tbResList Print — Rad Radiotherapy/Radiation

Filters: qv=201, qv2=%, rfv=%

Product

Rad Radiotherapy/Radiation
Description: <b>Treatment</b> of disease with radiation, especially by selective irradiation with x-rays or other ionizing radiation and by ingestion of radioisotopes.<br>
<br>
Radiosensitizer<br>
Atorvaqone, (mitochondria inhibitor) decrease O2 consumption making more O2 available as a radiosensitizer.<br>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↓, 1,   cystine↓, 1,   Ferroptosis↑, 1,   GPx↑, 1,   GPx4↓, 1,   GSH↓, 5,   GSH/GSSG↓, 1,   H2O2↑, 1,   HK1↓, 1,   HO-1↓, 1,   ICD↑, 1,   NRF2↑, 1,   NRF2↓, 2,   ROS↑, 30,   ROS↓, 1,   SOD↓, 1,   SOD2↓, 1,   TBARS↑, 1,   Trx↓, 1,   TrxR↓, 3,   xCT↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↓, 1,   ATP↓, 1,   MMP↓, 7,   mtDam↑, 1,  

Core Metabolism/Glycolysis

12LOX↓, 1,   ALDOA↓, 1,   AMPK↑, 1,   Cav1↓, 1,   ECAR↓, 2,   glucose↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 1,   lactateProd↓, 1,   NADPH↑, 1,   p‑PDH↓, 1,   PDKs↑, 1,   PKM2↓, 1,   Pyruv↓, 1,  

Cell Death

p‑Akt↓, 1,   Akt↓, 1,   Akt↑, 1,   Apoptosis↑, 1,   BAX↑, 2,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   Bcl-xL↓, 1,   Casp3↑, 5,   Casp8↑, 1,   Casp9↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   JNK↑, 1,   JNK↓, 1,   MAPK↓, 1,   p38↑, 2,   p‑p38↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

HATs↓, 1,   other↑, 1,   other↓, 1,   other↝, 3,   Prot↓, 1,   tumCV↓, 4,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 6,   DNAdam↓, 2,   DNArepair↓, 1,   P53↑, 3,   P53↝, 1,   cl‑PARP↑, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK4↓, 1,   cycD1/CCND1↓, 1,   P21↓, 1,   TumCCA↑, 10,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CSCs↓, 3,   Diff↑, 1,   ERK↓, 1,   ERK↑, 1,   p‑FOXO3↓, 1,   HDAC↓, 1,   OCT4↓, 1,   PI3K↑, 1,   RAS↑, 1,   SOX2↓, 1,   p‑STAT3↓, 1,   STAT3↓, 1,   TumCG↓, 5,  

Migration

MMP2↓, 2,   MMP9↓, 2,   TGF-β↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 6,   TumMeta↓, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   EPR↑, 1,   Hif1a↓, 3,   VEGF↓, 4,  

Immune & Inflammatory Signaling

COX2↓, 1,   HMGB1↑, 1,   IL6↓, 1,   Inflam↑, 1,   Inflam↓, 2,   MCP1↓, 1,   NF-kB↑, 1,   NF-kB↓, 2,   p‑NF-kB↓, 1,   PSA↓, 1,   RANTES↓, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 6,   ChemoSen∅, 1,   Dose∅, 1,   Dose↝, 4,   Dose↑, 2,   Dose↓, 1,   Dose⇅, 1,   eff↑, 12,   eff↓, 3,   eff↝, 2,   eff∅, 1,   Half-Life↝, 1,   RadioS↑, 38,   RadioS∅, 1,   RadioS↓, 2,   RadioS↝, 1,   selectivity↑, 11,   selectivity↓, 1,  

Clinical Biomarkers

AR↓, 1,   GutMicro↑, 1,   IL6↓, 1,   PSA↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 2,   chemoP↑, 5,   hepatoP↑, 1,   NKG2D↑, 1,   OS↑, 3,   Pain↓, 1,   QoL↑, 2,   radioP↑, 13,   RenoP↑, 1,   Risk↓, 3,   toxicity↝, 1,   TumVol↓, 1,  
Total Targets: 152

