tbResList Print — Cro Crocetin

Filters: qv=249, qv2=%, rfv=%

Product

Cro Crocetin
Description: <b>Crocetin</b> is a carotenoid pigment found in saffron (Crocus sativus) and has been studied for its potential anti-cancer properties. Research has shown that crocetin may have anti-tumor and anti-proliferative effects, inhibiting the growth of various types of cancer cells.<br>
Crocetin is a carotenoid dicarboxylic acid derived from saffron (Crocus sativus) and is a metabolite of crocin. It is lipophilic and more bioavailable than crocin. In cancer research, crocetin is studied mainly in preclinical models, where it appears to influence apoptosis, inflammation, angiogenesis, and redox signaling. It is not a primary cytotoxic chemotherapeutic, but a signaling and stress-modulating compound.<br>
<pre>
Mechanistic themes reported:
-NF-κB suppression
-PI3K/AKT pathway modulation
-MAPK signaling effects
-Apoptosis induction (mitochondrial pathway)
-Anti-angiogenic signaling (VEGF reduction)
-Redox modulation (context-dependent antioxidant / pro-oxidant behavior)

Evidence level: predominantly cell culture and animal models.
</pre>
Reported to modulate glycolytic metabolism and lactate production (model-dependent); not established as a direct LDH enzymatic inhibitor<br>



<br>
<b>Crocetin (Cro) — Cancer-Oriented Time-Scale Flagged Pathway Table</b>
<!-- Crocetin (Cro) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Bax ↑; Bcl-2 ↓; caspases ↑ (reported)</td>
<td>↔ (less activation)</td>
<td>G</td>
<td>Cell death signaling</td>
<td>Apoptosis induction via mitochondrial membrane disruption is one of the most frequently reported tumor effects.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB inflammatory signaling</td>
<td>NF-κB ↓; cytokines/COX-2 ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>Reduction of inflammatory transcription may contribute to anti-proliferative and anti-invasive effects.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K / AKT survival pathway</td>
<td>AKT phosphorylation ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth suppression</td>
<td>Observed in several tumor cell systems; should be presented as context-dependent.</td>
</tr>

<tr>
<td>4</td>
<td>MAPK signaling (ERK / JNK / p38)</td>
<td>Stress MAPK modulation (variable direction)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK activation and ERK suppression have been reported in some models; effects vary by cell type.</td>
</tr>

<tr>
<td>5</td>
<td>ROS / redox modulation</td>
<td>ROS ↑ (pro-apoptotic) or ROS ↓ (antioxidant) depending on dose</td>
<td>Oxidative stress ↓ (protective models)</td>
<td>P, R, G</td>
<td>Redox modulation (biphasic)</td>
<td>Crocetin can behave as antioxidant in normal cells and pro-oxidant in tumor contexts at higher concentrations.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle arrest</td>
<td>G0/G1 or G2/M arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often secondary to survival pathway suppression and stress signaling.</td>
</tr>

<tr>
<td>7</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓; angiogenic signaling ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Observed in some in vitro and animal tumor models; typically secondary to NF-κB/AKT changes.</td>
</tr>

<tr>
<td>8</td>
<td>Metabolic reprogramming (glycolysis tone)</td>
<td>Lactate ↓ (reported; indirect)</td>
<td>↔</td>
<td>R, G</td>
<td>Warburg modulation (indirect)</td>
<td>No strong evidence for direct LDH enzyme inhibition; effects likely secondary to survival/redox signaling changes.</td>
</tr>


<tr>
<td>9</td>
<td>Migration / invasion (MMPs)</td>
<td>MMP2/MMP9 ↓; invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Reported reduction in metastasis markers in certain systems.</td>
</tr>

<tr>
<td>10</td>
<td>Chemo-sensitization (adjunct potential)</td>
<td>Therapy sensitivity ↑ (reported in some combinations)</td>
<td>Normal tissue protection possible</td>
<td>G</td>
<td>Adjunct modulation</td>
<td>May enhance cytotoxic response in some models; data are preclinical.</td>
</tr>

<tr>
<td>11</td>
<td>Translation constraint</td>
<td>Clinical anti-cancer efficacy not established</td>
<td>Generally well tolerated in dietary contexts</td>
<td>—</td>
<td>Evidence limitation</td>
<td>Human oncology data are limited; dosing and bioavailability remain practical considerations.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (early redox and signaling interactions)</li>
<li><b>R</b>: 30 min–3 hr (NF-κB / PI3K / MAPK modulation)</li>
<li><b>G</b>: &gt;3 hr (apoptosis, angiogenesis, and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Core Metabolism/Glycolysis

LDH↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,  

Clinical Biomarkers

LDH↓, 1,  
Total Targets: 3

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 4,   GPx↑, 3,   GSH↑, 1,   lipid-P↓, 3,   MDA↑, 1,   MDA↓, 2,   ROS↓, 6,   SOD↑, 3,   Thiols↑, 2,  

