tbResList Print — MFrot Magnetic Field Rotating

Filters: qv=192, qv2=%, rfv=%

Product

MFrot Magnetic Field Rotating
Description: <b>Rotary Magnetic field</b> can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)<br>
Targets affected are mostly the same as for <a href="tbResList.php?qv=172&exPr=open">Magnet fields</a><br>
Main differences<br>
- may enhance the EPR effect allowing targeting of drugs to cancer cells<br>
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)<br>
- research for use in nano surgery, and mechanical destruction of cancer cells<br>
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells<br>
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells) <br>

<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=192&tsv=275&wNotes=on">ROS</a> production in cancer cells,
while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer
cells while decreased in normal cells (example for wound healing)<br>
- ROS↑ related:
<a href="tbResList.php?qv=192&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<!-- <a href="tbResList.php?qv=192&tsv=103&wNotes=on">ER Stress↑</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=459&wNotes=on">UPR↑</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=356&wNotes=on">GRP78↑</a>, -->
<a href="tbResList.php?qv=192&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=192&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=192&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=192&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
<!--
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=192&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=192&word=Trx&wNotes=on">TrxR↓**</a>,
<a href="tbResList.php?qv=192&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=192&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=192&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=192&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=192&wNotes=on&word=GPx">GPx↓</a>
<br> -->

- Raises
<a href="tbResList.php?qv=192&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=192&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=192&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=192&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=192&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=192&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<!-- genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM -->
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=192&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=192&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=192&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=192&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<!-- <a href="tbResList.php?qv=192&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>, -->
<a href="tbResList.php?qv=192&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=192&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a> -->
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=192&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=192&tsv=323&wNotes=on">TumCG↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=96&wNotes=on">EMT↓</a>, -->
<a href="tbResList.php?qv=192&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=192&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=192&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=192&tsv=415&wNotes=on">IGF-1↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=428&wNotes=on">uPA↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=334&wNotes=on">VEGF↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=192&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=192&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=192&tsv=304&wNotes=on">TGF-β↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=719&wNotes=on">α-SMA↓</a>, -->
<a href="tbResList.php?qv=192&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=192&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
<!--
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=192&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=192&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=192&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=192&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=TET">TET↑</a>
<br> -->

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=192&tsv=322&wNotes=on">TumCCA↑</a>,
<!-- <a href="tbResList.php?qv=192&tsv=73&wNotes=on">cyclin D1↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=378&wNotes=on">cyclin E↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=467&wNotes=on">CDK2↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=894&wNotes=on">CDK4↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=192&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=192&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=192&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<!-- <a href="tbResList.php?qv=192&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=192&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=96&wNotes=on">EMT↓</a>, -->
<!-- <a href="tbResList.php?qv=192&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
<!--
- inhibits
<a href="tbResList.php?qv=192&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=192&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=192&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=192&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=192&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=192&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=192&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=192&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=192&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=192&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=192&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=192&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=192&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=192&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=192&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>
-->

<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
<!--
- inhibits
<a href="tbResList.php?qv=192&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=192&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=192&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=192&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=192&&wNotes=on&word=ITG">Integrins↓</a>,
<br> -->

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
<!--
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=192&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=192&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=192&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=192&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=192&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=192&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=192&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=192&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=192&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=192&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=192&wNotes=on&word=NOTCH">Notch2↓</a>,
<a href="tbResList.php?qv=192&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=192&tsv=508&wNotes=on">OCT4↓</a>,
<br> -->

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=192&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=192&tsv=4&wNotes=on">AKT↓</a>,
<!-- <a href="tbResList.php?qv=192&wNotes=on&word=JAK">JAK↓</a>, -->
<!-- <a href="tbResList.php?qv=192&wNotes=on&word=STAT">STAT↓</a>, -->
<a href="tbResList.php?qv=192&tsv=377&wNotes=on">Wnt↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=342&wNotes=on">β-catenin↓</a>, -->
<a href="tbResList.php?qv=192&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=192&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=192&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=192&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=192&tsv=168&wNotes=on">JNK</a>,

