tbResList Print — VitK3 VitK3,menadione

Filters: qv=230, qv2=%, rfv=%

Product

VitK3 VitK3,menadione
Description: <b>Menadione</b> (2-methyl-1,4-naphthoquinone, also termed vitamin K3)<br>
Menadione-induced ROS generation is concentration-dependent and high concentrations trigger cell death.<br>
Clinical trials conducted on patients with prostate cancer showed that ascorbic acid-menadione produced an immediate drop in tumor cell numbers through a mechanism named autoschizis.<br>
Menadione (Vitamin K3) is a synthetic naphthoquinone compound.
It is not used as a nutritional vitamin supplement in humans due to toxicity risk (particularly hemolysis and hepatotoxicity). Historically used in animal feed.<br>
<pre>
Mechanistically, menadione functions primarily as a redox-active quinone, capable of:
-Undergoing redox cycling
-Generating reactive oxygen species (ROS)
-Inducing oxidative stress
-Interacting with glutathione (GSH) systems
-Modulating mitochondrial function
</pre>
It has been investigated in oncology research largely due to its pro-oxidant cytotoxic properties, not classical vitamin K–dependent clotting roles.<br>
<br>


<!-- Vitamin K3 (Menadione) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Redox cycling (quinone-mediated ROS generation)</td>
<td>ROS ↑; oxidative stress ↑; apoptosis ↑ (dose-dependent)</td>
<td>Oxidative injury risk ↑ (hemolysis, hepatotoxicity)</td>
<td>P, R</td>
<td>Primary cytotoxic mechanism</td>
<td>Menadione undergoes one-electron redox cycling, generating superoxide and hydrogen peroxide; not selective for tumor cells.</td>
</tr>

<tr>
<td>2</td>
<td>Glutathione (GSH) depletion</td>
<td>GSH ↓; redox buffering capacity ↓</td>
<td>Red cell vulnerability ↑</td>
<td>P, R</td>
<td>Redox destabilization</td>
<td>Conjugation and oxidative cycling consume GSH, amplifying oxidative stress.</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial dysfunction</td>
<td>ΔΨm ↓; ATP ↓; apoptosis signaling ↑</td>
<td>Energy stress in normal cells possible</td>
<td>R, G</td>
<td>Mitochondria-mediated apoptosis</td>
<td>ROS and redox imbalance disrupt mitochondrial membrane potential.</td>
</tr>

<tr>
<td>4</td>
<td>DNA damage (oxidative)</td>
<td>DNA strand breaks ↑ (reported)</td>
<td>Genotoxic risk ↑</td>
<td>R, G</td>
<td>Genome instability</td>
<td>Often secondary to ROS accumulation rather than direct DNA intercalation.</td>
</tr>

<tr>
<td>5</td>
<td>Synergy with ascorbate (Vitamin C)</td>
<td>Redox cycling ↑; cytotoxicity ↑ (reported in vitro)</td>
<td>Systemic oxidative injury risk ↑</td>
<td>P, R</td>
<td>Redox amplification</td>
<td>Menadione can undergo redox cycling with ascorbate, increasing ROS production; largely preclinical data.</td>
</tr>

<tr>
<td>6</td>
<td>Topoisomerase interference (reported)</td>
<td>Topo inhibition (context-dependent)</td>
<td>↔</td>
<td>R</td>
<td>Secondary mechanism</td>
<td>Some studies report interference with topoisomerase activity, but this is not the dominant mechanism.</td>
</tr>

<tr>
<td>7</td>
<td>Hemolysis risk (G6PD vulnerability)</td>
<td>—</td>
<td>Red blood cell destruction risk ↑</td>
<td>R</td>
<td>Major toxicity constraint</td>
<td>Menadione can cause hemolytic anemia, especially in G6PD deficiency.</td>
</tr>

<tr>
<td>8</td>
<td>Hepatotoxicity</td>
<td>—</td>
<td>Liver injury risk ↑</td>
<td>G</td>
<td>Clinical toxicity constraint</td>
<td>Historical reason for discontinuation as a human supplement.</td>
</tr>

<tr>
<td>9</td>
<td>Vitamin K–dependent clotting pathway</td>
<td>Minimal physiologic role in humans</td>
<td>Not equivalent to K1/K2</td>
<td>—</td>
<td>Classification clarification</td>
<td>Menadione is a synthetic precursor; does not function identically to phylloquinone (K1) or menaquinones (K2).</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid redox cycling and ROS generation)</li>
<li><b>R</b>: 30 min–3 hr (mitochondrial dysfunction, DNA damage signaling)</li>
<li><b>G</b>: &gt;3 hr (apoptosis, tissue-level toxicity outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GPx↓, 1,   GSH↓, 1,   H2O2↑, 2,   lipid-P↑, 1,   ROS↑, 12,   Trx↓, 1,   Trx1↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   MMP↓, 2,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   PKM2↓, 3,   RNR↓, 1,  

Cell Death

Apoptosis↑, 3,   autoS↑, 1,   BAX↑, 1,   Bcl-2↓, 3,   Bcl-xL↑, 1,   Bcl-xL↓, 1,   Casp3↑, 3,   cl‑Casp3↑, 1,   cl‑Casp9↑, 1,   Cyt‑c↑, 1,   TumCD↑, 2,   TumCD↓, 1,  

