tbResList Print — antiOx Anti-oxidants

Filters: qv=266, qv2=%, rfv=%

Product

antiOx Anti-oxidants
Description: <b>"Antioxidants</b> are compounds that inhibit oxidation, a chemical reaction that can produce free radicals." <br>
For example Vitamin C (normally Antioxidant), Vitamin e, and Trolox are anti-oxidants. <br>
Berries: Blueberries, Strawberries, Raspberries, Blackberries <br>
Fruits: Grapes, Pomegranates, Oranges, Apples <br>
Vegetables: Spinach and other leafy greens, Kale, Broccoli, Brussels sprouts <br>
Nuts and Seeds: Walnuts, Almonds, Flaxseeds, Chia seeds <br>
Beverages: Green tea, Black tea <br>
Spices and Herbs: curcumin, Ginger, Garlic, Cinnamon <br>
Other: Dark chocolate (with high cocoa content), Beans and legumes, Tomatoes (rich in lycopene) <br>
<br>
Antioxidants are compounds that help neutralize free radicals—unstable molecules that can damage cells and contribute to the development of chronic diseases including cancer. <br>
<br>
Cancer Prevention: <br>
Mechanism: Antioxidants protect cells from oxidative damage caused by free radicals, which can lead to mutations in DNA. Over time, these mutations might initiate or promote the growth of cancer cells. <br>
Dietary Role: Eating a diet rich in antioxidants (fruits, vegetables, and other plant-based foods) has been associated with a lower risk of some cancers. Many epidemiological studies suggest that diets high in natural antioxidants are linked to a reduced risk of cancer. <br>
<br>
During Cancer Treatment: <br>
Controversy: There is debate about whether taking antioxidant supplements during chemotherapy or radiation therapy is beneficial or harmful. Many therapies such as Chemotherapy raise the ROS(Reactive oxygen Species) intentionally to kill cancer cells. Some theory applies that antioxidants might prevent the ROS from being raised, and hence reduce treatment effectiveness. Some laboratory and clinical studies indicate that antioxidants might protect not only healthy cells but also cancer cells against the oxidative damage intentionally induced by these treatments. This could potentially reduce the effectiveness of cancer therapies. Another theory is there is a differential effect from taking antioxidants. Meaning the antioxidants help protect normal cells, but not the cancer cells. <br>
Recommendation: Many oncologists recommend caution with high-dose antioxidant supplements during active cancer treatment. Instead, a balanced diet with naturally occurring antioxidants is typically advised. <br>
<br>

thiol-containing antioxidants: -Contain a functional –SH (sulfhydryl) group <br>
-Can undergo oxidation to form disulfide bonds. This reversible redox behavior allows these molecules to neutralize reactive oxygen species (ROS). <br>
-Thiol antioxidants (like N‑acetylcysteine or glutathione) are potent because the –SH group can directly scavenge ROS. <br>
-There is concern that supplementation with thiol antioxidants during chemotherapy could neutralize some of the ROS generated by the treatment, potentially reducing the intended cytotoxic effects on cancer cells. <br>
Examples: <br>
-NAC <br>
-GSH <br>
-NMPG <br>
-dihydrolipoic acid (reduced form of ALA) <br>
-Cysteamine <br>
-Ergothioneine <br>
-Thioredoxin <br>
<br>
Non-thiol ROS scavengers: <br>
-Act by donating electrons or hydrogen atoms to free radicals, thereby stabilizing them or converting them into less reactive species. <br>
-Non‑thiol antioxidants (like vitamin C, vitamin E, flavonoids, etc.) have different mechanisms of action and may not interact as directly with ROS in the specific context of chemotherapy-induced cell death. <br>
-That said, even non‑thiol antioxidants could potentially interfere with chemotherapy in some cases. For example, high doses of vitamin C or vitamin E might also diminish the oxidative stress essential for the efficacy of some chemotherapeutics. <br>
Examples <br>
-Ascorbic Acid(VitC) <br>
-Vitamin E <br>
-Flavoniods (Quercetin) <br>
-Carotenoids(beta-carotene) <br>
-Resveratrol <br>
-Coenzyme Q10 (ubiquinone) <br>
-Curcumin (indirectly disrupt thiol systems)<br>
-Polyphenols (ferulic acid and caffeic acid) <br>
-manganese(III) <br>
-tetrakis( (4-benzoic acid) <br>
-porphyrin chloride (MnTBAP) <br>
-SOD <br>
<br>
*** NOTE: <br>
Thiol AntiOxidants could block ROS generation caused by Gambogic Acid, but not NON-Thiol AntiOxidants. <br>