<!-- - <a href="tbResList.php?qv=192&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol). --><br>


<!-- SYNERGIES : -->
- Synergies:
<!-- <a href="tbResList.php?qv=192&tsv=1106&wNotes=on">chemo-sensitization</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=1171&wNotes=on">chemoProtective</a>, -->
<<!-- a href="tbResList.php?qv=192&tsv=1107&wNotes=on">RadioSensitizer</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=1185&wNotes=on">RadioProtective</a>, -->
<a href="tbResList.php?qv=192&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=192&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=192&tsv=557&wNotes=on">Cognitive</a>,
<!-- <a href="tbResList.php?qv=192&tsv=1175&wNotes=on">Renoprotection</a>, -->
<!-- <a href="tbResList.php?qv=192&tsv=1179&wNotes=on">Hepatoprotective</a>, -->
<!-- <a href="tbResList.php?&qv=192&tsv=1188&wNotes=on">CardioProtective</a>, -->

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=192&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>


Rotating Magnetic Fields
<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS (tumor-selective oxidative stress)</td>
<td>↑ ROS (P→R); sustained to cytotoxicity (G)</td>
<td>↔ minimal change or transient ↑ without injury (P→R)</td>
<td>P, R, G</td>
<td>Primary stress amplifier</td>
<td>Oncomagnetic reports emphasize selective tumor ROS increase with normal-cell sparing in comparable exposure conditions</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial ETC inhibition (Complex I/NADH:ubiquinone)</td>
<td>↓ Complex I / respiration (P→R)</td>
<td>↔ limited effect (P→R)</td>
<td>P, R</td>
<td>Bioenergetic collapse trigger</td>
<td>Rotating/spinning fields are proposed to disrupt mitochondrial electron flow, driving ROS elevation upstream of ΔΨm loss</td>
</tr>

<tr>
<td>3</td>
<td>Ca²⁺ signaling (ER–mitochondria Ca²⁺ transfer / mitochondrial Ca²⁺ load)</td>
<td>↑ Ca²⁺ dysregulation (P→R) contributing to mitochondrial failure (G)</td>
<td>↔ buffered Ca²⁺ homeostasis (P→R)</td>
<td>P, R, G</td>
<td>Amplifies ETC/ROS-driven toxicity</td>
<td>RMF-driven mitochondrial stress can propagate via Ca²⁺ transfer to accelerate ΔΨm loss and pro-death ER stress in tumor cells while sparing normal cells</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial permeability transition pore (MPTP)</td>
<td>↑ sustained MPTP opening (R→G)</td>
<td>↔ resistant to opening</td>
<td>P, R, G</td>
<td>Mitochondrial point-of-no-return</td>
<td>RMF-enhanced ROS and Ca²⁺ loading promote persistent MPTP opening in tumor mitochondria, driving energetic collapse and apoptosis while normal cells remain below the opening threshold</td>
</tr>


<tr>
<td>5</td>
<td>ΔΨm / mitochondrial membrane integrity</td>
<td>↓ ΔΨm (R); progresses (G)</td>
<td>↔ preserved</td>
<td>R, G</td>
<td>Mitochondrial failure threshold</td>
<td>Matches the “energy factory” targeting concept described in Oncomagnetic mechanism narratives</td>
</tr>

<tr>
<td>6</td>
<td>GSH depletion</td>
<td>↓ GSH (R→G)</td>
<td>↔ maintained</td>
<td>R, G</td>
<td>Loss of redox buffering</td>
<td>Cancer-selective inability to restore GSH is a key discriminator vs normal cells</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 response (selectivity gate)</td>
<td>↔ delayed/insufficient NRF2 (R→G)</td>
<td>↑ NRF2 (R→G)</td>
<td>R, G</td>
<td>Adaptive protection</td>
<td>Normal-cell sparing is consistent with competent NRF2-driven antioxidant defense</td>
</tr>

