tbResList Print — Cisplatin Cisplatin

Filters: qv=197, qv2=%, rfv=%

Product

Cisplatin Cisplatin
Description: <b>Cisplatin</b> is a chemotherapy medication used to treat various types of cancer. It is a platinum-based drug that works by interfering with the DNA of cancer cells, preventing them from reproducing and ultimately leading to cell death.<br>
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a platinum-based chemotherapeutic agent that forms covalent DNA crosslinks, primarily intrastrand adducts at adjacent guanine bases. These distort DNA structure, block replication and transcription, and activate DNA damage response pathways (ATM/ATR → p53), leading to cell-cycle arrest and apoptosis. Secondary mechanisms include ROS generation, stress MAPK activation, and modulation of NF-κB. Clinical resistance frequently involves enhanced DNA repair (ERCC1/NER), altered drug transport (CTR1, ATP7A/B), and increased antioxidant defenses. Major toxicities include nephrotoxicity, ototoxicity, and peripheral neuropathy.<br>
<br>
<!-- Cisplatin (CDDP) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>DNA crosslink formation (intrastrand adducts)</td>
<td>DNA adducts ↑; replication block ↑</td>
<td>Normal dividing cells also affected</td>
<td>P, R, G</td>
<td>Direct DNA cytotoxicity</td>
<td>Cisplatin forms covalent intrastrand crosslinks (primarily at adjacent guanines), distorting DNA and blocking replication and transcription.</td>
</tr>

<tr>
<td>2</td>
<td>DNA damage response (ATM / ATR → p53)</td>
<td>Checkpoint activation ↑; p53 signaling ↑</td>
<td>↔ (toxicity in proliferating tissues)</td>
<td>R, G</td>
<td>Damage signaling cascade</td>
<td>DNA distortion activates ATM/ATR pathways leading to p53-mediated cell-cycle arrest and apoptosis.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Bax ↑; Bcl-2 ↓; caspase-9/3 ↑</td>
<td>Nephrotoxicity & ototoxicity risk</td>
<td>G</td>
<td>Execution of cell death</td>
<td>Persistent DNA damage triggers mitochondrial outer membrane permeabilization and caspase activation.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle arrest (G2/M emphasis)</td>
<td>G2/M arrest ↑</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis → apoptosis</td>
<td>Cells accumulate in G2/M phase due to unrepaired DNA lesions.</td>
</tr>

<tr>
<td>5</td>
<td>ROS generation / oxidative stress</td>
<td>ROS ↑ (secondary mechanism)</td>
<td>Oxidative injury ↑ (kidney, cochlea)</td>
<td>R, G</td>
<td>Stress amplification</td>
<td>Cisplatin increases mitochondrial ROS and oxidative stress, contributing to cytotoxicity and organ toxicity.</td>
</tr>

<tr>
<td>6</td>
<td>MAPK signaling (JNK / p38 activation)</td>
<td>Stress MAPK activation ↑</td>
<td>↔</td>
<td>R, G</td>
<td>Stress-response signaling</td>
<td>JNK and p38 activation contribute to apoptosis and stress signaling.</td>
</tr>

<tr>
<td>7</td>
<td>NF-κB activation (resistance axis)</td>
<td>NF-κB ↑ may promote survival</td>
<td>↔</td>
<td>R, G</td>
<td>Resistance modulation</td>
<td>NF-κB activation can reduce sensitivity; inhibition enhances cytotoxicity in some models.</td>
</tr>

<tr>
<td>8</td>
<td>DNA repair pathways (NER / ERCC1)</td>
<td>NER ↑ → resistance</td>
<td>—</td>
<td>G</td>
<td>Resistance determinant</td>
<td>Nucleotide excision repair (ERCC1) removes platinum adducts; high ERCC1 correlates with resistance.</td>
</tr>

