td>
<td>Bolus → more RNA-mediated toxicity</td>
<td>P, R, G</td>
<td>Dosing-dependent mechanism balance</td>
<td>Administration schedule alters relative DNA vs RNA contribution and toxicity profile.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (metabolic activation begins rapidly)</li>
<li><b>R</b>: 30 min–3 hr (TS inhibition, RNA/DNA incorporation, DDR activation)</li>
<li><b>G</b>: &gt;3 hr (cell-cycle arrest, apoptosis, tissue-level toxicities)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 1,   Ferroptosis↑, 1,   GCLC↑, 1,   GCLM↑, 1,   NRF2↑, 2,   ROS↑, 1,   ROS↓, 1,   mt-ROS↑, 1,   SOD↓, 1,   TrxR↓, 1,  

Metal & Cofactor Biology

FTL↑, 1,   STEAP3↑, 1,  

Mitochondria & Bioenergetics

mitResp↑, 1,   MMP↓, 1,  

Core Metabolism/Glycolysis

ACSL5↑, 2,   Glycolysis↓, 3,   HK2↓, 1,   lactateProd↓, 2,   LDHA↓, 3,   PDH↑, 1,   PDK1↓, 2,   PDKs↓, 1,   PI3k/Akt/mTOR↓, 1,   SAT1↑, 1,  

Cell Death

Akt↓, 3,   p‑Akt↓, 2,   Apoptosis↑, 2,   BAX↑, 4,   Bcl-2↓, 1,   Casp3↑, 1,   cl‑Casp3↑, 1,   Casp9↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   p27↑, 1,   proApCas↑, 1,   survivin↓, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,  

Transcription & Epigenetics

EZH2↓, 1,   miR-145↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,  

DNA Damage & Repair

PARP↑, 1,   TP53↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

AXIN1↓, 1,   BMI1↓, 1,   CSCs↓, 1,   EMT↓, 1,   FOXO1↑, 1,   GSK‐3β↓, 1,   miR-34a↑, 2,   mTOR↓, 3,   NKD2↑, 1,   NOTCH1↓, 1,   p‑PI3K↓, 1,   PI3K↓, 2,   PTEN↑, 2,   SUZ12↓, 1,   TCF↓, 1,   TumCG↓, 1,   Wnt↓, 1,   Wnt/(β-catenin)↓, 1,  

Migration

E-cadherin↓, 1,   E-cadherin↑, 1,   MET↑, 1,   miR-200c↑, 1,   Slug↓, 1,   Snail↓, 1,   TET1↑, 1,   TumCA↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   TumCP↑, 1,   Vim↑, 1,   Vim↓, 1,   vinculin↓, 1,   β-catenin/ZEB1↓, 2,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

Hif1a↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 6,   ChemoSen↓, 1,   eff↓, 1,   eff↑, 5,   MDR1↓, 1,  

Clinical Biomarkers

EZH2↓, 1,   IL6↓, 1,   SUZ12↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 2,   chemoP↑, 1,   TumVol↓, 1,  

Infection & Microbiome

Bacteria↑, 1,  
Total Targets: 101

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

Catalase↑, 1,   GPx↑, 1,   GSR↑, 1,   HO-1↑, 1,   lipid-P↓, 1,   MDA↓, 1,   NRF2↑, 1,   ROS↓, 1,   TAC↑, 1,  

Core Metabolism/Glycolysis

BUN↓, 1,   LDH↓, 1,  

Cell Death

MAPK↓, 1,   p38↓, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Immune & Inflammatory Signaling

IFN-γ↑, 1,   IL1β↓, 1,   IL2↑, 1,   NF-kB↓, 1,   TNF-α↑, 1,  

Clinical Biomarkers

LDH↓, 1,  

Functional Outcomes

RenoP↑, 1,   toxicity∅, 1,  
Total Targets: 22

Research papers

Year Title Authors PMID Link Flag
2025Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulationAkhmed Aslamhttps://link.springer.com/content/pdf/10.1186/s43046-025-00261-7.pdf0
2020Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulationWenfang Li31669273https://pubmed.ncbi.nlm.nih.gov/31669273/0
2016Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathwayXuejing Zouhttps://www.sciencedirect.com/science/article/pii/S13478613163003420
2020Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancerPriyanka SharmaPMC7566354https://pmc.ncbi.nlm.nih.gov/articles/PMC7566354/0
2016Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expressionWeicheng Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00062952163030700
20155-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinomaXiao-Yun Hu25363523https://pubmed.ncbi.nlm.nih.gov/25363523/0
2013Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitroJodee L Johnson23871783https://pubmed.ncbi.nlm.nih.gov/23871783/0
2015Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathwayFenglin Chen25333894https://pubmed.ncbi.nlm.nih.gov/25333894/0
2020Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and AntioxidationBing HanPMC7549173https://pmc.ncbi.nlm.nih.gov/articles/PMC7549173/1
2022Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell LineÖmer Faruk KIRLANGIÇPMC9438760https://pmc.ncbi.nlm.nih.gov/articles/PMC9438760/0
2021Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-FluorouracilJung Ho HanPMC8161398https://pmc.ncbi.nlm.nih.gov/articles/PMC8161398/0
2020Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cellsSunyi LeePMC7681229https://pmc.ncbi.nlm.nih.gov/articles/PMC7681229/0
2023Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasisChunfeng Liu,https://www.nature.com/articles/s41418-023-01178-10
2021Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability Meng Jin 34374130https://pubmed.ncbi.nlm.nih.gov/34374130/0
2020Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progressYi Lu32887024https://www.sciencedirect.com/science/article/pii/S0753332220305746?via%3Dihub0
2014Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolismYi Xuanhttps://www.sciencedirect.com/science/article/abs/pii/S00144827130052600
2011Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal CancerJingtao Tonghttps://onlinelibrary.wiley.com/doi/10.1155/2011/7405640
2016Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancerShusuke Todenhttps://www.researchgate.net/publication/304940512_Epigallocatechin-3-gallate_targets_cancer_stem-like_cells_and_enhances_5-fluorouracil_chemosensitivity_in_colorectal_cancer0
2022Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cellsNorah M AlhoshaniPMC9715638https://pmc.ncbi.nlm.nih.gov/articles/PMC9715638/0
2023Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathwaysYuanyuan ChenPMC10874772https://pmc.ncbi.nlm.nih.gov/articles/PMC10874772/0
2024In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathwayShaimaa E DiabPMC10825195https://pmc.ncbi.nlm.nih.gov/articles/PMC10825195/0
2025Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxRJi Zhou40054719https://pubmed.ncbi.nlm.nih.gov/40054719/0
2025Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivoSummya RashidPMC12146898https://pmc.ncbi.nlm.nih.gov/articles/PMC12146898/0
2025Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblastsSima NobariPMC11985878https://pubmed.ncbi.nlm.nih.gov/40208502/0