<tr>
<td>8</td>
<td>ER stress / UPR (CHOP commitment)</td>
<td>↑ ER stress (R); CHOP/apoptotic UPR (G)</td>
<td>↑ adaptive UPR (R); resolves (G)</td>
<td>R, G</td>
<td>Proteostasis failure</td>
<td>ETC/ROS stress propagates to ER; commitment vs resolution diverges by cell robustness</td>
</tr>

<tr>
<td>9</td>
<td>DNA damage (oxidative; checkpoint markers)</td>
<td>↑ DNA damage (R→G)</td>
<td>↔ or repaired (G)</td>
<td>R, G</td>
<td>Checkpoint stress</td>
<td>Interpreted as ROS-mediated consequence; reported as increased damage markers in some translational datasets</td>
</tr>

<tr>
<td>10</td>
<td>LDH / glycolytic vulnerability</td>
<td>↓ LDH performance / ↓ glycolytic flux (R→G)</td>
<td>↔ metabolic flexibility</td>
<td>R, G</td>
<td>Metabolic choke</td>
<td>Cancer glycolysis becomes unstable when NADH/NAD+ and redox buffering are stressed</td>
</tr>

<tr>
<td>11</td>
<td>TrxR / thioredoxin system overload</td>
<td>↓ reserve (R→G)</td>
<td>↔ preserved</td>
<td>R, G</td>
<td>Parallel antioxidant collapse</td>
<td>Useful when GSH data are mixed; TrxR can be the limiting system under sustained ROS</td>
</tr>

</table>

<pre>
Time-Scale Flag: TSF = P / R / G
P: 0–30 min (physical / electron / radical effects)
R: 30 min–3 hr (redox signaling & stress response)
G: >3 hr (gene-regulatory adaptation)
</pre>
MPTP: opening represents a mitochondrial commitment event integrating ROS and Ca²⁺ stress; sustained opening indicates irreversible bioenergetic failure.<br>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ATF3↑, 1,   Fenton↑, 1,   GSH↓, 1,   GSH↑, 1,   GSH/GSSG↓, 2,   mt-H2O2↑, 1,   H2O2↑, 3,   RNS↑, 1,   ROS↑, 14,   mt-ROS↑, 1,   RPM↑, 1,   SOD↓, 1,   Thiols↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ETC↓, 8,   mitResp↓, 1,   MMP?, 1,   MMP↓, 5,   MPT↑, 2,   mtDam↑, 1,   OCR↓, 1,   PleEff↓, 1,   SDH↓, 2,   UCP1↓, 1,  

Core Metabolism/Glycolysis

ACAA1↓, 1,   ALAT↓, 2,   BCAP↓, 1,   FABP4↓, 1,   GlucoseCon↓, 1,   lactateProd↑, 1,   PCK1↓, 1,   PLIN1↓, 1,   PPARγ↑, 1,   TCA?, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   Apoptosis↑, 8,   Bak↑, 1,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↑, 5,   Casp7↑, 1,   Casp9↑, 1,   Cyt‑c↑, 3,   lysoMP↑, 2,   lysoMP↓, 2,   TumCD↑, 8,   YAP/TEAD↓, 1,  

Transcription & Epigenetics

BowelM↑, 2,   ChrMod↑, 2,   other↝, 1,   tumCV↓, 3,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 1,   LC3II↑, 1,   p62↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

E2Fs↓, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   miR-34a↑, 1,   TumCG↓, 11,  

