tbResList Print — Chit chitosan

Filters: qv=210, qv2=%, rfv=%

Product

Chit chitosan
Description: <b>Chitosan</b> is a naturally occurring polysaccharide derived from the exoskeletons of crustaceans, such as crabs and shrimp.<br>
Chitosan is a cationic polysaccharide derived from chitin (commonly from crustacean shells). In oncology contexts, chitosan itself is not primarily a direct cytotoxic compound but is widely studied for its immunomodulatory effects, antitumor adjuvant activity, and drug delivery enhancement. Mechanistically, chitosan and its derivatives can activate macrophages, enhance NK cell activity, and stimulate cytokine production (e.g., IL-12, TNF-α), contributing to anti-tumor immune responses in preclinical models. Low–molecular weight chitosan and modified forms have also been reported to inhibit angiogenesis, modulate tumor microenvironment acidity, interfere with metastasis, and induce apoptosis in some in vitro systems. A major translational role of chitosan is as a nanoparticle carrier for chemotherapeutics, genes, and immunotherapies, improving stability and targeted delivery. Effects vary significantly depending on molecular weight, degree of deacetylation, and formulation.<br>


Chitosan has been shown to inhibit the growth of various types of cancer cells, including breast, lung, and colon cancer cells.<br>
Chitosan has been shown to inhibit angiogenesis, stimulate the immune system, and anti-inflammatory.<br>
<br>
Chitosan is only soluble in acidic settings, hence limiting its use in neutral or alkaline pH circumstances<br>



<br>
<h3>Cancer Pathway Table: Chitosan</h3>
<!-- Cancer Pathway Table: Chitosan -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Innate immune activation (macrophages, NK cells)</td>
<td>NK activity ↑; macrophage activation ↑ (reported)</td>
<td>Immune surveillance support</td>
<td>R, G</td>
<td>Immunostimulatory</td>
<td>Chitosan can activate antigen-presenting cells and enhance anti-tumor immunity in preclinical models.</td>
</tr>

<tr>
<td>2</td>
<td>Cytokine modulation (IL-12, TNF-α, IFN-γ)</td>
<td>Pro-immune cytokines ↑ (reported)</td>
<td>Immune tone modulation</td>
<td>R, G</td>
<td>Immune activation</td>
<td>Immunomodulatory effects vary with formulation and molecular weight.</td>
</tr>

<tr>
<td>3</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓ (reported in some models)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic (context-dependent)</td>
<td>Low-molecular-weight and modified derivatives have shown anti-angiogenic activity in vitro.</td>
</tr>

<tr>
<td>4</td>
<td>Apoptosis induction (derivative-dependent)</td>
<td>Caspase activation ↑ (reported in vitro)</td>
<td>Minimal cytotoxicity at moderate exposure</td>
<td>G</td>
<td>Context-dependent apoptosis</td>
<td>Native chitosan is weakly cytotoxic; effects depend strongly on molecular size and chemical modification.</td>
</tr>

<tr>
<td>5</td>
<td>Metastasis / adhesion modulation</td>
<td>Tumor cell adhesion ↓; invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-metastatic (model-dependent)</td>
<td>May interfere with extracellular matrix interactions and tumor cell migration.</td>
</tr>

<tr>
<td>6</td>
<td>Drug delivery enhancement (nanoparticle carrier)</td>
<td>Improved chemo uptake; targeted delivery ↑</td>
<td>Drug exposure optimization</td>
<td>P, R, G</td>
<td>Delivery platform</td>
<td>Major oncology relevance is as a carrier for chemotherapeutics, siRNA, DNA, and immunotherapies.</td>
</tr>

<tr>
<td>7</td>
<td>Tumor microenvironment modulation (acid buffering; charge interaction)</td>
<td>May alter local tumor acidity and cell interactions</td>
<td>↔</td>
<td>R, G</td>
<td>Microenvironment modulation</td>
<td>Cationic nature allows electrostatic interaction with tumor cell membranes and acidic microenvironment.</td>
</tr>

<tr>
<td>8</td>
<td>Redox / ROS effects</td>
<td>Mild ROS modulation (context-dependent)</td>
<td>Antioxidant properties reported in some systems</td>
<td>P, R</td>
<td>Redox modulation (minor)</td>
<td>Not primarily a redox-active compound; effects secondary to immune or metabolic modulation.</td>
</tr>

<tr>
<td>9</td>
<td>Combination therapy synergy</td>
<td>Chemo sensitivity ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Adjunct platform</td>
<td>Often improves stability, targeting, and bioavailability of conventional anticancer agents.</td>
</tr>

