tbResList Print — Chemo Chemotherapy

Filters: qv=233, qv2=%, rfv=%

Product

Chemo Chemotherapy
Features: treatment category
Description: <b>Chemotherapy</b> is a treatment approach that uses drugs to target and kill rapidly dividing cells, primarily cancer cells. However, because many normal cells also divide quickly (such as those in the bone marrow, digestive tract, and hair follicles), chemotherapy can also affect these cells, leading to a range of side effects. <br>
<br>
Main Classes of Chemotherapy Agents and Examples<br>
Alkylating Agents:<br>
-work by adding alkyl groups to DNA, which interferes with the DNA’s structure and prevents replication.<br>
Examples: Cyclophosphamide, Ifosfamide, Melphalan, Chlorambucil, Busulfan.<br>
<br>
Anti-metabolites:<br>
-interfere with DNA and RNA synthesis by substituting for the normal building blocks of nucleic acids.<br>
Examples: Methotrexate, 5-Fluorouracil (5-FU), Cytarabine, Gemcitabine, 6-Mercaptopurine.<br>
<br>
Anti-microtubule Agents:<br>
-interfere with the structures that separate chromosomes during cell division (mitosis).
Examples: Paclitaxel, Docetaxel, Vincristine, Vinblastine.<br>
<br>
Topoisomerase Inhibitors:<br>
-target the enzymes topoisomerase I and II, which control the changes in DNA structure required for replication.<br>
Examples: Etoposide (topoisomerase II inhibitor), Irinotecan (topoisomerase I inhibitor), Topotecan. <br>
<br>
Cytotoxic Antibiotics:<br>
-intercalate into DNA, inhibiting the replication of cancer cells.<br>
Examples: Doxorubicin, Daunorubicin, Bleomycin, Mitoxantrone.<br>
<br>
Platinum-Based Agents:<br>
-contain platinum and cause cross-linking of DNA, which interferes with DNA repair and replication.
Examples: Cisplatin, Carboplatin, Oxaliplatin.<br>
<br>
Many chemotherapy agents exert their effects, at least in part, by inducing oxidative stress in cancer cells. They can increase ROS levels through several mechanisms:<br>
-Direct generation of free radicals.<br>
-Disruption of mitochondrial function, leading to increased production of ROS.<br>
-Interference with the cell’s antioxidant systems.<br>
<br>
-May want to avoid antioxidants 7 days bef<br>ore and 7 days after chemo.<br>
Examples: NAC, Glutathione, Alpha Lipoic Acid, Vitamin E<br>
-anti-oxidants known to have pro-oxidant effects (like Quercetin, Curcumin, etc.) should not be taken 2-3 days before and after chemo<br>
-pro-oxidants known to bring good benefit to chemo can be continued during chemo. Examples are: Omega 3, Aremisia Annua, Silver NanoParticles.<br>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   antiOx↓, 1,   Bil↝, 1,   GSH↓, 1,   H2O2↑, 1,   HO-1↓, 4,   HO-1↑, 1,   hyperG↓, 1,   NQO1↓, 1,   NRF2↓, 2,   NRF2↑, 1,   OXPHOS↑, 1,   ROS↑, 1,   ROS↝, 1,   ROS⇅, 1,   SOD↓, 1,   SOD2↓, 1,   uricA↓, 1,  

Metal & Cofactor Biology

KLF5↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 1,   Insulin↓, 1,   mitResp↑, 1,   MMP↝, 1,   OCR↑, 1,   p42↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   AminoA↓, 1,   AMPK↑, 1,   ATP:AMP↓, 1,   BUN↓, 1,   cMyc↓, 1,   ECAR↓, 1,   GlucoseCon↓, 1,   GLUT2↓, 1,   Glycolysis↓, 4,   HK2↓, 1,   HK2∅, 1,   homoC↓, 1,   lactateProd↓, 1,   LDHA∅, 1,   PDH↑, 1,   PDKs↓, 1,   PFK↓, 1,   PFK1↓, 1,   PFKP↓, 1,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 1,   SIRT1↑, 1,   SIRT1↓, 1,   Warburg↓, 2,  

Cell Death

Akt↑, 2,   Akt↓, 1,   Apoptosis↑, 1,   Apoptosis∅, 1,   ASK1↑, 1,   BAX↑, 3,   Bcl-2↓, 2,   BIM↑, 1,   Casp↝, 1,   Casp3↑, 1,   Casp3↓, 1,   cl‑Casp7↑, 1,   cl‑Casp8↑, 1,   cl‑Casp9↑, 1,   Cyt‑c↑, 2,   Diablo↑, 1,   DR5↑, 1,   Fas↑, 1,   MAPK↓, 2,   Mcl-1↓, 1,   necrosis↑, 1,   survivin↓, 1,   TumCD↑, 4,  