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 5,   Catalase↑, 1,   GPx↑, 3,   GPx1↑, 2,   GPx4↑, 1,   GSH↑, 3,   GSH↓, 1,   GSH/GSSG↑, 1,   HO-1↑, 2,   lipid-P↓, 2,   MDA↓, 1,   NOX4↓, 1,   NRF2↑, 4,   Prx↑, 1,   ROS↓, 15,   ROS∅, 1,   selenoP↑, 4,   SOD↑, 2,   Trx↑, 1,   TrxR1↑, 1,  

Core Metabolism/Glycolysis

BUN↓, 1,   NADPH↑, 1,   NADPH∅, 1,   PGC1A↑, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 1,   Apoptosis↓, 1,   Casp3↓, 1,   DR4↓, 1,  

Transcription & Epigenetics

p‑cJun↓, 1,   other↓, 1,  

DNA Damage & Repair

DNAdam↓, 7,   DNMTs↓, 1,   P53↓, 1,   SIRT6↑, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   HDAC↑, 1,   p300↓, 1,   STAT3↓, 1,  

Migration

AP-1↓, 1,   Ca+2↑, 1,   Rho↓, 2,   ROCK1↓, 3,   TGF-β↓, 1,  

Angiogenesis & Vasculature

VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   ICAM-1↓, 2,   IL10↑, 1,   IL1β↓, 1,   Inflam↓, 7,   MCP1↓, 1,   p‑NF-kB↓, 1,   NF-kB↓, 1,   RANTES↓, 1,   TNF-α↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

Dose↝, 6,   eff↑, 1,   RadioS↑, 1,  

Functional Outcomes

OS↑, 1,   QoL↑, 1,   radioP↑, 20,   toxicity↓, 2,   toxicity∅, 1,   Weight↑, 1,  
Total Targets: 66