-Thiol-based antioxidants directly support glutathione and thioredoxin buffering and are most likely to protect cancer cells from ROS- or thiol-dependent therapies. Non-thiol antioxidants may act as radical scavengers, redox modulators, or—under certain tumor-specific conditions—pro-oxidants. Therefore, the likelihood that an antioxidant interferes with cancer therapy depends less on whether it ‘scavenges ROS’ and more on whether it restores thiol redox homeostasis or activates cytoprotective signaling pathways such as NRF2.<br>
<br>
OTHER CLASSES of antioxidants <br>
1. Enzymatics Antioxidants (SOD, Catalase, GPXs) <br>
-proteins that catalyze reactions to detoxify reactive oxygen species (ROS). <br>
2. Non-Enzymatic (Small-Molecule) Antioxidants. <br>
Further divided to Thiol-Based Antioxidants, vs Non-Thiol Based Antioxidants. <br>
3. Metal-Binding Proteins and Chelators (Ferritin, Transferrin) <br>
These compounds limit oxidative damage indirectly by sequestering transition metals (like iron and copper) that catalyze reactive oxygen species formation via the Fenton reaction. <br>
4. Indirect Antioxidants (Nrf2 Activators): (Sulforaphane, Curcumin)
enhance the body’s own antioxidant defenses by upregulating the expression of antioxidant enzymes. <br>
<br>
<br>
<pre>
Cancer-Relevant Antioxidant Matrix
(Oral/achievable doses)
</pre>
<table>
<tr> <th>AntiOxidant</th> <th>Oral</th> <th>Pro-ox.</th> <th>Thiol </th> <th>Effect</th><th>Effect on</th> <th>NRF2 up</th> <th>NRF2 up</th> <th>Cancer</th> <th>Chemo</th> <th>Mechanism </th></tr>
<tr> <th>Compound</th> <th>Dose/day</th> <th>Cancer</th> <th>Buffer</th> <th>on ROS</th> <th>ROS</th> <th>risk</th> <th>in</th> <th>Redox.</th> <th>Compatibility</th> <th>and</th> </tr>
<tr> <th> </th> <th> </th> <th> </th> <th>Idx 0-4</th> <th>cancer</th> <th>Normal</th> <th>Cancer</th> <th>Normal</th> <th>Buffer</th> <th> </th> <th>Notes</th> </tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=203&word=NRF2">Salinomycin</a></td>
<td>0.2–1 mg</td><td>Yes</td><td>0</td><td>↑3</td><td>↓1</td>
<td>0</td><td>0</td><td>0</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitochondrial ion dysregulation; CSC targeting; ROS-mediated apoptosis</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=387&word=NRF2">Disulfiram</a> (+Cu)</td>
<td>250–500 mg</td><td>Yes</td><td>1</td><td>↑3–4</td><td>↓1–2</td>
<td>0–1</td><td>0–1</td><td>0–1</td><td>Cond.[M][D]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Copper-dependent redox cycling; proteasome inhibition; CSC toxicity</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=388&word=NRF2">PEITC</a></td>
<td>40–100 mg</td><td>Yes</td><td>3</td><td>↑3</td><td>↓1–2</td>
<td>0–1</td><td>0–1</td><td>1–2</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">GSH depletion; mitochondrial ROS amplification; ASK1/JNK activation</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=36&word=NRF2">Withaferin A</a></td>
<td>5–20 mg</td><td>Yes</td><td>1–2</td><td>↑3</td><td>↓1–2</td>
<td>1</td><td>1</td><td>1–2</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">ROS-mediated apoptosis; vimentin targeting; ER–mitochondrial stress</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=42&word=NRF2">Betulinic Acid</a></td>
<td>200–600 mg</td><td>Yes</td><td>0–1</td><td>↑2–3</td><td>↓1–2</td>
<td>0</td><td>0</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Direct mitochondrial membrane permeabilization; caspase-independent death</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=164&word=NRF2">Ursolic Acid</a></td>
<td>150–450 mg</td><td>Yes</td><td>1</td><td>↑2–3</td><td>↓2</td>
<td>1</td><td>1</td><td>1</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitochondrial ROS; AMPK–mTOR modulation; NF-κB/STAT3 inhibition</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=162&word=NRF2">Thymoquinone</a> (TQ)</td>
<td>100–400 mg</td><td>Yes</td><td>2–3</td><td>↑2–3</td><td>↓2</td>
<td>2–3</td><td>2–3</td><td>1–2</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Quinone redox cycling; tumor-selective ROS; NRF2 induction more common in normal cells than cancer (context-dependent)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=65&word=NRF2">Curcumin</a></td>
<td>1–4 g</td><td>Yes</td><td>2</td><td>↑2–3</td><td>↓2</td>
<td>3</td><td>2</td><td>1</td><td>Cond.[T][D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Redox cycling; mitochondrial ROS; metal chelation; NRF2 activation can be adaptive in tumors</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=140&word=NRF2">Quercetin</a></td>
<td>500–1000 mg</td><td>Yes</td><td>2</td><td>↑2–3</td><td>↓2</td>
<td>1–2</td><td>2–3</td><td>1</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Auto-oxidation; GSH depletion (not a thiol donor); context-dependent—can block NRF2 nuclear translocation in some cancers → ↓xCT/GPX4 → ferroptosis; NRF2 activation common in normal cells</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=73&word=NRF2">EGCG</a> (green tea)</td>
<td>400–800 mg</td><td>Yes</td><td>2</td><td>↑2–3</td><td>↓2</td>
<td>2–3</td><td>1–2</td><td>1–2</td><td>Cond.[T][D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">H2O2 generation; iron-mediated ROS; dose/timing sensitive near ROS-dependent therapy windows</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=94&word=NRF2">Honokiol</a></td>
