tbResList Print — Sal salinomycin

Filters: qv=203, qv2=%, rfv=%

Product

Sal salinomycin
Description: <b>Salinomycin</b> is a polyether ionophore antibiotic that is produced by the bacterium Streptomyces albus. It was first isolated in 1979 and has been found to have a range of biological activities, including antibacterial, antifungal, and anticancer properties.<br>
It has been shown to induce apoptosis (programmed cell death) in a range of cancer cell lines, including breast, lung, and colon cancer cells. Salinomycin has also been found to inhibit the growth of cancer stem cells.<br>
Salinomycin, a widely used antibiotic in poultry farming<br>
<pre>
Actions:
-Strong activity against cancer stem cells
-Disrupts mitochondrial ion gradients → ROS
-Non-thiol, non-NRF2 dominant

Key pathways
-Mitochondrial K⁺ dysregulation
-ROS-mediated apoptosis
-Wnt/β-catenin inhibition

Chemo relevance
-Generally compatible or synergistic
-Not a redox buffer
</pre>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>K+ ionophore activity / ionic homeostasis</td>
<td>↑ K+ transport (ionophore) / ↓ intracellular K+ homeostasis</td>
<td>Electrochemical disruption</td>
<td>Salinomycin is directly described as a <i>potassium ionophore</i> in mechanistic studies of its anticancer effects</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156152/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Cancer stem cell (CSC) fraction / stemness programs</td>
<td>↓ CSC proportion / tumor-initiating capacity</td>
<td>Selective CSC depletion</td>
<td>Landmark study showing salinomycin strongly reduces CSC proportion (e.g., &gt;100-fold vs paclitaxel in their assay context) and inhibits tumor growth in vivo</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/19682730/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Wnt/β-catenin signaling</td>
<td>↓</td>
<td>Loss of self-renewal signaling</td>
<td>Primary mechanistic paper identifying salinomycin as an inhibitor of the Wnt signaling cascade</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3156152/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Wnt co-receptor LRP6 (Wnt pathway control point)</td>
<td>↓ LRP6 / ↓ Wnt signaling</td>
<td>Wnt pathway suppression</td>
<td>Shows salinomycin suppresses LRP6 expression at concentrations relevant to growth inhibition, linking activity to Wnt/β-catenin suppression</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4134741/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Autophagic flux + lysosomal proteolysis</td>
<td>↓ autophagic flux (blocked) / ↓ lysosomal proteolytic activity</td>
<td>Abortive autophagy / stress accumulation</td>
<td>Demonstrates salinomycin blocks autophagic flux and lysosomal proteolytic activity in breast cancer CSC and non-CSC populations</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3669181/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>ER stress / UPR (ATF4 → CHOP/DDIT3)</td>
<td>↑ ER stress / ↑ CHOP axis</td>
<td>Proteotoxic stress signaling</td>
<td>Shows salinomycin stimulates ER stress and mediates autophagy through the ATF4–CHOP–TRIB3 axis</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3722315/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>AKT–mTOR survival signaling (via TRIB3)</td>
<td>↓ AKT / ↓ mTOR signaling</td>
<td>Reduced survival + altered autophagy control</td>
<td>Same mechanistic work links ER stress activation to TRIB3-mediated inhibition of AKT1–mTOR signaling after salinomycin exposure</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3722315/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>ROS generation and ROS-linked lysosomal dysfunction</td>
<td>↑ ROS</td>
<td>Oxidative stress amplification</td>
<td>Demonstrates salinomycin-induced ROS and connects ROS to lysosomal membrane permeability and impaired autophagy flux</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5058706/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Mitochondrial apoptosis (caspase cascade)</td>
<td>↑ Caspase-9/3 activation</td>
<td>Programmed cell death</td>
<td>Shows salinomycin triggers caspase-dependent apoptosis involving caspases (including 9 and 3) in a salinomycin toxicity/mechanism study (demonstrates directionality for caspase activation)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3168989/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>EMT phenotype</td>
<td>↑ E-cadherin / ↓ vimentin (EMT suppressed)</td>
<td>Reduced migration/invasion</td>
<td>Reports salinomycin increases epithelial markers and decreases mesenchymal markers in a dose-dependent manner, with reduced migration/invasion</td>
<td><a href="https://www.dovepress.com/salinomycin-repressed-the-epithelialndashmesenchymal-transition--of-ep-peer-reviewed-fulltext-article-OTT" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>ABC transporter–mediated multidrug resistance</td>
<td>↓ functional MDR phenotype</td>
<td>Overcomes drug resistance</td>
<td>Directly reports salinomycin overcomes ABC transporter–mediated multidrug/apoptosis resistance in leukemia stem cell–like cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20350531/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Ferroptosis susceptibility (GPX4 axis) in CSC context</td>
<td>↑ ferroptosis (context-dependent)</td>
<td>Non-apoptotic oxidative death modality</td>
<td>Reports salinomycin induces ferroptosis in a CSC context via a pathway converging on GPX4/GPX activity regulation (directionality: ferroptosis induction by salinomycin in that model)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/38182558/" target="_blank">(ref)</a></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 2,   Ferroptosis↑, 3,   GPx↓, 1,   GPx4↓, 1,   GSH↓, 1,   GSH↑, 1,   GSR↓, 1,   HO-1↓, 1,   Iron↑, 4,   lipid-P↑, 3,   MDA↑, 1,   NRF2↓, 2,   OXPHOS↑, 1,   OXPHOS↓, 3,   ROS↑, 18,   SOD↓, 2,   SOD1↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 2,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 5,   mitResp↑, 1,   MMP↓, 7,   mtDam↑, 1,  

