tbResList Print — immuno immunotherapy

Filters: qv=207, qv2=%, rfv=%

Product

immuno immunotherapy
Description: <pre>
Immunotherapy is not one drug class. It includes:
-Immune checkpoint inhibitors (PD-1, PD-L1, CTLA-4)
-CAR-T therapies
-Monoclonal antibodies
-Cytokine therapies (IL-2, IFN-α)
-Cancer vaccines
-Bispecific T-cell engagers
</pre>
<b>PD-1 blockade antibody therapy</b> is one of the cornerstone approaches in modern cancer immunotherapy.<br>
Under normal physiological conditions, when PD-1 binds to its ligands (PD-L1 or PD-L2) on other cells, it functions as a "checkpoint" to reduce overly active T cell responses and prevent autoimmunity.<br>
PD-1 blockade therapies involve monoclonal antibodies that target either PD-1 or its ligand PD-L1.<br>
• By blocking the interaction between PD-1 and its ligands, these antibodies effectively release the "brakes" on T cells.<br>
• The re-activated T cells can then recognize and destroy cancer cells more efficiently.<br>

<br>



<!-- Immunotherapy — Mechanism & Interaction Mini-Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Immunotherapy Class</th>
<th>Example Agents</th>
<th>Primary Target</th>
<th>Core Mechanism</th>
<th>Interaction Considerations</th>
<th>Net Effect</th>
</tr>

<tr>
<td><b>PD-1 inhibitors</b></td>
<td>Nivolumab, Pembrolizumab</td>
<td>PD-1 receptor on T cells</td>
<td>Blocks inhibitory PD-1 signaling → restores cytotoxic T-cell activity</td>
<td>High-dose steroids or strong immunosuppressants may blunt effect; autoimmune risk</td>
<td><b>↑ Anti-tumor immune activation</b></td>
</tr>

<tr>
<td><b>PD-L1 inhibitors</b></td>
<td>Atezolizumab, Durvalumab</td>
<td>PD-L1 on tumor/immune cells</td>
<td>Prevents PD-L1 from engaging PD-1 → enhances T-cell response</td>
<td>Similar immune-related adverse event (irAE) profile as PD-1 inhibitors</td>
<td><b>↑ Immune activation</b></td>
</tr>

<tr>
<td><b>CTLA-4 inhibitors</b></td>
<td>Ipilimumab</td>
<td>CTLA-4 checkpoint</td>
<td>Enhances early T-cell priming in lymph nodes</td>
<td>Higher autoimmune toxicity risk vs PD-1 class</td>
<td><b>↑ T-cell priming</b></td>
</tr>

<tr>
<td><b>CAR-T therapy</b></td>
<td>CD19 CAR-T products</td>
<td>Tumor antigen (e.g., CD19)</td>
<td>Genetically engineered T cells directly target tumor cells</td>
<td>Risk of cytokine release syndrome (CRS) and neurotoxicity</td>
<td><b>Direct immune-mediated tumor killing</b></td>
</tr>

<tr>
<td><b>Monoclonal antibodies (non-checkpoint)</b></td>
<td>Trastuzumab, Rituximab</td>
<td>Specific tumor antigens</td>
<td>Antibody-dependent cellular cytotoxicity (ADCC) or receptor blockade</td>
<td>Combination with chemo common; immune activation depends on Fc engagement</td>
<td><b>Targeted immune-mediated killing</b></td>
</tr>

<tr>
<td><b>Cytokine therapy</b></td>
<td>IL-2, IFN-α</td>
<td>Immune activation pathways</td>
<td>Stimulates T-cell and NK cell proliferation</td>
<td>High systemic toxicity; rarely used now vs checkpoint inhibitors</td>
<td><b>Broad immune stimulation</b></td>
</tr>

<tr>
<td><b>Cancer vaccines</b></td>
<td>mRNA or peptide-based</td>
<td>Tumor antigens</td>
<td>Induces tumor-specific immune memory</td>
<td>Often combined with checkpoint blockade</td>
<td><b>Adaptive immune priming</b></td>
</tr>

<tr>
<td><b>Bispecific T-cell engagers</b></td>
<td>Blinatumomab</td>
<td>CD3 + tumor antigen</td>
<td>Bridges T cells directly to tumor cells</td>
<td>CRS risk; continuous infusion in some protocols</td>
<td><b>Direct T-cell redirection</b></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Fenton↑, 1,   Ferroptosis↑, 1,   GPx4↓, 2,   GSH↓, 1,   ICD↑, 2,   Iron↑, 1,   NQO1↓, 1,   ROS↑, 6,   SOD↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   XIAP↓, 1,  

Cell Death

Apoptosis↑, 4,   BAD↑, 1,   Bak↑, 1,   BAX↑, 1,   Bcl-2↓, 1,   Ferroptosis↑, 1,   MAPK↓, 1,   survivin↓, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   cl‑PARP↑, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CD24↓, 1,   CD44↓, 1,   CSCs↓, 2,   EMT↓, 1,   p‑STAT3↓, 1,   TumCG↓, 1,  