<td>200–600 mg</td><td>Yes</td><td>1–2</td><td>↑2–3</td><td>↓2–3</td>
<td>1</td><td>1</td><td>1–2</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitochondrial ROS induction; generally low NRF2 activation relative to strong NRF2 inducers</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=41&word=NRF2">Berberine</a></td>
<td>500–1500 mg</td><td>Yes</td><td>2</td><td>↑2–3</td><td>↓2</td>
<td>1–2</td><td>1–2</td><td>1–2</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">ETC complex I inhibition; AMPK–ROS coupling; dose-dependent cytostatic vs cytotoxic effects</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=141&word=NRF2">Resveratrol</a></td>
<td>500–2000 mg</td><td>Yes</td><td>1</td><td>↑1–2</td><td>↓2</td>
<td>2</td><td>1–2</td><td>1–2</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitochondrial complex inhibition; ROS induction; NRF2 activation variable by dose/cell type</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=139&word=NRF2">Pterostilbene</a></td>
<td>100–300 mg</td><td>Yes</td><td>1</td><td>↑1–2</td><td>↓2</td>
<td>1</td><td>1</td><td>1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitochondrial stress signaling; generally lower NRF2 activation than resveratrol</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=119&word=NRF2">Lycopene</a></td>
<td>15–75 mg</td><td>Context</td><td>0–1</td><td>↔1–2</td><td>↓2–3</td>
<td>1</td><td>1–2</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Tumor redox instability; context-dependent redox behavior; generally low NRF2 perturbation at diet-level doses</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=149&word=NRF2">Selenium</a> (org.)</td>
<td>200–400 µg</td><td>Yes(sel.)</td><td>3</td><td>↑1–2</td><td>↓2–3</td>
<td>1–2</td><td>2–3</td><td>2–3</td><td>Compatible[F]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Selenol redox cycling; thiol stress; NRF2 response variable by selenium species and tumor context</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=149&word=NRF2">SeNPs</a> (oral)</td>
<td>50–200 µg</td><td>Yes(tumor)</td><td>3</td><td>↑2–3</td><td>↓2–3</td>
<td>0–1</td><td>1–2</td><td>2–3</td><td>Compatible[F]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Redox-selective ROS in cancer cells; minimal NRF2 in some models; improved bioavailability; form/size dependent (smaller particles may increase ROS and timing sensitivity)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=166&word=NRF2">Vitamin C</a> (oral)</td>
<td>≤2–3 g</td><td>Limited</td><td>2</td><td>↔1</td><td>↓2–3</td>
<td>1</td><td>2</td><td>2</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Weak oral pro-oxidant effect; antioxidant recycling via GSH; IV vitamin C behaves differently (pro-oxidant at pharmacologic plasma levels)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=194&word=NRF2">β-Carotene</a></td>
<td>20–30 mg</td><td>High-risk</td><td>1</td><td>↔1–2</td><td>↓2</td>
<td>1</td><td>1–2</td><td>1</td><td>Caution[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Oxidative cleavage; can act pro-oxidant in high-oxygen/smoking contexts; caution in smokers and certain lung exposures</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=156&word=NRF2">Sulforaphane</a></td>
<td>30–100 mg</td><td>Indirect</td><td>2</td><td>↑1</td><td>↓3–4</td>
<td>3–4</td><td>3–4</td><td>3–4</td><td>Caution[M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Strong NRF2 inducer; increases Phase II/antioxidant programs; can support tumor chemoresistance in some contexts—mechanism-dependent caution</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=122&word=NRF2">Melatonin</a></td>
<td>10–50 mg</td><td>Selective</td><td>1</td><td>↑1</td><td>↓3–4</td>
<td>1–2</td><td>1–2</td><td>1–2</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mito ROS signaling + antioxidant enzyme upregulation; generally cytoprotective in normal tissue; tumor effects context-dependent</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=356&word=NRF2">CoQ10</a> (oxidized)</td>
<td>100–300 mg</td><td>Possible</td><td>2</td><td>↔1</td><td>↓2–3</td>
<td>1–2</td><td>2</td><td>2</td><td>Cond.[M][F]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">ETC redox buffering; form dependent (ubiquinone vs reduced); oxidized form emphasized; may alter ROS signaling and antioxidant tone</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=118&word=NRF2">Luteolin</a></td>
<td>50–200 mg</td><td>Yes</td><td>1</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Selective tumor ROS induction in some models; relatively modest NRF2 activation vs strong NRF2 inducers</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=32&word=NRF2">Apigenin</a></td>
<td>50–200 mg</td><td>Yes</td><td>1</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mild tumor ROS induction; kinase/redox signaling; generally low NRF2 activation at oral doses</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=316&word=NRF2">Kaempferol</a></td>
<td>50–200 mg</td><td>Yes</td><td>1</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Kinase/redox signaling; modest tumor ROS effects; NRF2 activation variable and context-dependent</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=85&word=NRF2">Genistein</a></td>