Migration

Ca+2↑, 4,   CAFs/TAFs↓, 1,   Cartilage↑, 1,   CCDC150↓, 1,   COL11A1↓, 1,   COL4↓, 1,   CXCL12↓, 1,   F-actin↓, 1,   FAK↓, 1,   FOSB↑, 1,   ITGA11↓, 1,   ITGB1↓, 1,   LAMB3↑, 1,   miR-486↑, 1,   MMP2↓, 1,   MMP9↓, 1,   MMPs↓, 1,   Rho↓, 1,   SMAD3↓, 1,   TGF-β↓, 1,   THBS2↓, 1,   TumCI↓, 3,   TumCMig↓, 2,   TumCP↓, 4,   TumMeta↓, 5,  

Angiogenesis & Vasculature

ECM/TCF↓, 1,   nucleolin↑, 1,  

Barriers & Transport

CellMemb↑, 4,  

Immune & Inflammatory Signaling

CD4+↓, 1,   CD4+↑, 3,   CXCc↓, 1,   CXCL9↓, 1,   DCells↑, 3,   FOXP3↓, 1,   GM-CSF↓, 1,   IFN-γ↓, 1,   IL1↑, 1,   IL10↑, 1,   IL12↑, 1,   IL17↓, 1,   IL22↓, 1,   IL23↓, 1,   IL28↓, 1,   IL6↓, 2,   Imm↑, 2,   Macrophages↑, 1,   PD-L1↑, 1,   RANTES↓, 1,   T-Cell↑, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

Dose↝, 6,   Dose∅, 1,   Dose↑, 2,   eff↓, 6,   eff↑, 13,   eff↝, 4,   selectivity↑, 8,  

Clinical Biomarkers

ALAT↓, 2,   AST↓, 1,   BMD↑, 1,   Ferritin↓, 1,   IL6↓, 2,   PD-L1↑, 1,  

Functional Outcomes

AntiCan↑, 1,   Appetite↑, 2,   breath↑, 2,   chemoP↑, 1,   ChemoSideEff↓, 1,   cognitive↑, 1,   hepatoP↑, 1,   OS↑, 12,   OS⇅, 1,   Pain↓, 4,   QoL↑, 2,   radioP↑, 1,   Sleep↑, 2,   Strength↑, 4,   toxicity↓, 2,   TumVol↓, 7,   Weight↑, 2,  

Infection & Microbiome

Bacteria↓, 1,   CD8+↓, 1,   CD8+↑, 3,  
Total Targets: 149

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 2,   GPx↑, 1,   GPx1↑, 1,   GPx4↑, 1,   MDA↓, 1,   ROMO1↑, 1,   ROS∅, 1,   ROS↑, 1,   ROS↓, 8,   SOD↑, 2,   SOD1↑, 1,   SOD2↑, 1,   TAC↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 2,   FABP4↓, 1,   PPARγ↓, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   iNOS↓, 1,   p‑JNK↓, 1,   p‑JNK↑, 2,   MAPK↓, 1,   p‑p38↓, 1,  

Kinase & Signal Transduction

OCN∅, 1,   SOX9↑, 1,  

Transcription & Epigenetics

Ach↑, 1,   other↝, 5,   other?, 1,   other↓, 1,   other↑, 2,   TREM-1↓, 1,  

Protein Folding & ER Stress

ER Stress↑, 1,  

DNA Damage & Repair

P53↓, 1,  

Cell Cycle & Senescence

P21↓, 1,  

Proliferation, Differentiation & Cell State

ALDH↑, 1,   cFos↑, 1,   Diff↓, 1,   Diff↑, 2,   ERK↓, 1,   FGF↑, 1,   IGF-1↑, 1,   mTOR↓, 3,   PI3K↓, 1,   RUNX2∅, 1,   TumCG∅, 1,   Wnt↑, 1,  

Migration

ARG↑, 1,   Ca+2↓, 1,   Ca+2↑, 2,   COL1∅, 1,   COL2A1↑, 1,   F-actin↑, 1,   FAK↑, 1,   MMP-10↓, 1,   MMP1↓, 1,   MMP9↑, 1,   MMP9↓, 1,   Netrins↑, 1,   TGF-β↑, 1,   TGF-β1↑, 1,   TIMP1↑, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   β-catenin/ZEB1↑, 1,   β-Endo↑, 2,  