Kinase & Signal Transduction

cSrc↓, 1,  

Transcription & Epigenetics

cJun↑, 1,   tumCV↓, 2,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,   P53↑, 2,   cl‑PARP↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 2,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

EMT↓, 2,   p300↓, 1,   SHP1↑, 1,   STAT3↓, 1,   TOPflash↓, 1,   TumCG↓, 4,  

Migration

E-cadherin↑, 2,   Fibronectin↓, 1,   MMP2↓, 1,   MMP9↓, 1,   N-cadherin↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   Vim↓, 2,   Zeb1↓, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

VEGF↓, 1,  

Immune & Inflammatory Signaling

JAK1↓, 1,   JAK2↓, 1,   NF-kB↑, 1,   p65↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 5,   Dose?, 2,   Dose∅, 2,   eff↑, 8,   eff↓, 2,   selectivity↑, 4,  

Clinical Biomarkers

AR↓, 1,   BMD↑, 1,  

Functional Outcomes

AntiCan↑, 2,   OS↑, 1,  
Total Targets: 67

Pathway results for Effect on Normal Cells

Drug Metabolism & Resistance

Dose↝, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2011Plumbagin, Vitamin K3 Analogue, Suppresses STAT3 Activation Pathway through Induction of Protein Tyrosine Phosphatase, SHP-1: Potential Role in ChemosensitizationSantosh K SandurPMC2808447https://pmc.ncbi.nlm.nih.gov/articles/PMC2808447/0
2025Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfiteRadosveta Genchevahttps://www.sciencedirect.com/science/article/pii/S08915849250019960
2018Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cellsJing ChenPMC5920510https://pmc.ncbi.nlm.nih.gov/articles/PMC5920510/0
2019The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stressXiaoyuan Ren30703479https://pubmed.ncbi.nlm.nih.gov/30703479/0
2018Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and BarasertibDONIKA IVANOVAhttps://ar.iiarjournals.org/content/38/3/14070
2013Vitamin C and Cancer: Is There A Use For Oral Vitamin C?Steve Hickey, PhDhttps://isom.ca/article/vitamin-c-cancer-use-oral-vitamin-c/0
2003The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapyJulien Verrax12767595https://pubmed.ncbi.nlm.nih.gov/12767595/0
2003Serum markers variation consistent with autoschizis induced by ascorbic acid-menadione in patients with prostate cancerEduardo Lasalvia-Prisco12665684https://pubmed.ncbi.nlm.nih.gov/12665684/0
1989Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 actionVincenzo Noto MDhttps://acsjournals.onlinelibrary.wiley.com/doi/10.1002/1097-0142(19890301)63:5%3C901::AID-CNCR2820630518%3E3.0.CO;2-G/abstract;jsessionid=E9C4FE55BE79464AB9945EAFA0709A5D.f02t020
2018Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effectDonika Ivanovahttps://www.sciencedirect.com/science/article/pii/S22132317183009340
2007Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cellsMutsumi Ogawa17611688https://pubmed.ncbi.nlm.nih.gov/17611688/0
2024Vitamin KNIHhttps://ods.od.nih.gov/factsheets/vitaminK-HealthProfessional/0
2024Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cellsSomaiah Chinnapakahttps://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.21170
2021Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis PathwaysYong Xin32798378https://pubmed.ncbi.nlm.nih.gov/32798378/0
2020Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 CellsShangyuchen Shihttps://www.tandfonline.com/doi/full/10.2147/ott.s2287920
2019The role of pyruvate kinase M2 in anticancer therapeutic treatmentsQiongli SuPMC6865080https://pmc.ncbi.nlm.nih.gov/articles/PMC6865080/0
2019Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cellsChandra Kishore31238027https://pubmed.ncbi.nlm.nih.gov/31238027/0
2015PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drugTiantian HePMC4687332https://pmc.ncbi.nlm.nih.gov/articles/PMC4687332/0
2013Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migrationShruthy Suresh24175842https://pubmed.ncbi.nlm.nih.gov/24175842/0
2013A biophysical approach to menadione membrane interactions: relevance for menadione-induced mitochondria dysfunction and related deleterious/therapeutic effectsJoão P Monteiro23590997https://pubmed.ncbi.nlm.nih.gov/23590997/0
2012Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell DeathMarco TomasettiPMC3525640https://pmc.ncbi.nlm.nih.gov/articles/PMC3525640/0
2012Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2Jing Chenhttps://www.sciencedirect.com/science/article/abs/pii/S03043835110065620
2011Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanismAngelica R Bonilla-Porrashttps://cancerci.biomedcentral.com/articles/10.1186/1475-2867-11-190
2010Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin CMarina F VitaPMC3171656https://pmc.ncbi.nlm.nih.gov/articles/PMC3171656/0
2003The anticancer effects of vitamin KDavis W Lamson12946240https://pubmed.ncbi.nlm.nih.gov/12946240/0
2002Potential therapeutic application of the association of vitamins C and K3 in cancer treatmentP Buc Calderon12470246https://pubmed.ncbi.nlm.nih.gov/12470246/0