Kinase & Signal Transduction

Sp1/3/4↓, 2,  

Transcription & Epigenetics

miR-21↓, 1,   miR-27a-3p↓, 2,   other↑, 1,   other↓, 1,   other↝, 7,   tumCV↓, 2,  

Protein Folding & ER Stress

ER Stress↑, 1,   GRP78/BiP↑, 1,   PERK↑, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   Beclin-1↑, 1,   LAMP2↑, 1,   p62↑, 1,   TumAuto↑, 1,   TumAuto↓, 1,  

DNA Damage & Repair

DNAdam↑, 4,   P53↑, 1,   cl‑PARP↑, 1,   PARP1↓, 1,   RAD51↓, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   p‑CDK2↓, 1,   CDK4↓, 1,   CDK4↑, 2,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   TumCCA↑, 7,  

Proliferation, Differentiation & Cell State

CSCs↓, 3,   Gli1↓, 1,   p‑GSK‐3β↑, 1,   HDAC↓, 4,   IGF-1↓, 2,   IGFBP1↑, 1,   miR-34a↑, 2,   mTOR↓, 3,   mTOR↑, 3,   Nanog↓, 1,   OCT4↓, 1,   PI3K↑, 2,   PI3K↓, 2,   PTCH1↓, 1,   PTEN↑, 1,   p‑STAT3↓, 1,   STAT5↓, 1,   TumCG↓, 11,   TumCG∅, 2,   Wnt↓, 1,  

Migration

Ca+2↑, 2,   GLI2↓, 1,   KLF2↓, 1,   MMP2↓, 1,   MMP9↓, 1,   PAK1↓, 1,   PKA↓, 3,   Treg lymp↓, 1,   TumCP↓, 4,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 1,   VEGF↓, 1,  

Barriers & Transport

GLUT1↓, 2,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

CLP↑, 1,   COX2↓, 1,   CXCc↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 4,   Inflam↑, 1,   JAK1↓, 1,   JAK2↓, 1,   M2 MC↓, 1,   NF-kB↓, 2,   PSA↓, 1,   TILs↑, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 1,   CDK6↑, 2,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   ChemoSen↑, 26,   ChemoSen↓, 3,   ChemoSen∅, 3,   Dose∅, 1,   Dose↝, 5,   Dose⇅, 1,   Dose↑, 1,   eff↑, 28,   eff∅, 2,   eff↝, 2,   eff?, 1,   eff↓, 3,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 4,   RadioS↓, 1,   selectivity↑, 13,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   BG↓, 5,   Bil↝, 1,   creat↓, 2,   EGFR↓, 1,   GutMicro↑, 2,   IL6↓, 1,   PSA↓, 1,  

Functional Outcomes

antiNeop∅, 1,   AntiTum↑, 1,   cardioP↑, 1,   chemoP↑, 16,   chemoP∅, 1,   chemoPv↑, 4,   ChemoSideEff↓, 6,   cognitive↑, 1,   memory↑, 1,   neuroP↑, 1,   OS↑, 8,   OS↓, 1,   OS∅, 1,   Pain↓, 1,   QoL↑, 3,   radioP↑, 5,   Remission↑, 1,   RenoP↑, 1,   Risk↓, 5,   Risk⇅, 1,   toxicity↓, 1,   toxicity∅, 1,   toxicity↑, 2,   TumVol↓, 1,   TumW↓, 1,  

Infection & Microbiome

CD8+↑, 2,  
Total Targets: 210

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 2,   GPx↑, 2,   GSH↑, 6,   GSTs↑, 1,   HO-1↑, 3,   Keap1↓, 1,   lipid-P↓, 3,   lipid-P?, 1,   MDA↓, 1,   MDA↑, 1,   NQO1↑, 1,   NRF2↑, 7,   ROS↓, 6,   selenoP↑, 1,   SOD↑, 3,  

Core Metabolism/Glycolysis

ALAT↓, 1,   NADPH↑, 1,  

Cell Death

Akt↓, 1,   Casp3↓, 1,  

Transcription & Epigenetics

other↑, 1,   other?, 2,   TREM-1↓, 1,  

DNA Damage & Repair

PCNA↑, 1,  

Proliferation, Differentiation & Cell State

p300↓, 1,   STAT3↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   COX2↑, 1,   GM-CSF↑, 1,   ICAM-1↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 3,   IP-10/CXCL-10↑, 1,   MCP1↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