Angiogenesis & Vasculature

angioG↑, 1,   EGR4↑, 1,   NO↓, 1,   NO↑, 1,   NPY↑, 1,   PDGFR-BB↑, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 1,   CXCc↓, 1,   GM-CSF↑, 1,   IFN-γ↓, 1,   p‑IKKα↓, 1,   IL1↓, 1,   IL10↑, 1,   IL17↓, 1,   IL1β↑, 1,   IL4↑, 1,   IL6↓, 1,   Inflam↓, 5,   IP-10/CXCL-10↑, 1,   p‑IκB↓, 1,   MCP1↓, 1,   MIP‑1α↓, 1,   mPGES-1↓, 1,   MyD88↓, 1,   NF-kB↓, 1,   p‑p65↓, 1,   TLR4↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

5HT↓, 2,   5HT↑, 1,   AChE↓, 1,   BDNF↑, 2,   NGF↑, 1,  

Protein Aggregation

Aβ↓, 4,   Aβ?, 1,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

eff↝, 2,   eff↓, 1,   eff↑, 2,   selectivity↑, 1,  

Clinical Biomarkers

ALP∅, 1,   ALP↑, 1,   BMD↑, 3,   IL6↓, 1,   NSE↑, 1,  

Functional Outcomes

AntiAge↑, 2,   cognitive↑, 6,   memory↑, 5,   motorD↑, 2,   neuroP↑, 4,   OS↑, 3,   radioP↑, 1,   toxicity∅, 5,  
Total Targets: 120