Research papers

Year Title Authors PMID Link Flag
20082-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancerMitchell C Coleman18215740https://pubmed.ncbi.nlm.nih.gov/18215740/0
2025Metformin-loaded chitosan nanoparticles augment silver nanoparticle-induced radiosensitization in breast cancer cells during radiation therapyFatemeh Shiridokht39270400https://pubmed.ncbi.nlm.nih.gov/39270400/0
2025Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro studyEvgenii V. Plotnikov Ph.D.https://www.sciencedirect.com/science/article/pii/S15499634250001390
2020Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic ReviewBehnaz Babaye AbdollahiPMC8046397https://pmc.ncbi.nlm.nih.gov/articles/PMC8046397/0
2019Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation TherapyJing ZhaoPMC6897066 https://pmc.ncbi.nlm.nih.gov/articles/PMC6897066/0
2018Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cellsZhujun Liu 30307330https://pubmed.ncbi.nlm.nih.gov/30307330/0
2016Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of gliomaPeidang LiuPMC5055115https://pmc.ncbi.nlm.nih.gov/articles/PMC5055115/0
2016Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs Hao Wu 27254247https://pubmed.ncbi.nlm.nih.gov/27254247/0
2015Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cellsJessica SwannerPMC4501353https://pmc.ncbi.nlm.nih.gov/articles/PMC4501353/0
2013Silver nanoparticles: a novel radiation sensitizer for glioma?Peidang Liu 24126539https://pubmed.ncbi.nlm.nih.gov/24126539/0
2012Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cellsHua Jiang23421206https://pubmed.ncbi.nlm.nih.gov/23421206/0
2020Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF-κB signaling pathwayWen-liang Huanghttps://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.151560
2006Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathwayEun-Wha Son17052669https://pubmed.ncbi.nlm.nih.gov/17052669/0
2021The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic reviewSahar Sheikholeslamihttps://www.sciencedirect.com/science/article/abs/pii/S15675769210037750
2020Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1Hoon Sik ChoiPMC8291200https://pmc.ncbi.nlm.nih.gov/articles/PMC8291200/0
2025The influence of apigenin on cellular responses to radiation: From protection to sensitizationTaha Monadi39134426https://pubmed.ncbi.nlm.nih.gov/39134426/0
2023Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axisRahul Checker36716864https://pubmed.ncbi.nlm.nih.gov/36716864/0
2023Astaxanthin Synergizes with Ionizing Radiation (IR) in Oral Squamous Cell Carcinoma (OSCC)Yuheng Duhttps://link.springer.com/article/10.1007/s12033-023-01024-20
2023Astaxanthin protects the radiation-induced lung injury in C57BL/6 female miceJunshi Lihttps://academic.oup.com/rpd/article-abstract/199/17/2096/7237358?redirectedFrom=fulltext&login=false0
2024Short‐Term Statin Treatment Reduces, and Long‐Term Statin Treatment Abolishes, Chronic Vascular Injury by Radiation TherapyKarima Ait‐Aissa,https://www.ahajournals.org/doi/full/10.1161/JAHA.123.0335580
2020Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing RadiationSeyed Jalal HosseinimehrPMC7667559https://pmc.ncbi.nlm.nih.gov/articles/PMC7667559/0
2022Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical RadiotherapyNoor Nabilah Talik SisinPMC9448000https://pmc.ncbi.nlm.nih.gov/articles/PMC9448000/0
2022Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1ADongli GuoPMC9346416https://pmc.ncbi.nlm.nih.gov/articles/PMC9346416/0
2020Radiotherapy Increases 12-LOX and CCL5 Levels in Esophageal Cancer Cells and Promotes Cancer Metastasis via THP-1-Derived MacrophagesSi MiPMC7415441https://pmc.ncbi.nlm.nih.gov/articles/PMC7415441/0
2020Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosisMeifang Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00243205203121690
2024Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic ReviewElham Raeisi38984581https://pubmed.ncbi.nlm.nih.gov/38984581/0
2022Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3)Mohammed S AleissaPMC9845113https://pmc.ncbi.nlm.nih.gov/articles/PMC9845113/0
2020Berberine Can Amplify Cytotoxic Effect of Radiotherapy by Targeting Cancer Stem CellsSanaa A El-Benhawyhttps://www.tandfonline.com/doi/full/10.2217/bmt-2020-0007#d1e2820
2019Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibitionXiao-Dong LiPMC6554520https://pmc.ncbi.nlm.nih.gov/articles/PMC6554520/0
2010Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer CellsJung-Mu HurPMC3834470https://pmc.ncbi.nlm.nih.gov/articles/PMC3834470/0
2007Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)Wade T Barranco17186423https://pubmed.ncbi.nlm.nih.gov/17186423/0