Dose↝, 2,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   BP∅, 1,   GutMicro↑, 1,   IL6↓, 1,  

Functional Outcomes

cardioP↑, 1,   chemoP↑, 3,   hepatoP↑, 1,   neuroP↑, 1,   RenoP↑, 1,   toxicity∅, 3,   toxicity↓, 2,  
Total Targets: 51

Research papers

Year Title Authors PMID Link Flag
2025Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A reviewMaghimaa Mhttps://www.sciencedirect.com/science/article/pii/S13877003240179690
2024Therapeutic controversies over use of antioxidant supplements during cancer treatment: a scoping reviewMulugeta Woldeselassie Gebrehttps://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1480780/full0
2022Using Supplements During Chemo: Yes or No?Karen Sabbath, MS, RD, CSOhttps://www.leevercancercenter.org/blog/using-supplements-during-chemo-yes-or-no/0
2018Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurityKanchanlata Singhhttps://www.sciencedirect.com/science/article/pii/S1319016417302219?via%3Dihub0
2017Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and RadiosensitizationAnita ThyagarajanPMC6041931https://pmc.ncbi.nlm.nih.gov/articles/PMC6041931/0
2007Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trialsKI Blockhttps://www.ncbi.nlm.nih.gov/books/NBK74830/0
2024The versatility of apigenin: Especially as a chemopreventive agent for cancerOm Prakashhttps://www.sciencedirect.com/science/article/pii/S27073688240005660
2021Chemoprotective and chemosensitizing effects of apigenin on cancer therapyZahra Nozhathttps://cancerci.biomedcentral.com/articles/10.1186/s12935-021-02282-30
2012Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cellsChengwei HePMC3488973https://pmc.ncbi.nlm.nih.gov/articles/PMC3488973/0
2022Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and MetastasisAmmad Ahmad FarooqiPMC9822120https://pmc.ncbi.nlm.nih.gov/articles/PMC9822120/0
2018Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78Youli Caihttps://www.nature.com/articles/s41419-018-0669-80
2024Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer CellsMahima Verma38502429https://pubmed.ncbi.nlm.nih.gov/38502429/0
2016Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancerShusuke TodenPMC4417447https://pmc.ncbi.nlm.nih.gov/articles/PMC4417447/0
2018Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to DoxorubicinHanmei LiPMC6017796https://pmc.ncbi.nlm.nih.gov/articles/PMC6017796/0
2014Systemic Chemotherapy Interferes in Homocysteine Metabolism in Breast Cancer PatientsEliana K YamashitaPMC6807486https://pmc.ncbi.nlm.nih.gov/articles/PMC6807486/0
2012Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell CulturesHeather GreenleePMC3840161https://pmc.ncbi.nlm.nih.gov/articles/PMC3840161/0
2006Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell linesGloria Brea-Calvohttps://www.sciencedirect.com/science/article/abs/pii/S08915849050071120
2023Curcumin as a hepatoprotective agent against chemotherapy-induced liver injuryVicenç Ruiz de Porrashttps://www.sciencedirect.com/science/article/pii/S00243205230075430
2017Combination therapy in combating cancerReza Bayat MokhtariPMC5514969https://pmc.ncbi.nlm.nih.gov/articles/PMC5514969/0
2010Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organsAjay Goel20924967https://pubmed.ncbi.nlm.nih.gov/20924967/0
2017Sensitization of breast cancer cells to paclitaxel by dichloroacetate through inhibiting autophagyMinghao Wanghttps://www.sciencedirect.com/science/article/abs/pii/S0006291X173097860
2012Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case reportTatsuaki Ishiguro22580646https://pubmed.ncbi.nlm.nih.gov/22580646/0
2011In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell linesWolfgang Fiebiger21239354https://pubmed.ncbi.nlm.nih.gov/21239354/0
2024Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effectsNafiseh SheykhbahaeiPMC11316436https://pmc.ncbi.nlm.nih.gov/articles/PMC11316436/0
2022Effect of fasting on cancer: A narrative review of scientific evidenceSagun TiwariPMC9530862https://pmc.ncbi.nlm.nih.gov/articles/PMC9530862/0
2021Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escapeGiulia SalvadoriPMC8769166https://pmc.ncbi.nlm.nih.gov/articles/PMC8769166/0
2020Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trialStefanie de Groothttps://www.nature.com/articles/s41467-020-16138-30