Research papers

Year Title Authors PMID Link Flag
2026Rotating magnetic field downregulating type XI collagen to suppress triple-negative breast cancer metastasis by inactivating the ITGB1/FAK/YAP signaling pathwayTongyao Yuhttps://www.sciencedirect.com/science/article/abs/pii/S01418130251023410
2025Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathwayMengqing Lhttps://pubmed.ncbi.nlm.nih.gov/39461710/0
2025The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's diseaseAnnibale Antonionihttps://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.70337?utm_source=chatgpt.com0
2025Case Report: A new noninvasive device-based treatment of a mesencephalic H3 K27M gliomaSantosh A HelekarPMC12626803https://pmc.ncbi.nlm.nih.gov/articles/PMC12626803/0
2024Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic fieldShilong Zhang38801615https://pubmed.ncbi.nlm.nih.gov/38801615/0
2024The Effect of a Rotating Magnetic Field on the Regenerative Potential of PlateletsElżbieta Cecerska-HeryćPMC11012199https://pmc.ncbi.nlm.nih.gov/articles/PMC11012199/0
2024Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticlesCristina Stavilă PhD studenthttps://www.sciencedirect.com/science/article/pii/S15499634240003520
2024The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic ReviewRenata MarchewkaPMC11119128https://pmc.ncbi.nlm.nih.gov/articles/PMC11119128/0
2024Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growthZhaoxian YanPMC11310191https://www.nature.com/articles/s41598-024-67437-4.pdf0
2024Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer CellsCristina StavilăPMC11256100https://pmc.ncbi.nlm.nih.gov/articles/PMC11256100/0
2024Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease miceRuo-Wen GuoRuo-Wen Guohttps://pmc.ncbi.nlm.nih.gov/articles/PMC11298676/0
2024The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary studyElżbieta Cecerska-HeryćPMC11018782https://pmc.ncbi.nlm.nih.gov/articles/PMC11018782/0
2024Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarizationMengqing LiPMC11493917https://pmc.ncbi.nlm.nih.gov/articles/PMC11493917/0
2024Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma CellsYan MiPMC11117552https://pmc.ncbi.nlm.nih.gov/articles/PMC11117552/0
2024Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling PathwayGe ZhangPMC10900498https://pmc.ncbi.nlm.nih.gov/articles/PMC10900498/0
2024Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.Ruo-Wen Guohttps://ngdc.cncb.ac.cn/openlb/publication/OLB-PM-390210810
2023Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer MetastasisXinmiao JiPMC10017101https://pmc.ncbi.nlm.nih.gov/articles/PMC10017101/0
2023Biological effects of rotating magnetic field: A review from 1969 to 2021Yunpeng Wei36574882https://pubmed.ncbi.nlm.nih.gov/36574882/0
2023Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune DysfunctionsYu HanPMC10093245https://pmc.ncbi.nlm.nih.gov/articles/PMC10093245/0
2023Magnetically controlled cyclic microscale deformation of in vitro cancer invasion modelsDaphne Osk Asgeirssonhttps://www.researchgate.net/publication/374768956_Magnetically_Controlled_Cyclic_Microscale_Deformation_of_In_Vitro_Cancer_Invasion_Models0
2023Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubesXIAN WANGhttps://www.science.org/doi/10.1126/sciadv.ade53210
2023Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cellsShashank HambardePMC10630398https://pmc.ncbi.nlm.nih.gov/articles/PMC10630398/0
2022EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGEShashank HambardePMC9661114https://pmc.ncbi.nlm.nih.gov/articles/PMC9661114/0
2022Method and apparatus for oncomagnetic treatmentHelekar et alhttps://patents.google.com/patent/US12186575B2/en0
2022Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell SurfaceBartłomiej GrygorcewiczPMC8947294https://pmc.ncbi.nlm.nih.gov/articles/PMC8947294/0
2022Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in miceShashank Hambarde36154345https://pubmed.ncbi.nlm.nih.gov/36154345/0
2021Case Report: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic DeviceDavid S BaskinPMC8341943https://pmc.ncbi.nlm.nih.gov/articles/PMC8341943/0
2021Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trialsHuanhuan LvPMC7941227https://pmc.ncbi.nlm.nih.gov/articles/PMC7941227/0
2021Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer CellsMartyn A SharpePMC8631329https://pmc.ncbi.nlm.nih.gov/articles/PMC8631329/0
2021Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic ImplicationsKatia VaraniPMC7830993https://pmc.ncbi.nlm.nih.gov/articles/PMC7830993/0
2021Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fieldsSantosh A Helekar34477946https://pubmed.ncbi.nlm.nih.gov/34477946/0
2021Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fieldsSara LopezPMC9417452https://pmc.ncbi.nlm.nih.gov/articles/PMC9417452/0
2021Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing StudyMagdalena Jedrzejczak-SilickaPMC8199476https://pmc.ncbi.nlm.nih.gov/articles/PMC8199476/0