Migration

Ca+2↑, 1,   Ki-67↑, 1,   L-sel↑, 1,   Treg lymp↓, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   TumMeta↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   CXCc↑, 1,   DCells↑, 1,   FOXP3↓, 1,   IFN-γ↑, 2,   IL1↑, 1,   IL10↓, 1,   IL4↓, 1,   Imm↑, 1,   NF-kB↓, 1,   PD-1↝, 1,   PD-L1↓, 2,   PD-L1↑, 2,   T-Cell↑, 1,   TNF-α↑, 1,  

Cellular Microenvironment

TIM-3↑, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↑, 1,   ChemoSen↑, 1,   Dose↝, 2,   eff↑, 1,   eff↓, 1,   Half-Life↑, 1,   RadioS↑, 1,   selectivity↑, 1,   TET2↑, 1,  

Clinical Biomarkers

GutMicro↑, 2,   Ki-67↑, 1,   PD-L1↓, 2,   PD-L1↑, 2,  

Functional Outcomes

AntiTum↑, 3,   OS↑, 2,   toxicity↝, 1,   TumVol↓, 2,   TumW↓, 1,  

Infection & Microbiome

CD8+↑, 2,   Sepsis↓, 1,  
Total Targets: 81

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

GPx4↑, 1,   GSH↑, 1,  

Core Metabolism/Glycolysis

mt-FAO↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Functional Outcomes

toxicity∅, 2,  
Total Targets: 5

Research papers

Year Title Authors PMID Link Flag
2020Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiotaLuoyang Wang32211663https://pubmed.ncbi.nlm.nih.gov/32211663/0
2024Silver nanoparticle induced immunogenic cell death can improve immunotherapyAra Sargsianhttps://www.researchgate.net/publication/385697470_Silver_nanoparticle_induced_immunogenic_cell_death_can_improve_immunotherapy0
2018Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors Bertrand Routy 29097494https://pubmed.ncbi.nlm.nih.gov/29097494/0
2023Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung CancerRoukiah KhalilPMC10295988https://pmc.ncbi.nlm.nih.gov/articles/PMC10295988/0
2024Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activationZhuyu Luo39217888https://pubmed.ncbi.nlm.nih.gov/39217888/0
2019Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibodyGullanki Naga Venkata Charan Tej31711939https://pubmed.ncbi.nlm.nih.gov/31711939/0
2024Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 AntibodyRui LiPMC10750284https://pmc.ncbi.nlm.nih.gov/articles/PMC10750284/0
2020Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3Taeko HayakawaPMC7734012https://pmc.ncbi.nlm.nih.gov/articles/PMC7734012/0
2024Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A ReviewAdi DavidPMC11369881https://pmc.ncbi.nlm.nih.gov/articles/PMC11369881/0
2024Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategiesDi Huanghttps://www.sciencedirect.com/science/article/pii/S25901567240007930
2024Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota.Hui Li38456333https://pubmed.ncbi.nlm.nih.gov/38456333/0
2022Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacyBiaolong DengPMC9274539https://pmc.ncbi.nlm.nih.gov/articles/PMC9274539/0
2019Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cellsXiufeng JiangPMC6429703https://pmc.ncbi.nlm.nih.gov/articles/PMC6429703/0
2021Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapyLuis Enrique MunozPMC8611422https://pmc.ncbi.nlm.nih.gov/articles/PMC8611422/0
2024Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigmMark M FusterPMC11333800https://pmc.ncbi.nlm.nih.gov/articles/PMC11333800/0
2020Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapyBo Yuhttps://www.nature.com/articles/s41467-020-17380-50
2024Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growthZhaoxian YanPMC11310191https://www.nature.com/articles/s41598-024-67437-4.pdf0
2021Combination Therapy of Bifidobacterium longum RAPO With Anti-PD-1 Treatment Enhances Anti-tumor Immune Response in Association With Gut Microbiota ModulationHyeyoon Kimhttps://www.sciencedirect.com/science/article/pii/S24752991231164900
2019Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studiesZhiqiang Mahttps://www.sciencedirect.com/science/article/abs/pii/S10436618193023000
2025Spermidine potentiates anti-tumor immune responses and immunotherapy sensitivity in breast cancerXinyu Yanghttps://www.jcancer.org/v16p3684.htm0
2024Chemoproteomic Identification of Spermidine-Binding Proteins and Antitumor-Immunity ActivatorsVaibhav Pal Singhhttps://pubs.acs.org/doi/10.1021/jacs.3c146150
2022Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell functionYu PingPMC10991389https://pmc.ncbi.nlm.nih.gov/articles/PMC10991389/0
2024Metabolomics reveals ascorbic acid inhibits ferroptosis in hepatocytes and boosts the effectiveness of anti-PD1 immunotherapy in hepatocellular carcinomaGuoqiang SunPMC11143590https://pmc.ncbi.nlm.nih.gov/articles/PMC11143590/0
2022Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinomaDing PengPMC8771844https://pmc.ncbi.nlm.nih.gov/articles/PMC8771844/0