Mitochondria & Bioenergetics

PGC-1α↑, 1,  

Core Metabolism/Glycolysis

CREB↑, 2,   p‑CREB↑, 1,   SIRT1↑, 1,  

Cell Death

p‑Akt↑, 1,   Apoptosis↓, 1,   BAD↓, 1,   BAX↓, 2,   Bcl-2↑, 1,   Casp3↓, 3,  

Transcription & Epigenetics

Ach↑, 3,   other↑, 1,   other↓, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 2,   GRP78/BiP↓, 1,  

Proliferation, Differentiation & Cell State

p‑mTOR↑, 1,  

Migration

Ca+2↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

IL1↓, 1,   Inflam↓, 3,   NF-kB↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

AChE↓, 9,   BDNF↑, 2,   ChAT↑, 2,   MAOA↝, 1,   MAOA↓, 1,   monoA↑, 1,   tau↓, 1,  

Protein Aggregation

Aβ↓, 5,  

Drug Metabolism & Resistance

BioAv↑, 1,   Dose↝, 1,  

Functional Outcomes

cognitive↑, 9,   cognitive↓, 1,   cognitive∅, 1,   memory↑, 7,   Mood↑, 1,   neuroP↑, 5,  
Total Targets: 48

Research papers

Year Title Authors PMID Link Flag
2018Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease TherapyThaiane Coelho dos SantosPMC6201143https://pmc.ncbi.nlm.nih.gov/articles/PMC6201143/0
2021Crocus Sativus L. (Saffron) in Alzheimer's Disease Treatment: Bioactive Effects on Cognitive ImpairmentGrazia D’OnofrioPMC8762181https://pmc.ncbi.nlm.nih.gov/articles/PMC8762181/0
2020Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s DiseaseShi-Yu ChenPMC7188934https://pmc.ncbi.nlm.nih.gov/articles/PMC7188934/0
2019Studying saffron nanopowder (Crocus Sativus L.) on the temporal memory of rats suffering Parkinson's diseaseHanieh Shamshttps://www.researchgate.net/publication/364735707_Studying_saffron_nanopowder_Crocus_Sativus_L_on_the_temporal_memory_of_rats_suffering_Parkinson's_disease0
2019Crocin Improves Cognitive Behavior in Rats with Alzheimer's Disease by Regulating Endoplasmic Reticulum Stress and ApoptosisLing LinPMC6732583https://pmc.ncbi.nlm.nih.gov/articles/PMC6732583/0
2019A Review of Potential Efficacy of Saffron (Crocus sativus L.) in Cognitive Dysfunction and SeizuresArezoo RajabianPMC6941716https://pmc.ncbi.nlm.nih.gov/articles/PMC6941716/0
2018Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's diseaseChunyue WangPMC6317678https://pmc.ncbi.nlm.nih.gov/articles/PMC6317678/0
2017Characterization of the Saffron Derivative Crocetin as an Inhibitor of Human Lactate Dehydrogenase 5 in the Antiglycolytic Approach against CancerCarlotta Granchi28643510https://pubmed.ncbi.nlm.nih.gov/28643510/0
2016Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s DiseaseNur Adalier Barlashttps://www.researchgate.net/publication/309452537_Vitamin_E_Turmeric_and_Saffron_in_Treatment_of_Alzheimer's_Disease0
2015The effects of Crocus sativus (saffron) and its constituents on nervous system: A reviewMohammad Reza KhazdairPMC4599112https://pmc.ncbi.nlm.nih.gov/articles/PMC4599112/0
2015Antidepressant Effect of Crocus sativus Aqueous Extract and its Effect on CREB, BDNF, and VGF Transcript and Protein Levels in Rat HippocampusT Ghasemi24696423https://pubmed.ncbi.nlm.nih.gov/24696423/0
2014Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer's disease: a double-blind randomized clinical trialMehdi Farokhniahttps://pubmed.ncbi.nlm.nih.gov/25163440/0
2014Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampusFaezeh Vahdati HassaniPMC3927874https://pmc.ncbi.nlm.nih.gov/articles/PMC3927874/0
2012Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studiesGeorge D Geromichalos22655699https://pubmed.ncbi.nlm.nih.gov/22655699/0
2012Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessmentZacharoula I Linardaki23168242https://pubmed.ncbi.nlm.nih.gov/23168242/0
2010Saffron in the treatment of patients with mild to moderate Alzheimer's disease: a 16-week, randomized and placebo-controlled trialS Akhondzadeh20831681https://pubmed.ncbi.nlm.nih.gov/20831681/0
2010A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer's diseaseShahin Akhondzadeh19838862https://pubmed.ncbi.nlm.nih.gov/19838862/0
2021Food-derived Acetylcholinesterase Inhibitors as Potential Agents against Alzheimer’s DiseaseRotimi E. Alukohttps://iadns.onlinelibrary.wiley.com/doi/10.2991/efood.k.210318.0010