2019Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related PathwayHa-Yeon Song31158040https://pubmed.ncbi.nlm.nih.gov/31158040/0
2016Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductaseSundarraj Jayakumar27381867https://pubmed.ncbi.nlm.nih.gov/27381867/0
2011Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cellsPrashanthi JavvadiPMC2831122https://pmc.ncbi.nlm.nih.gov/articles/PMC2831122/0
2010Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organsAjay Goel20924967https://pubmed.ncbi.nlm.nih.gov/20924967/0
2020Dichloroacetate Radiosensitizes Hypoxic Breast Cancer CellsSven de Meyhttps://www.mdpi.com/1422-0067/21/24/93670
2008Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiationWengang Cao18465755https://pubmed.ncbi.nlm.nih.gov/18465755/0
2024A Phase I Trial of a Methionine Restricted Diet with Concurrent Radiation TherapyMalcolm D MattesPMC11407292https://pmc.ncbi.nlm.nih.gov/articles/PMC11407292/0
2026Disulfiram/Copper Combined with Irradiation Induces Immunogenic Cell Death in MelanomaEnwen Wanghttps://www.researchgate.net/publication/399939116_DisulfiramCopper_Combined_with_Irradiation_Induces_Immunogenic_Cell_Death_in_Melanoma0
2017Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro studyUjjal Dashttps://www.nature.com/articles/s41598-017-14211-40
2018Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and AutophagyTumenjin Enkhbat30396944https://pubmed.ncbi.nlm.nih.gov/30396944/0
2017EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in miceMrinalini Tiwarihttps://www.sciencedirect.com/science/article/abs/pii/S07533322163266950
2024Pharmacologic Ascorbate and Ferumoxytol Combined with Temozolomide and Radiation Therapy for the Treatment of Newly Diagnosed GlioblastomaNIHhttps://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCI-2023-01753&r=10
2012Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End JoiningTakahiro Oike, M.Dhttps://www.redjournal.org/article/S0360-3016(12)00060-0/abstract0
2025Advances in nanoparticle-based radiotherapy for cancer treatmentMeijuan Hehttps://www.cell.com/iscience/fulltext/S2589-0042%2824%2902829-3?utm_source=chatgpt.com0
2025Computational modeling and experimental synthesis of BSA-coated bimetallic theranostic MnO₂-Au@curcumin nanoplatform for synergistic radiochemotherapy of breast cancerShabnam Naderlou40505923https://pubmed.ncbi.nlm.nih.gov/40505923/0
2018The role of thioredoxin reductase in gold nanoparticle radiosensitization effectsSébastien Penninckx30427254https://pubmed.ncbi.nlm.nih.gov/30427254/0
2018The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary FibrosisJennifer L JudgePMC5554401https://pmc.ncbi.nlm.nih.gov/articles/PMC5554401/0
2023Hydrogen and Vitamin C Combination Therapy: A Novel Method of RadioprotectionMichiko Miyakawahttps://www.preprints.org/manuscript/202312.1369/v10
2025Honokiol Mitigates Ionizing Radiation-Induced Injury by Maintaining the Redox Balance of the TrxR/Trx SystemYaxiong Chenhttps://www.preprints.org/manuscript/202502.1803/v10
2017Association of elevated reactive oxygen species and hyperthermia induced radiosensitivity in cancer stem-like cellsQibin FuPMC5731896https://pmc.ncbi.nlm.nih.gov/articles/PMC5731896/0
2015Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascadeHyun-Ji Ch25586525https://pubmed.ncbi.nlm.nih.gov/25586525/0
2023A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and RadiotherapyUsama Basirat37138418https://pubmed.ncbi.nlm.nih.gov/37138418/0
2022High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic fieldDan Wanghttps://www.science.org/doi/10.1126/sciadv.abq02220
2016BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA DamageKatja StorchPMC5154536https://pmc.ncbi.nlm.nih.gov/articles/PMC5154536/0
2005Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasisIvan L CameronPMC1190196https://pmc.ncbi.nlm.nih.gov/articles/PMC1190196/0
2008The hemoprotective effects of a rotary magnetic field in mice exposed to γ irradiationXue-jun Xiehttps://www.semanticscholar.org/paper/The-hemoprotective-effects-of-a-rotary-magnetic-in-Xie-Qi/e39cd1191f5dc087d298977871cea29f76dec0c10
2022NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7Xiaotong Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S0891584922008978?casa_token=hqQ2_zyuKmYAAAAA:Tviq2N92VltLv7O6uVXTsoN2r9wO7x0e0atz4N5t7aFDDA_QWyBEG1o86C0m0tBxltl-ZAxf0
2020Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosisTaranga Jyoti Baruahhttps://phcog.com/article/view/2020/16/70/229-2350
2017Niclosamide enhances the antitumor effects of radiation by inhibiting the hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway in human lung cancer cellsMei XiangPMC5530112https://pmc.ncbi.nlm.nih.gov/articles/PMC5530112/0