<tr>
<td>9</td>
<td>Drug transport (CTR1 uptake; ATP7A/B efflux)</td>
<td>CTR1 ↓ or ATP7A/B ↑ → resistance</td>
<td>—</td>
<td>G</td>
<td>Exposure constraint</td>
<td>Copper transporters influence intracellular cisplatin accumulation and resistance.</td>
</tr>

<tr>
<td>10</td>
<td>Clinical toxicity profile</td>
<td>—</td>
<td>Nephrotoxicity, ototoxicity, neurotoxicity</td>
<td>—</td>
<td>Translation constraint</td>
<td>Major dose-limiting toxicities arise from DNA damage and oxidative stress in normal tissues.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (DNA aquation and initial adduct formation)</li>
<li><b>R</b>: 30 min–3 hr (checkpoint activation / stress signaling)</li>
<li><b>G</b>: &gt;3 hr (apoptosis, phenotype outcomes, resistance development)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 1,   Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 2,   GSH/GSSG↓, 1,   HO-1↓, 1,   ROS↑, 1,   i-ROS↑, 1,   mt-ROS↑, 1,   SOD↓, 1,   xCT↓, 1,  

Mitochondria & Bioenergetics

MEK↑, 1,   mitResp↓, 1,   MMP↓, 3,  

Core Metabolism/Glycolysis

ACSL4↑, 1,   ALAT↓, 1,   cMyc↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 1,   lactateProd↓, 1,   PI3K/Akt↓, 2,   PKM2↓, 2,  

Cell Death

p‑Akt↓, 2,   Akt↓, 1,   APAF1↑, 1,   Apoptosis↑, 7,   Apoptosis↓, 1,   BAX↑, 3,   Bax:Bcl2↑, 2,   Bcl-2↓, 5,   Bcl-xL↓, 1,   Casp↑, 2,   cl‑Casp3↑, 2,   Casp3↑, 1,   Casp7↑, 1,   Casp8↑, 1,   Casp9↑, 3,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   JNK↑, 1,   MAPK↓, 1,   Mcl-1↓, 2,   miR-497↑, 1,   Necroptosis↑, 1,   p27↑, 1,   survivin↓, 2,  

Transcription & Epigenetics

HATs↓, 1,   KCNQ1OT1↓, 1,   other↓, 1,   tumCV↓, 8,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

BRCA1↓, 1,   DNAdam↑, 2,   p‑P53↑, 1,   P53↑, 2,   cl‑PARP↑, 1,   PARP↑, 1,   cl‑PARP1↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   Cyc↓, 1,   cycD1/CCND1↓, 3,   P21↑, 3,   TumCCA↑, 5,   TumCCA?, 1,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   ERK↑, 1,   HDAC↓, 1,   Let-7↑, 1,   mTOR↓, 3,   NOTCH↓, 1,   NOTCH1↓, 1,   P70S6K↓, 1,   p‑PI3K↓, 1,   PI3K↓, 3,   STAT3↓, 3,   TumCG↓, 4,   Wnt/(β-catenin)↓, 1,  

Migration

CD31↓, 1,   CDK4/6↓, 1,   E-cadherin↑, 2,   Ki-67↓, 2,   MMP11↓, 1,   MMP2↓, 1,   MMP9↓, 4,   N-cadherin↓, 1,   Sharpin↓, 1,   Snail↓, 1,   TGF-β↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 4,   Vim↓, 1,   Zeb1↓, 1,   ZEB2↓, 1,  

Angiogenesis & Vasculature

HIF-1↓, 1,   Hif1a↓, 1,   VEGF↓, 3,  

Barriers & Transport

GLUT1↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL1β↓, 1,   IL6↓, 2,   Inflam↓, 2,   JAK2↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   ChemoSen↑, 23,   Dose↝, 1,   eff↑, 4,   eff↓, 3,   MDR1↓, 1,   RadioS↑, 3,   selectivity↑, 3,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BRCA1↓, 1,   IL6↓, 2,   Ki-67↓, 2,  