<td>30–100 mg</td><td>Yes</td><td>1</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1–2</td><td>Cond.[D][H][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Dose-dependent redox modulation; hormone/receptor context (estrogenic); can shift survival signaling depending on tumor subtype</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=78&word=NRF2">Fisetin</a></td>
<td>100–500 mg</td><td>Yes</td><td>1</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Compatible[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Flavonoid; mild ROS induction in cancer cells; dose-dependent behavior; generally not a direct thiol donor</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=127&word=NRF2">Myricetin</a></td>
<td>50–250 mg</td><td>Yes</td><td>1</td><td>↑1–2</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Compatible[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Flavonoid antioxidant with context-dependent tumor ROS effects; can be pro-oxidant under metal/ROS-rich conditions</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=74&word=NRF2">Ellagic Acid</a></td>
<td>200–800 mg</td><td>Yes</td><td>0–1</td><td>↑1–2</td><td>↓2–3</td>
<td>1</td><td>1</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Tumor-selective mitochondrial ROS reported; generally weaker NRF2 induction than sulforaphane; bioavailability limits parent compound vs metabolites</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=383&word=NRF2">Urolithin A</a> (UA)</td>
<td>250–1000 mg</td><td>Yes (sel.)</td><td>0–1</td><td>↑1–2</td><td>↓2–3</td>
<td>0–1</td><td>1</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mitophagy induction; selective tumor ROS in some models; generally low NRF2 activation; supports mitochondrial quality control</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=386&word=NRF2">Spermidine</a></td>
<td>5–20 mg</td><td>Context</td><td>0–1</td><td>↔1</td><td>↓1–2</td>
<td>0–1</td><td>1</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Autophagy inducer; polyamine biology; mild ROS modulation; NRF2 effects usually indirect via translation/stress programs (context-dependent)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=29&word=NRF2">α-Lipoic acid (ALA)</a></td>
<td>300–600 mg</td><td>Limited</td><td>2</td><td>↑1</td><td>↓2–3</td>
<td>1–2</td><td>1–2</td><td>1</td><td>Cond.[D][M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Thiol redox cycling (reduced DHLA active); ETC cofactor; dose-dependent ROS effects; timing/dose sensitive near ROS-dependent therapy</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=51&word=NRF2">Caffeic</a> / Ferulic</td>
<td>100–500 mg</td><td>Context</td><td>0–1</td><td>↔1</td><td>↓2–3</td>
<td>1</td><td>1</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Polyphenols with mild redox cycling; generally modest NRF2 effects; mostly antioxidant at dietary-equivalent doses</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=128&word=NRF2">Naringenin</a> / Hesp.</td>
<td>50–200 mg</td><td>Limited</td><td>0–1</td><td>↔1</td><td>↓3–4</td>
<td>0–1</td><td>0–1</td><td>0–1</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Mostly antioxidant; low pro-oxidant signaling at oral doses; generally supportive of normal-cell redox buffering</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=382&word=NRF2">Astaxanthin</a> (ASTX)</td>
<td>4–12 mg</td><td>No</td><td>0</td><td>↔0</td><td>↓3–4</td>
<td>0</td><td>0</td><td>0</td><td>Cond.[M]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Membrane stabilizer; can protect lipid membranes; may reduce efficacy of ROS/lipid-peroxidation-dependent therapy if taken peri-infusion (mechanism-dependent)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=307&word=NRF2">Vitamin E</a> (α-toc.)</td>
<td>200–800 IU</td><td>No</td><td>2</td><td>↔0–1</td><td>↓3–4</td>
<td>0</td><td>2–3</td><td>2–3</td><td>Caution[M][D]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Lipid radical scavenger; can blunt lipid peroxidation-based cytotoxicity (radiation/anthracyclines/platinums); caution near ROS-dependent therapy windows</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=307&word=NRF2">Trolox</a> (Vit E)</td>
<td>20–200 mg</td><td>No</td><td>2</td><td>↔0–1</td><td>↓3–4</td>
<td>0</td><td>2–3</td><td>2–3</td><td>Caution[M][D]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Chain-breaking antioxidant; can blunt lipid peroxidation-based cytotoxicity; caution with ROS-dependent modalities</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=364&word=NRF2">N-acetylcysteine</a></td>
<td>600–1800 mg</td><td>No</td><td>4</td><td>↓1–2</td><td>↓3–4</td>
<td>2</td><td>3–4</td><td>4</td><td>Caution[M][D]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Direct thiol/GSH precursor; strongly increases redox buffering; high risk of interfering with ROS-dependent chemo/radiation (especially near infusion windows)</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=381&word=NRF2">Glutathione</a> (oral)</td>
<td>250–1000 mg</td><td>No</td><td>4</td><td>↓1</td><td>↓3–4</td>
<td>2</td><td>3–4</td><td>3–4</td><td>Caution[M][D]</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Redox buffering (bioavailability-limited orally but still thiol-active); can reduce ROS-based cytotoxicity depending on timing/dose</textarea></td>
</tr>