2016Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor CytotoxicityStefano Di BiasePMC5388544https://pmc.ncbi.nlm.nih.gov/articles/PMC5388544/0
2015Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer modelsGiovanna BianchiPMC4494906https://pmc.ncbi.nlm.nih.gov/articles/PMC4494906/0
2014Starvation Based Differential Chemotherapy: 
A Novel Approach for Cancer TreatmentSidra NaveedPMC4289501https://pmc.ncbi.nlm.nih.gov/articles/PMC4289501/0
2008Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapyLizzia RaffaghelloPMC2448817https://pmc.ncbi.nlm.nih.gov/articles/PMC2448817/0
2023Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent GlioblastomaKatja Werlenius, MDhttps://jamanetwork.com/journals/jamanetworkopen/fullarticle/28029660
2022The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative ReviewElena Ferrarihttps://www.researchgate.net/publication/360934968_The_Potential_of_Epigallocatechin_Gallate_EGCG_in_Targeting_Autophagy_for_Cancer_Treatment_A_Narrative_Review0
2019Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and XenograftsRan WeiPMC6826788https://pmc.ncbi.nlm.nih.gov/articles/PMC6826788/0
2024Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signalingArti RajpootPMC11362644https://pmc.ncbi.nlm.nih.gov/articles/PMC11362644/0
2022Shilajit potentiates the effect of chemotherapeutic drugs and mitigates metastasis induced liver and kidney damages in osteosarcoma ratsEbtihaj J JambiPMC9358466https://pmc.ncbi.nlm.nih.gov/articles/PMC9358466/0
2018Case report: stage 4 pancreatic cancer to remission using paricalcitol and hydroxychloroquine in addition to traditional chemotherapyStephen Bigelsenhttps://apc.amegroups.org/article/view/4269/51970
2006Adding Chloroquine to Conventional Treatment for Glioblastoma MultiformeJ. Sotelohttps://www.semanticscholar.org/paper/Adding-Chloroquine-to-Conventional-Treatment-for-Sotelo-Briceo/6bc8c298bae5f73ba169b16d7eec1fc72ccc26ca0
2017Association of elevated reactive oxygen species and hyperthermia induced radiosensitivity in cancer stem-like cellsQibin FuPMC5731896https://pmc.ncbi.nlm.nih.gov/articles/PMC5731896/0
2021Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated PathwayKuen-Jang TsaiPMC8587415https://pmc.ncbi.nlm.nih.gov/articles/PMC8587415/0
2014Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathwaySong Chian24761924https://pubmed.ncbi.nlm.nih.gov/24761924/0
2023Lycopene Supplementation for Patients Under Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled TrialsL. Jurado-Fasolihttps://www.sciencedirect.com/science/article/pii/S22108033230010330
2022Antioxidant and anti-inflammatory activities of lycopene against 5-fluorouracil-induced cytotoxicity in Caco2 cellsNorah M AlhoshaniPMC9715638https://pmc.ncbi.nlm.nih.gov/articles/PMC9715638/0
2010Lycopene and chemotherapy toxicityKazim Sahin20924974https://pubmed.ncbi.nlm.nih.gov/20924974/0
2023A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and RadiotherapyUsama Basirat37138418https://pubmed.ncbi.nlm.nih.gov/37138418/0
2024Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer CellsSung-Hun WOOhttps://www.kjcls.org/journal/view.html?doi=10.15324%2Fkjcls.2024.56.1.730
1994Non-ionizing Electromagnetic Radiation: A Study of Carcinogenic and Cancer Treatment PotentialJ R. Salvatore7724878https://pubmed.ncbi.nlm.nih.gov/7724878/0
2024Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer CellsCristina StavilăPMC11256100https://pmc.ncbi.nlm.nih.gov/articles/PMC11256100/0
2020The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trialMinghui Zhu32238091https://pubmed.ncbi.nlm.nih.gov/32238091/0
2018Dietary Intake of Magnesium or Calcium and Chemotherapy-Induced Peripheral Neuropathy in Colorectal Cancer PatientsEvertine WesselinkPMC5946183https://pmc.ncbi.nlm.nih.gov/articles/PMC5946183/0
2018The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cellsMaha S Al-KeilaniPMC6186900https://pmc.ncbi.nlm.nih.gov/articles/PMC6186900/0
2014Preliminary Findings on the Use of Targeted Therapy in Combination with Sodium Phenylbutyrate in Colorectal Cancer after Failure of Second-Line Therapy—A Potential Strategy for Improved SurvivalStanislaw R. Burzynskihttps://www.scirp.org/journal/paperinformation?paperid=515770