2007Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiationCarlos A Lopez17707275https://pubmed.ncbi.nlm.nih.gov/17707275/0
2005Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomasMichal Entin-Meer16373710https://pubmed.ncbi.nlm.nih.gov/16373710/0
2001Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer CellsMeidee GohPMC1505863https://pmc.ncbi.nlm.nih.gov/articles/PMC1505863/0
2024Protective effect of propolis in protecting against radiation-induced oxidative stress in the liver as a distant organOztekin Cikmanhttps://www.nature.com/articles/s41598-024-72344-90
2011A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cellsYulan SunPMC2848907https://pmc.ncbi.nlm.nih.gov/articles/PMC2848907/0
2020The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in MiceHao SunPMC7323307https://pmc.ncbi.nlm.nih.gov/articles/PMC7323307/0
2020Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3pTingting ZhangPMC7580151https://pmc.ncbi.nlm.nih.gov/articles/PMC7580151/0
2020Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROSMYPT1TGFβ1 Signaling Via miR-19b-3pTingting Zhanghttps://www.researchgate.net/publication/346275935_Rosmarinic_Acid_Prevents_Radiation-Induced_Pulmonary_Fibrosis_Through_Attenuation_of_ROSMYPT1TGFb1_Signaling_Via_miR-19b-3p0
2017Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generationGong Zhanghttps://pubmed.ncbi.nlm.nih.gov/28453992/0
2018Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanomaMasaki NaganePMC5896924https://pmc.ncbi.nlm.nih.gov/articles/PMC5896924/0
2015Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletionL Sleire25798841https://pubmed.ncbi.nlm.nih.gov/25798841/0
2024Effect of Selenium and Selenoproteins on Radiation ResistanceShidi Zhanghttps://www.mdpi.com/2072-6643/16/17/29020
2020Nrf2-modulation by seleno-hormetic agents and its potential for radiation protectionDesirée Bartolini31617634https://pubmed.ncbi.nlm.nih.gov/31617634/0
2019Selenium as an adjuvant for modification of radiation responseBagher Farhood31190419https://pubmed.ncbi.nlm.nih.gov/31190419/0
2025Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation DamageMirzaei, Fatemehhttps://journals.lww.com/adbm/fulltext/2025/07310/histopathological_evaluation_of_radioprotective.77.aspx0
2024Radioprotective Effect of Selenium Nanoparticles: A Mini ReviewRasool AzmoonfarPMC11095073https://pmc.ncbi.nlm.nih.gov/articles/PMC11095073/0
2015Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysisPrayag J Amin25721293https://pubmed.ncbi.nlm.nih.gov/25721293/0
2025Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiationFaezeh Arghidashhttps://www.sciencedirect.com/science/article/abs/pii/S03440338250019430
2016Studies on radiation sensitization efficacy by silymarin in colon carcinoma cellsdamodar Guptahttps://www.academia.edu/87378211/Studies_on_radiation_sensitization_efficacy_by_silymarin_in_colon_carcinoma_cells0
2024Protection during radiotherapy: seleniumJ. Yanhttps://www.radioprotection.org/articles/radiopro/full_html/2024/04/radiopro240041/radiopro240041.html0
2022Therapeutic Benefits of Selenium in Hematological MalignanciesMelanie A EhudinPMC9323677https://pmc.ncbi.nlm.nih.gov/articles/PMC9323677/0
2020The solvent and treatment regimen of sodium selenite cause its effects to vary on the radiation response of human bronchial cells from tumour and normal tissuesKatrin MandaPMC7671986https://pmc.ncbi.nlm.nih.gov/articles/PMC7671986/0
2019Results from a Phase 1 Study of Sodium Selenite in Combination with Palliative Radiation Therapy in Patients with Metastatic CancerSusan J KnoxPMC6717060https://pmc.ncbi.nlm.nih.gov/articles/PMC6717060/0
2018Selenium in Radiation Oncology—15 Years of Experiences in GermanyRalph MueckePMC5946268https://pmc.ncbi.nlm.nih.gov/articles/PMC5946268/0
2014Updates on clinical studies of selenium supplementation in radiotherapyIrma M PuspitasariPMC4073179https://pmc.ncbi.nlm.nih.gov/articles/PMC4073179/0
2006In vivo radioprotective effects of Nigella sativa L oil and reduced glutathione against irradiation-induced oxidative injury and number of peripheral blood lymphocytes in ratsMustafa Cemekhttps://pubmed.ncbi.nlm.nih.gov/17387769/0
2025Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated AstrocytesGengxin Luhttps://link.springer.com/article/10.1007/s12031-024-02302-70
2023Vitamins and Radioprotective Effect: A ReviewInés LledóPMC10045031https://pmc.ncbi.nlm.nih.gov/articles/PMC10045031/0
2021Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinomaJulia SchnoellPMC8993726https://pmc.ncbi.nlm.nih.gov/articles/PMC8993726/0