<tr>
<td><a href="https://nestronics.ca/dbx/tbResList.php?qv=349&word=NRF2">Lutein</a> / Zeaxanthin</td>
<td>10–20 mg</td><td>No</td><td>0</td><td>↔0</td><td>↓3–4</td>
<td>0</td><td>0</td><td>0</td><td>Compatible</td>
<td ><textarea readonly rows="1" cols="25" wrap="soft">Structural antioxidants; membrane protection without strong redox cycling; generally low interaction with ROS-dependent therapy at diet-level doses</textarea></td>
</tr>

</table>
<pre>
Compatible – No known interference at oral doses
Cond. (Conditional) – Timing, dose, or regimen dependent
Caution – Likely to interfere with ROS-dependent therapies

[T] = Timing-sensitive (avoid peri-infusion / ROS-dependent window)
[D] = Dose-dependent (low vs high dose behave differently)
[M] = Mechanism-dependent (NRF2, ETC, thiol buffering, metal chelation)
[H] = Hormone- or receptor-dependent
[F] = Form-dependent (chemical form matters)(organic vs nano)

*NFR2 Explanation not necessarily reflected in ratings (example Quercetin)
-NRF2↑ in normal cells is the dominant pattern
-In cancer cells, NRF2 upregulation is possible, but not dominant, and often context-suppressed by stronger pro-oxidant mechanisms.