Functional Outcomes

AntiTum↑, 2,   cachexia↓, 1,   chemoP↑, 4,   RenoP↑, 2,   TumVol↓, 1,   TumW↓, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 128

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   Ferroptosis↓, 1,   HO-1↑, 3,   NRF2↑, 2,   NRF2↓, 1,   ROS↓, 4,   SOD1↑, 1,  

Core Metabolism/Glycolysis

12LOX↓, 1,  

Cell Death

p‑Akt↑, 1,   Casp3↓, 1,   Casp3∅, 1,   Casp9∅, 1,   Cyt‑c∅, 1,   Ferroptosis↓, 1,   iNOS↑, 1,   JNK↓, 1,   MAPK↓, 1,  

DNA Damage & Repair

PARP∅, 1,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   IGF-1↑, 1,  

Migration

mt-ATPase↑, 1,  

Barriers & Transport

MRP↓, 1,  

Immune & Inflammatory Signaling

IL6↓, 2,   Inflam↓, 1,   M2 MC↑, 1,   NF-kB↓, 3,   TNF-α↓, 2,  

Clinical Biomarkers

creat↓, 1,   IL6↓, 2,  

Functional Outcomes

GFR↑, 1,   hepatoP↑, 1,   RenoP↑, 2,   toxicity↓, 4,  
Total Targets: 33

Research papers

Year Title Authors PMID Link Flag
20132-Deoxy-d-Glucose Combined with Cisplatin Enhances Cytotoxicity via Metabolic Oxidative Stress in Human Head and Neck Cancer CellsAndrean L SimonsPMC3852417https://pmc.ncbi.nlm.nih.gov/articles/PMC3852417/0
2017Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and CaspasesZhen ZhouPMC5291085https://pmc.ncbi.nlm.nih.gov/articles/PMC5291085/0
2018Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with CisplatinCale D FahrenholtzPMC6052800https://pmc.ncbi.nlm.nih.gov/articles/PMC6052800/0
2020Allicin Overcomes Hypoxia Mediated Cisplatin Resistance in Lung Cancer Cells through ROS Mediated Cell Death Pathway and by Suppressing Hypoxia Inducible FactorsNamita Pandeyhttps://www.cellphysiolbiochem.com/Articles/000253/0
2024Anti-cancer effects of alpha lipoic acid, cisplatin and paclitaxel combination in the OVCAR-3 ovarian adenocarcinoma cell lineHatice Şiyzen Çoban38578399https://pubmed.ncbi.nlm.nih.gov/38578399/0
2019α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathwayJoohyung LeePMC6932784https://pmc.ncbi.nlm.nih.gov/articles/PMC6932784/0
2022Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancerHuang Hong35599281https://pubmed.ncbi.nlm.nih.gov/35599281/0
2017Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platformsHanaa H Gaballah28025107https://pubmed.ncbi.nlm.nih.gov/28025107/0
2017The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapySuat Erdogan28107698https://pubmed.ncbi.nlm.nih.gov/28107698/0
2016Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosisRui Liu PMC5351382https://pmc.ncbi.nlm.nih.gov/articles/PMC5351382/0
2014Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro studyYing-Ying XuPMC4129005https://pmc.ncbi.nlm.nih.gov/articles/PMC4129005/0
2016Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 SignalingLifeng JiaPMC4718674https://pmc.ncbi.nlm.nih.gov/articles/PMC4718674/0
2017Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’Aine Brigette HenleyPMC52713860
2024Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosisShanshan Guo38805781https://pubmed.ncbi.nlm.nih.gov/38805781/0
2022Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical RadiotherapyNoor Nabilah Talik SisinPMC9448000https://pmc.ncbi.nlm.nih.gov/articles/PMC9448000/0
2015Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB PathwaysBidya Dhar SahuPMC4519041https://pmc.ncbi.nlm.nih.gov/articles/PMC4519041/0
2020Berberine Improves Chemo-Sensitivity to Cisplatin by Enhancing Cell Apoptosis and Repressing PI3K/AKT/mTOR Signaling Pathway in Gastric CancerYingying Kouhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.616251/full0
2018The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of ToxicationÖmer Hazman29500724https://pubmed.ncbi.nlm.nih.gov/29500724/0