<tr>
<td>10</td>
<td>Safety / translational constraint</td>
<td>Low systemic toxicity (generally)</td>
<td>Biocompatible; GI tolerance generally good</td>
<td>—</td>
<td>Biomaterial constraint</td>
<td>Effects depend heavily on molecular weight and degree of deacetylation; shellfish allergy considerations.</td>
</tr>

</table>

<p><small>
TSF: P = 0–30 min (surface interactions), R = 30 min–3 hr (immune signaling shifts), G = >3 hr (phenotype and immune outcomes).
</small></p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GSH↓, 1,   MDA↓, 1,   MDA↑, 1,   ROS↑, 11,  

Mitochondria & Bioenergetics

MMP↓, 6,   mtDam↑, 2,  

Core Metabolism/Glycolysis

ALAT↓, 1,   LDH↑, 1,   LDH↓, 1,  

Cell Death

Apoptosis↑, 10,   BAX↑, 3,   Bcl-2↓, 3,   Casp↑, 1,   Casp3↑, 3,   cl‑Casp3↑, 1,   Casp9↑, 1,   cl‑Casp9↑, 1,   Cyt‑c↑, 1,   FADD↑, 2,   Fas↑, 2,   FasL↑, 2,  

Transcription & Epigenetics

other↑, 1,   other↝, 2,   tumCV↓, 3,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   PARP↝, 1,  

Cell Cycle & Senescence

TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

TumCG↓, 4,  

Migration

MMP2↓, 1,   MMP9↓, 1,   TregCell↓, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 3,   TumMeta↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   EPR↑, 4,  

Immune & Inflammatory Signaling

IL10↓, 1,   MDSCs↓, 1,   NK cell↑, 1,  

Cellular Microenvironment

pH↝, 1,  

Drug Metabolism & Resistance

BioAv↑, 2,   ChemoSen↑, 4,   Dose↝, 3,   eff↑, 13,   eff↓, 1,   selectivity↑, 6,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   LDH↑, 1,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 4,   AntiTum↑, 4,   Risk↓, 1,  
Total Targets: 56

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   GPx↑, 2,   GSH↑, 2,   lipid-P↓, 1,   ROS↓, 3,   selenoP↑, 1,   SOD↑, 2,   VitC↑, 1,   VitE↑, 1,  

Mitochondria & Bioenergetics

Insulin↑, 1,  

Core Metabolism/Glycolysis

LDL↓, 2,  

Transcription & Epigenetics

other↝, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 3,  

Hormonal & Nuclear Receptors

GR↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 6,   Dose↝, 3,   eff↑, 1,  