Core Metabolism/Glycolysis

AKT1↓, 1,   AMPK↑, 1,   cMyc↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 2,   lactateProd↓, 1,   LDH↓, 1,   NADPH↓, 1,   PDKs↓, 2,   Warburg↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 12,   Apoptosis∅, 1,   BAX↑, 2,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   Casp↑, 1,   Casp12↑, 1,   Casp3↑, 5,   Casp9↑, 2,   Cyt‑c↑, 2,   Ferroptosis↑, 3,   JNK↑, 1,   lysoMP↑, 1,   MAPK↓, 1,   MAPK↑, 1,   MOMP↑, 1,   Myc↓, 1,   necrosis↑, 2,   p27↑, 1,   survivin↓, 2,   TumCD↑, 3,  

Transcription & Epigenetics

other↝, 1,   other↓, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 3,   ER Stress↑, 7,   ERStress↑, 1,   UPR↑, 3,  

Autophagy & Lysosomes

autoF↓, 2,   LC3II↑, 1,   LC3s↓, 1,   lysosome↓, 1,   lysosome↝, 1,   MitoP↑, 1,   p62↑, 1,   TumAuto↑, 8,   TumAuto↓, 1,  

DNA Damage & Repair

DNAdam↑, 7,   P53↑, 3,   p‑P53↑, 1,   cl‑PARP↝, 1,   p‑PARP↑, 1,   γH2AX↑, 2,  

Cell Cycle & Senescence

cycD1/CCND1↓, 5,   P21↑, 3,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

ALDH↓, 3,   CD24↓, 3,   CD44↓, 3,   CSCs↓, 25,   CSCs↑, 3,   CSCsMark↓, 2,   CTSB↓, 1,   CTSL↓, 1,   CTSS↓, 1,   Diff↑, 3,   EMT↓, 3,   Gli1↓, 1,   GSK‐3β↓, 1,   GSK‐3β↑, 1,   LRP6↓, 1,   mTOR↓, 3,   mTORC1↓, 1,   Nanog↓, 1,   OCT4↓, 1,   PI3K↓, 1,   PTCH1↓, 1,   Shh↓, 1,   Smo↓, 1,   SOX2↓, 1,   STAT3↓, 1,   TumCG↓, 9,   Wnt↓, 12,  

Migration

Ca+2↑, 3,   Ca+2↓, 1,   cal2↑, 1,   E-cadherin↑, 1,   Fibronectin↓, 1,   GLI2↓, 1,   MUC1-C↓, 1,   N-cadherin↓, 1,   PKCδ↑, 1,   Snail↓, 1,   TumCI↓, 2,   TumCMig↓, 3,   TumCP↓, 6,   TumMeta↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 6,  

Angiogenesis & Vasculature

angioG↓, 1,   ATF4↑, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

CTSZ↓, 1,   NF-kB↓, 2,  

Cellular Microenvironment

pH↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

ABC↓, 1,   BioAv↓, 1,   ChemoSen↑, 8,   Dose↝, 1,   eff↑, 11,   eff↓, 3,   MDR1↓, 1,   RadioS↑, 5,   RadioS↓, 1,   selectivity↑, 9,   selectivity↝, 1,  

Clinical Biomarkers

AR↓, 1,   Ferritin↓, 2,   LDH↓, 1,   Myc↓, 1,  

Functional Outcomes

AntiCan↑, 3,   AntiTum↑, 1,   OS↑, 1,   toxicity↝, 2,   toxicity⇅, 1,   TumVol↓, 1,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 154