2020Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibitionYong Qianhttps://www.sciencedirect.com/science/article/abs/pii/S13858947203195130
2020Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistanceYao Chenyanghttps://m.x-mol.net/paper/article/13077384348683182080
2020Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17Tianying ZhanPMC7185125https://pmc.ncbi.nlm.nih.gov/articles/PMC7185125/0
2020Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian CellsMagdalena Jędrzejczak-Silickahttps://www.researchgate.net/publication/341242877_Study_on_the_Effect_of_Rotating_Magnetic_Field_on_Cellular_Response_of_Mammalian_Cells0
2020Cancer treatment by magneto-mechanical effect of particles, a reviewCécile NaudPMC9419242https://pmc.ncbi.nlm.nih.gov/articles/PMC9419242/0
2020The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trialMinghui Zhu32238091https://pubmed.ncbi.nlm.nih.gov/32238091/0
2019Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegansJiangyao Xuhttps://www.researchgate.net/publication/337466667_Rotating_magnetic_field_delays_human_umbilical_vein_endothelial_cell_aging_and_prolongs_the_lifespan_of_Caenorhabditis_elegans0
2019Oncogenic pathways and the electron transport chain: a dangeROS liaisonVittoria RaimondiPMC7052168https://pmc.ncbi.nlm.nih.gov/articles/PMC7052168/0
2018Effect of low-frequency rotary magnetic fields on advanced gastric cancerChen, Zheng29970658https://journals.lww.com/cancerjournal/fulltext/2018/14040/effect_of_low_frequency_rotary_magnetic_fields_on.15.aspx0
2018Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm PathogensA. F. Junkahttps://www.nature.com/articles/s41598-017-18557-70
2017Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic FieldYajing ShenPMC5436524https://pmc.ncbi.nlm.nih.gov/articles/PMC5436524/0
2017LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathwayJing RenPMC5429732https://pmc.ncbi.nlm.nih.gov/articles/PMC5429732/0
2017Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling PathwayYujun XuPMC5603574https://pmc.ncbi.nlm.nih.gov/articles/PMC5603574/0
2016Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKTRuijing Tang26807660https://pubmed.ncbi.nlm.nih.gov/26807660/0
2016Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensisQiang Chen27061713https://pubmed.ncbi.nlm.nih.gov/27061713/0
2016Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in miceMeng Zha30142006https://www.researchgate.net/publication/327213612_Moderate_intensity_low_frequency_rotating_magnetic_field_inhibits_breast_cancer_growth_in_mice0
2015Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant GliomaYu ChengPMC4724455https://pmc.ncbi.nlm.nih.gov/articles/PMC4724455/0
2015Modification of bacterial cellulose through exposure to the rotating magnetic fieldKarol Fijałkowski26344254https://pubmed.ncbi.nlm.nih.gov/26344254/0
2014Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cellsLeilei Du25196555https://pubmed.ncbi.nlm.nih.gov/25196555/0
2013Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular CarcinomaYunzhong NiePMC3835892https://pmc.ncbi.nlm.nih.gov/articles/PMC3835892/0
2013Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulationYunzhong NiePMC4029221https://pmc.ncbi.nlm.nih.gov/articles/PMC4029221/0
2012A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: Effects on survival and palliation of general symptomsCHENGTAO SUNPMC3499610https://pmc.ncbi.nlm.nih.gov/articles/PMC3499610/0
2011Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cellsTingting Wang21360556https://pubmed.ncbi.nlm.nih.gov/21360556/0
2008The hemoprotective effects of a rotary magnetic field in mice exposed to γ irradiationXue-jun Xiehttps://www.semanticscholar.org/paper/The-hemoprotective-effects-of-a-rotary-magnetic-in-Xie-Qi/e39cd1191f5dc087d298977871cea29f76dec0c10
2008The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fieldsMarek Masiuk18821389https://pubmed.ncbi.nlm.nih.gov/18821389/0
2006Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh BonesXiao-yun Zhanghttp://www.zgkjcx.com/Article/UploadFiles/200807/20080710121302169.pdf0
2001Molecular mechanism of effect of rotating constant magnetic field on organismsX Zhang18726401https://pubmed.ncbi.nlm.nih.gov/18726401/0
2001The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer CellsNina Mikirova, Ph.D.https://isom.ca/wp-content/uploads/2020/01/JOM_2001_16_3_10_The_Effect_of_Alternating_Magnetic_Field_Exposure_and-.pdf0
1999On the mitochondrial aspect of reactive oxygen species action in external magnetic fieldsP. Waliszewskihttps://www.sciencedirect.com/science/article/abs/pii/S1011134499900003?via%3Dihub0
1993The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigsE Schwartz8353767https://pubmed.ncbi.nlm.nih.gov/8353767/0
1991The assessment of the efficacy of the effect of a rotational magnetic field on the course of the tumor process in patients with generalized breast cancerN G Bakhmutskiĭhttps://pubmed.ncbi.nlm.nih.gov/1948335/0
1991The growth dynamics of Walker carcinosarcoma during exposure to a magnetic eddy fieldN G Bakhmutskiĭ1843148https://pubmed.ncbi.nlm.nih.gov/1843148/0