Clinical Biomarkers

GutMicro↑, 1,  

Functional Outcomes

Risk↓, 1,   toxicity↓, 6,   toxicity↑, 1,   Weight↝, 1,   Wound Healing↑, 4,  

Infection & Microbiome

Bacteria↓, 8,  
Total Targets: 25

Research papers

Year Title Authors PMID Link Flag
2025Solid-state tailored silver nanocomposites from chitosan: Synthesis, antimicrobial evaluation and molecular dockingRania Abdel-Wahedhttps://www.sciencedirect.com/science/article/abs/pii/S01418130250238400
2025Silver nanochitosan: a sustainable approach for enhanced antimicrobial, antioxidant, and anticancer applicationsSaranya Elumalaihttps://link.springer.com/article/10.1007/s13205-025-04524-x0
2024Synthesis and Characterization of Chitosan–Silver Nanocomposite Film: Antibacterial and Cytotoxicity StudyShephrah Olubusola Ogungbesanhttps://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/slct.2024049090
2024Synthesis and Characterization of Multifunctional Chitosan–Silver Nanoparticles: An In-Vitro Approach for Biomedical ApplicationsGulamnabi Vantihttps://www.mdpi.com/1424-8247/17/9/12290
2023Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activitiesAkif Hakan KurtPMC10043739https://pmc.ncbi.nlm.nih.gov/articles/PMC10043739/0
2022Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing ActivitiesAmr M ShehabeldinePMC9225580https://pmc.ncbi.nlm.nih.gov/articles/PMC9225580/0
2022Chitosan conjugated silver nanoparticles: the versatile antibacterial agentsShumaila Mumtazhttps://link.springer.com/article/10.1007/s00289-022-04321-z0
2020Chitosan-coated silver nanoparticles promoted antibacterial, antibiofilm, wound-healing of murine macrophages and antiproliferation of human breast cancer MCF 7 cellsAyyanar Parthasarathyhttps://www.sciencedirect.com/science/article/abs/pii/S01429418203090650
2016Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell linesDebasis Nayakhttps://www.sciencedirect.com/science/article/abs/pii/S00219797163012300
2014Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cellsShilpa Sharma23852919https://pubmed.ncbi.nlm.nih.gov/23852919/0
2023Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cellsNeha Singh38081485https://pubmed.ncbi.nlm.nih.gov/38081485/0
2025Chitosan Nanoparticle-Based Drug Delivery Systems: Advances, Challenges, and Future PerspectivesAlina Stefanachehttps://www.mdpi.com/2073-4360/17/11/14530
2025Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative ReviewIrene Ferrihttps://academic.oup.com/nutritionreviews/article/83/7/e2015/7895734?login=false0
2022Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer TherapyPaweena DanaPMC9370598https://pmc.ncbi.nlm.nih.gov/articles/PMC9370598/0
2022Recent Advances in Chitosan and its Derivatives in Cancer TreatmentJingxian DingPMC9178414https://pmc.ncbi.nlm.nih.gov/articles/PMC9178414/0
2021Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer Xiongjie Zhu 34127219https://pubmed.ncbi.nlm.nih.gov/34127219/0
2020Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer TherapyDonika G IvanovaPMC7097683https://pmc.ncbi.nlm.nih.gov/articles/PMC7097683/0
2020A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathwayJiayue Gao32387597https://pubmed.ncbi.nlm.nih.gov/32387597/0
2017Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44Tao WangPMC5223569https://pmc.ncbi.nlm.nih.gov/articles/PMC5223569/0
2017Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cellsHao Wanghttps://www.tandfonline.com/doi/full/10.1080/21691401.2017.14234940
2017Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNAFahimeh SalehiORCID logohttps://pubs.rsc.org/en/content/articlehtml/2017/ra/c7ra06793c0
2003Chitosan decreases total cholesterol in women: a randomized, double-blind, placebo-controlled trialH Bokurahttps://www.nature.com/articles/16016030
2002Cholesterol-lowering properties and safety of chitosanRitva Ylitalo11838268https://pubmed.ncbi.nlm.nih.gov/11838268/0
2018Influence of chitosan coating on the oral bioavailability of gold nanoparticles in ratsAhmed AlalaiwePMC6362168https://pmc.ncbi.nlm.nih.gov/articles/PMC6362168/0
2021Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapyAnushree Pandeyhttps://www.researchgate.net/publication/348878042_Synthesis_of_polygonal_chitosan_microcapsules_for_the_delivery_of_amygdalin_loaded_silver_nanoparticles_in_breast_cancer_therapy0
2020Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifeneAditya Murthyhttps://www.sciencedirect.com/science/article/abs/pii/S03785173203071580
2016Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapyJayachandran Venkatesanhttps://www.researchgate.net/publication/306126947_Preparation_of_piperlongumine-loaded_chitosan_nanoparticles_for_safe_and_efficient_cancer_therapy0
2025The ameliorative effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced ovarian toxicity in female albino ratsOmnia E. Shalabyhttps://link.springer.com/content/pdf/10.1186/s13048-024-01577-z.pdf0
2025Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular dockingSowmya Rhttps://www.sciencedirect.com/science/article/abs/pii/S0006291X250056740
2023Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cellsHaixi Zhanghttps://onlinelibrary.wiley.com/doi/abs/10.1002/jbt.234240
2022Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in ratsCheng LiPMC9280227https://pmc.ncbi.nlm.nih.gov/articles/PMC9280227/0
2022Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein AnalysisSu-Jun SunPMC9716935https://pmc.ncbi.nlm.nih.gov/articles/PMC9716935/0
2025Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathwayRana I. Mahmoodhttps://www.degruyterbrill.com/document/doi/10.1515/ntrev-2025-0142/html0
2025Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum in vitro studyMohamed M. Desoukyhttps://www.nature.com/articles/s41598-024-79574-x0
2024Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosanAhmed E. Abdelhamidhttps://link.springer.com/article/10.1007/s00289-023-04768-80
2022Synthesis of a Bioactive Composition of Chitosan–Selenium NanoparticlesK V ApryatinaPMC8943790https://pmc.ncbi.nlm.nih.gov/articles/PMC8943790/0
2018pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cellsUrarika Luesakul29254044https://pubmed.ncbi.nlm.nih.gov/29254044/0
2017Antioxidant capacities of the selenium nanoparticles stabilized by chitosanXiaona ZhaiPMC5217424https://pmc.ncbi.nlm.nih.gov/articles/PMC5217424/0