20253-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cellsMahima Vermahttps://www.researchgate.net/publication/389255021_3-Acetyl-11-keto-b-boswellic_acid_AKBA_induced_antiproliferative_effect_by_suppressing_Notch_signaling_pathway_and_synergistic_interaction_with_cisplatin_against_prostate_cancer_cells0
2021Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effectsAsal Jalal Abadi34697839https://pubmed.ncbi.nlm.nih.gov/34697839/0
2020LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cellsZhi-Hai Zheng 32757174https://pubmed.ncbi.nlm.nih.gov/32757174/0
2022Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1α Signaling PathwayJing WangPMC8866002https://pmc.ncbi.nlm.nih.gov/articles/PMC8866002/0
2013Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signallingL-H WangPMC3899775https://pmc.ncbi.nlm.nih.gov/articles/PMC3899775/0
2020Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor CellsVaishali AggarwalPMC7277375https://pmc.ncbi.nlm.nih.gov/articles/PMC7277375/0
2020Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer CellsJie ZhangPMC7238453https://pmc.ncbi.nlm.nih.gov/articles/PMC7238453/0
2015Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkersFeng LiPMC4467139https://pmc.ncbi.nlm.nih.gov/articles/PMC4467139/0
2011Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cellsSamir Attoub21074525https://pubmed.ncbi.nlm.nih.gov/21074525/0
2022Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cellsNorah M AlhoshaniPMC9715638https://pmc.ncbi.nlm.nih.gov/articles/PMC9715638/0
2023Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer CellsMahsa NaghashpourPMC9963572https://pmc.ncbi.nlm.nih.gov/articles/PMC9963572/0
2020Magnolol Attenuates Cisplatin-Induced Muscle Wasting by M2c Macrophage ActivationChanju LeePMC7018987https://pmc.ncbi.nlm.nih.gov/articles/PMC7018987/0
2008Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatinKyunghee BurkittPMC2276233https://pmc.ncbi.nlm.nih.gov/articles/PMC2276233/0
2025PEITC restores chemosensitivity in cisplatin-resistant non-small cell lung cancer by targeting c-Myc/miR-424-5pHao Dinghttps://link.springer.com/article/10.1007/s12672-025-03824-10
2021Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer CellsShoaib Shoaibhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.673103/full0
2025The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosisLing YaoPMC12584398https://pmc.ncbi.nlm.nih.gov/articles/PMC12584398/0
2020Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRASYi-Ting ChenPMC7650649https://pmc.ncbi.nlm.nih.gov/articles/PMC7650649/0
2015Xc− inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanismMing-zhe Mahttps://www.sciencedirect.com/science/article/abs/pii/S03043835150048630
2022Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathwayYitian DaiPMC9275963https://pmc.ncbi.nlm.nih.gov/articles/PMC9275963/0
2018PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing NecroptosisYonggang WangPMC6231221https://pmc.ncbi.nlm.nih.gov/articles/PMC6231221/0
2016Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivoGuodong He26740178https://pubmed.ncbi.nlm.nih.gov/26740178/0
2020Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signallingMajed Al Fayihttps://www.tandfonline.com/doi/full/10.1080/1061186X.2020.17221360
2016Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liverZeba Farooquihttps://www.sciencedirect.com/science/article/pii/S22147500163001780
2010Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivoSyed H Jafrihttps://jeccr.biomedcentral.com/articles/10.1186/1756-9966-29-870
2021Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinomaJulia SchnoellPMC8993726https://pmc.ncbi.nlm.nih.gov/articles/PMC8993726/0