2006Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cellsO AmmerpohlPMC2360208https://pmc.ncbi.nlm.nih.gov/articles/PMC2360208/0
2020Antioxidant and anti-inflammatory effects of oral propolis in patients with breast cancer treated with chemotherapy: a Randomized controlled trialNazila Darvishihttps://www.sciencedirect.com/science/article/abs/pii/S22108033203005670
2017Combination therapy in combating cancerReza Bayat MokhtariPMC5514969https://pmc.ncbi.nlm.nih.gov/articles/PMC5514969/0
2013Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cellsYoon-Jin Leehttps://pubmed.ncbi.nlm.nih.gov/23146690/0
2023The effect of selenium yeast in the prevention of adverse reactions related to platinum-based combination therapy in patients with malignant tumorsM Chen37975373https://pubmed.ncbi.nlm.nih.gov/37975373/0
2018Phase I trial of selenium plus chemotherapy in gynecologic cancersMihae Songhttps://www.gynecologiconcology-online.net/article/S0090-8258(18)31014-X/addons0
2010Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: A good thing?A. Tabassumhttps://www.cancertreatmentreviews.com/article/S0305-7372(09)00190-X/abstract0
2009Selenium Prevention of Alopecia, Bladder and Kidney Toxicity Induced by Chemotherapeutic AgentsRoswell Park Comprehensive Cancer Centerhttps://www.roswellpark.org/commercialization/technologies/selenium-prevention-alopecia-bladder-kidney-toxicity-induced0
2005Selenium Protects Against Toxicity Induced by Anticancer Drugs and Augments Antitumor Activity: A Highly Selective, New, and Novel Approach for the Treatment of Solid TumorsMarwan Fakihhttps://www.clinical-colorectal-cancer.com/article/S1533-0028(11)70177-3/abstract0
2004Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapyKrzysztof Sieja15099940https://pubmed.ncbi.nlm.nih.gov/15099940/0
1997The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patientsYa-Jun Huhttps://link.springer.com/article/10.1007/BF027853040
2025Translational Selenium Nanoparticles Promotes Clinical Non-small-cell Lung Cancer Chemotherapy via Activating Selenoprotein-driven Immune ManipulationYanzi Yu40095246https://pubmed.ncbi.nlm.nih.gov/40095246/0
2024Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and ChemotherapyRong Zhanghttps://www.tandfonline.com/doi/full/10.2147/IJN.S4766860
2018Chemopreventive activity of sulforaphaneXin JiangPMC6141106https://pmc.ncbi.nlm.nih.gov/articles/PMC6141106/0
2024Silymarin Nanoparticles Counteract Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights into Mitochondrial Dysfunction and Nrf2/HO-1 AxisFatma G. Aboelnasrhttps://www.sciencedirect.com/science/article/pii/S00142999240090750
2020Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and ChemosensitivityDominique DelmasPMC7248929https://pmc.ncbi.nlm.nih.gov/articles/PMC7248929/0
2022Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer CellsWenjing JiPMC9102431https://pmc.ncbi.nlm.nih.gov/articles/PMC9102431/0
2025Efficacy and safety of intravenous administration of high-dose selenium for preventing chemotherapy-induced peripheral neuropathy in gastric cancer patients receiving adjuvant oxaliplatin and capecitabine after gastrectomy: a retrospective pilot studyWedyan Alhazmihttps://www.kjco.org/journal/view.php?number=4370
2022Therapeutic Benefits of Selenium in Hematological MalignanciesMelanie A EhudinPMC9323677https://pmc.ncbi.nlm.nih.gov/articles/PMC9323677/0
2011Selenium and Lung Cancer: A Systematic Review and Meta AnalysisHeidi FritzPMC3208545https://pmc.ncbi.nlm.nih.gov/articles/PMC3208545/0
2023Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in RatsMarwa M QadriPMC10342029https://pmc.ncbi.nlm.nih.gov/articles/PMC10342029/0
2018Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and BarasertibDONIKA IVANOVAhttps://ar.iiarjournals.org/content/38/3/14070
2004The Use of Vitamin C with Chemotherapy in Cancer Treatment: An Annotated BibliographyJudith O. Stoutehttps://isom.ca/wp-content/uploads/2020/01/JOM_2004_19_4_02_The_Use_of_Vitamin_C_with_Chemotherapy_in_Cancer-.pdf0
2018Feasibility of whole body vibration during intensive chemotherapy in patients with hematological malignancies – a randomized controlled pilot studyAntonia PahlPMC6156963https://pmc.ncbi.nlm.nih.gov/articles/PMC6156963/0