Pathway results for Effect on Normal Cells

Functional Outcomes

toxicity↝, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2025Dichloroacetate and Salinomycin as Therapeutic Agents in CancerSunny Hunthttps://www.mdpi.com/2076-3271/13/2/470
2018Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell LinesAistė Skeberdytėhttps://www.nature.com/articles/s41598-018-35815-40
2025Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivoFang Liuhttps://www.nature.com/articles/s41598-025-98633-50
2025Anticancer activity of salinomycin quaternary phosphonium saltsMarta Jędrzejczykhttps://www.sciencedirect.com/science/article/pii/S02235234240093710
2024MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cellsTatsuaki Daimonhttps://www.nature.com/articles/s41420-023-01772-90
2023A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022)Viren Sonihttps://www.mdpi.com/2673-8937/3/2/160
2022Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer CellsHongshuang Qinhttps://pubs.acs.org/doi/10.1021/acsomega.2c040820
2021Salinomycin as a potent anticancer stem cell agent: State of the art and future directionsDan QiPMC9298915https://pmc.ncbi.nlm.nih.gov/articles/PMC9298915/0
2021Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal TransitionYongmei ZhaoPMC7843432https://pmc.ncbi.nlm.nih.gov/articles/PMC7843432/0
2021Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical ApplicationsHui Wanghttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.654428/full0
2021Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signalingJianyong YuPMC8281384https://pmc.ncbi.nlm.nih.gov/articles/PMC8281384/0
2020Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivoFang LiuPMC7276212https://pmc.ncbi.nlm.nih.gov/articles/PMC7276212/0
2020Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence MicroscopySofia Kamlundhttps://www.mdpi.com/2076-3417/10/14/47320
2020Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron TargetingAntoine Versinihttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.2020003350
2019A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agentMichał Antoszczakhttps://www.sciencedirect.com/science/article/abs/pii/S02235234183110360
2019Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer modelJohannes KlosePMC6375586https://pmc.ncbi.nlm.nih.gov/articles/PMC6375586/0
2019A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agentsMichał Antoszczakhttps://www.sciencedirect.com/science/article/abs/pii/S02235234193004430
2019Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cellsYunsheng ZhangPMC6482559https://pmc.ncbi.nlm.nih.gov/articles/PMC6482559/0
2019Salinomycin exerts anti‐colorectal cancer activity by targeting the β‐catenin/T‐cell factor complexZhongyuan WangPMC6692576https://pmc.ncbi.nlm.nih.gov/articles/PMC6692576/0
2018Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a reviewJiang Jianghttps://link.springer.com/article/10.1186/s13046-018-0680-z0
2018The Molecular Basis for Inhibition of Stemlike Cancer Cells by SalinomycinXiaoli Huanghttps://pubs.acs.org/doi/pdf/10.1021/acscentsci.8b002570
2018Salinomycin may inhibit the cancer stem-like populations with increased chemoradioresistance that nasopharyngeal cancer tumorspheres containGong ZhangPMC6036607https://pmc.ncbi.nlm.nih.gov/articles/PMC6036607/0
2017Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generationGong Zhanghttps://pubmed.ncbi.nlm.nih.gov/28453992/0
2017Salinomycin: A new paradigm in cancer therapyJayant Dewanganhttps://journals.sagepub.com/doi/10.1177/10104283176950350
2017Salinomycin kills cancer stem cells by sequestering iron in lysosomesTrang Thi Maihttps://www.nature.com/articles/nchem.27780
2016Identification of selective inhibitors of cancer stem cells by high-throughput screeningPiyush B GuptaPMC4892125https://pmc.ncbi.nlm.nih.gov/articles/PMC4892125/0
2016Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapyXi-Feng ZhangPMC4977082https://pmc.ncbi.nlm.nih.gov/articles/PMC4977082/0
2016Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastomaEnric XipellPMC5058706https://pmc.ncbi.nlm.nih.gov/articles/PMC5058706/0
2016Salinomycin repressed the epithelial–mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathwayLi Rhttps://www.dovepress.com/salinomycin-repressed-the-epithelialndashmesenchymal-transition--of-ep-peer-reviewed-fulltext-article-OTT0
2015Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathwayHyunsook Anhttps://www.sciencedirect.com/science/article/abs/pii/S0006291X153062520
2015Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cellsWenyan LuPMC4134741https://pmc.ncbi.nlm.nih.gov/articles/PMC4134741/0
2013Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenanceWen YuePMC3669181https://pmc.ncbi.nlm.nih.gov/articles/PMC3669181/0
2013Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cellsTianliang LiPMC3722315https://pmc.ncbi.nlm.nih.gov/articles/PMC3722315/0
2012Salinomycin as a drug for targeting human cancer stem cellsCord NaujokatPMC3516046https://pmc.ncbi.nlm.nih.gov/articles/PMC3516046/0
2011Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cellsDesheng LuPMC3156152https://pmc.ncbi.nlm.nih.gov/articles/PMC3156152/0
2011Salinomycin induces calpain and cytochrome c-mediated neuronal cell deathW BoehmerlePMC3168989https://pmc.ncbi.nlm.nih.gov/articles/PMC3168989/0
2010Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cellsDominik Fuchs20350531https://pubmed.ncbi.nlm.nih.gov/20350531/0