Smaller <50 nm SeNPs generate ROS more efficiently; may interfere with ROS-dependent chemo if given concurrently
Chemo compatibility assumes ROSs-dependent cytotoxic modalities (e.g., anthracyclines, platinum agents, radiation). Non-ROS-dependent therapies may not share these constraints.

*β-carotene is incompatible primarily in smokers / high-oxygen tissues.
Arrows show whether ROS increases (↑), decreases (↓), or neutral/variable (↔)
Thiol Buffering Index (0–4):
| TBI Score | Meaning |
| --------- | ------------------------------------------------------------------------------------------------------ |
| 0 | No effect on thiol pools; does not buffer redox stress (mostly non-thiol antioxidants) |
| 1 | Minimal indirect thiol effect; may slightly modulate thiol-dependent enzymes |
| 2 | Moderate indirect thiol effect; may perturb thiols or partially modulate GSH/Trx system |
| 3 | Significant thiol buffering; contributes to redox stabilization in cancer cells |
| 4 | Strong direct thiol donor; substantially increases GSH/thioredoxin pools; high chemo interference risk |

Note the table is very general, and database searches and details should be researched for each compound of interest.
Example: Luteolin can show NRF2 down in cancer cells
</pre>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ROS⇅, 1,  

Cell Death

TumCD↑, 1,  

Transcription & Epigenetics

other↝, 4,  

DNA Damage & Repair

RAD51↓, 1,  

Proliferation, Differentiation & Cell State

TumCG↓, 2,  

Drug Metabolism & Resistance

ChemoSen↓, 2,   ChemoSen∅, 2,   ChemoSen↑, 1,   Dose↑, 1,   eff↓, 2,   eff↑, 1,   RadioS↓, 1,   RadioS↑, 1,  

Functional Outcomes

chemoP↑, 3,   chemoP∅, 1,   OS↑, 3,   Risk↓, 2,   toxicity↓, 1,   toxicity∅, 1,   toxicity↑, 1,  
Total Targets: 20

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

GSH↑, 1,   MDA↑, 1,  

Transcription & Epigenetics

other?, 2,  

Drug Metabolism & Resistance

Dose↝, 1,  

Functional Outcomes

chemoP↑, 1,   neuroP↑, 1,   toxicity↓, 1,  
Total Targets: 7

Research papers

Year Title Authors PMID Link Flag
2024Therapeutic controversies over use of antioxidant supplements during cancer treatment: a scoping reviewMulugeta Woldeselassie Gebrehttps://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1480780/full0
2022Using Supplements During Chemo: Yes or No?Karen Sabbath, MS, RD, CSOhttps://www.leevercancercenter.org/blog/using-supplements-during-chemo-yes-or-no/0
2018Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurityKanchanlata Singhhttps://www.sciencedirect.com/science/article/pii/S1319016417302219?via%3Dihub0
2017Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and RadiosensitizationAnita ThyagarajanPMC6041931https://pmc.ncbi.nlm.nih.gov/articles/PMC6041931/0
2007Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trialsKI Blockhttps://www.ncbi.nlm.nih.gov/books/NBK74830/0
2018Phase I trial of selenium plus chemotherapy in gynecologic cancersMihae Songhttps://www.gynecologiconcology-online.net/article/S0090-8258(18)31014-X/addons0
2010Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: A good thing?A. Tabassumhttps://www.cancertreatmentreviews.com/article/S0305-7372(09)00190-X/abstract0
2004Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapyKrzysztof Sieja15099940https://pubmed.ncbi.nlm.nih.gov/15099940/0
2025Efficacy and safety of intravenous administration of high-dose selenium for preventing chemotherapy-induced peripheral neuropathy in gastric cancer patients receiving adjuvant oxaliplatin and capecitabine after gastrectomy: a retrospective pilot studyWedyan Alhazmihttps://www.kjco.org/journal/view.php?number=4370