tbResList Print — NAD nicotinamide adenine dinucleotide

Filters: qv=268, qv2=%, rfv=%

Product

NAD nicotinamide adenine dinucleotide
Description: <b>(Nicotinamide adenine dinucleotide)</b> is a vital coenzyme found in all living cells.<br>
• It exists in two forms: oxidized (NAD⁺) and reduced (NADH), playing central roles in redox reactions, energy metabolism, and various signaling pathways.<br>
• NAD⁺ is essential for critical cellular processes, including ATP production, DNA repair (via enzymes like PARPs), and regulation of sirtuins (a family of NAD⁺-dependent deacetylases involved in cellular stress responses and longevity).<br>
<br>
NAD⁺ is integral to energy metabolism, redox balance, DNA repair, and cellular regulatory functions—processes that are often dysregulated in cancer.<br>
<br>
<a href="https://medicorcancer.com/wp-content/uploads/Momentum-DCA-Brochure.pdf"> Medicor Cancer Centres offers it: </a><br>
<br>
-involved in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation.<br>
-NMN is a precursor to nicotinamide adenine dinucleotide (NAD+)<br>
-alternative form of vitamin B, amide of nicotinic acid<br>
-NAD+ levels decline as we age<br>
-high dose NMN promotes ferroptosis through NAM-mediated SIRT1-AMPK-ACC signaling<br>
-At low doses (10 and 20 mM) and prolonged exposure (48 h), NMN increased cell proliferation, but it induced the suppression of cell proliferation at the high dose (100 mM)<br>
-VitB3 and niacin are precursors for the synthesis of NAD in the body<br>
<br>

<pre>
NAD in Cancer Is Dual-Edge
Tumors need NAD+ to sustain:
-Glycolysis (Warburg)
-PARP DNA repair
-Sirtuin survival signaling
-Redox buffering
NAD depletion (via NAMPT inhibition or high PARP consumption) can:
-Collapse ATP
-Increase ROS
-Trigger apoptosis
</pre>


<br>

<!-- Cancer Pathway Table: NAD (Nicotinamide Adenine Dinucleotide) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NAD+ salvage pathway (NAMPT → NMN → NAD+)</td>
<td>NAD+ pool ↑ supports glycolysis, DNA repair, PARP activity; NAMPT often upregulated</td>
<td>Maintains metabolic homeostasis</td>
<td>R, G</td>
<td>Metabolic support node</td>
<td>Many tumors depend on NAMPT-driven NAD+ salvage; NAMPT inhibitors (e.g., FK866) deplete NAD+ and induce energetic collapse.</td>
</tr>

<tr>
<td>2</td>
<td>Glycolysis support (LDH-dependent NAD+ recycling)</td>
<td>NAD+ regeneration sustains Warburg flux</td>
<td>Normal glycolytic tissues also require NAD+</td>
<td>P, R</td>
<td>Warburg sustainment</td>
<td>LDH converts NADH → NAD+ to maintain glycolytic flux; NAD+ availability is a rate-limiting factor in high glycolysis tumors.</td>
</tr>

<tr>
<td>3</td>
<td>PARP-mediated DNA repair (NAD+ consumption)</td>
<td>DNA damage repair ↑; therapy resistance ↑ (context)</td>
<td>Genome stability maintenance</td>
<td>R, G</td>
<td>DNA repair capacity</td>
<td>PARPs consume NAD+ during DNA repair. PARP inhibitors exploit tumors with HR defects (e.g., BRCA).</td>
</tr>

<tr>
<td>4</td>
<td>Sirtuin signaling (SIRT1–7; NAD+-dependent deacetylases)</td>
<td>Context-dependent tumor survival or suppression</td>
<td>Metabolic regulation, longevity pathways</td>
<td>R, G</td>
<td>Epigenetic/metabolic modulation</td>
<td>Sirtuins require NAD+; effects vary by tumor type (pro-survival in some, suppressive in others).</td>
</tr>

<tr>
<td>5</td>
<td>Redox balance (NAD+/NADH ratio)</td>
<td>High NAD+/NADH ratio supports anabolic growth</td>
<td>Redox homeostasis</td>
<td>P, R</td>
<td>Redox control</td>
<td>Altered NAD+/NADH ratios influence ROS, mitochondrial function, and metabolic flexibility.</td>
</tr>

<tr>
<td>6</td>
<td>CD38/CD157 NAD+ degradation</td>
<td>NAD+ depletion influences immune and tumor metabolism</td>
<td>Immune modulation, aging</td>
<td>R, G</td>
<td>Immune-metabolic interface</td>
<td>CD38 overexpression can lower NAD+ pools; relevant in immune microenvironment contexts.</td>
</tr>

<tr>
<td>7</td>
<td>OXPHOS support (mitochondrial NADH supply)</td>
<td>NADH fuels ETC; supports mitochondrial ATP production</td>
<td>Normal energy metabolism</td>
<td>P, R</td>
<td>Mitochondrial respiration support</td>
<td>NADH oxidation via Complex I regenerates NAD+; OXPHOS-dependent tumors rely on this axis.</td>
</tr>

<tr>
<td>8</td>
<td>Therapy resistance modulation</td>
<td>NAD+ restoration may reduce oxidative therapy efficacy</td>
<td>May protect normal tissue from oxidative injury</td>
<td>G</td>
<td>Context-dependent</td>
<td>NAD+ boosting (e.g., NR, NMN) may theoretically support tumor repair pathways; data mixed and context-specific.</td>
</tr>

<tr>
<td>9</td>
<td>NAMPT inhibition (therapeutic strategy)</td>
<td>NAD+ depletion → ATP ↓ → apoptosis ↑</td>
<td>Toxicity risk in high-turnover tissues</td>
<td>R, G</td>
<td>Metabolic collapse</td>
<td>NAMPT inhibitors are being explored as anti-cancer metabolic therapies.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / supplementation constraint</td>
<td>Systemic NAD+ boosting may not selectively target tumor NAD pools</td>
<td>Systemic NAD+ supports normal tissue repair</td>
<td>—</td>
<td>Translation constraint</td>
<td>Oral precursors (NR, NMN, niacin) increase systemic NAD+ but tumor-specific impact remains unclear.</td>
</tr>

</table>

<p><small>
TSF: P = 0–30 min (redox flux shifts), R = 30 min–3 hr (metabolic signaling changes), G = >3 hr (gene-level adaptation, repair, phenotype changes).
</small></p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Ferroptosis↑, 1,   lipid-P↑, 1,  

Core Metabolism/Glycolysis

ACC↑, 1,   AMPK↑, 1,   SIRT1↑, 2,  

Cell Death

Ferroptosis↑, 1,  

Migration

TumCP⇅, 1,   TumMeta↓, 1,  

Immune & Inflammatory Signaling

IL1β↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   Dose↝, 1,  
Total Targets: 11

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   HO-1↑, 1,   ROS↓, 5,   SIRT3↑, 1,  

Mitochondria & Bioenergetics

mtDam↓, 1,  

Core Metabolism/Glycolysis

SIRT1↑, 3,   SIRT2↑, 1,  

Cell Death

Apoptosis↓, 1,  

Transcription & Epigenetics

other↑, 1,  

DNA Damage & Repair

DNAdam↓, 5,   SIRT6↑, 2,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

Inflam↓, 4,   MCP1↓, 1,   RANTES↓, 1,   TNF-α↓, 1,  

Cellular Microenvironment

cGAS–STING↓, 1,  

Synaptic & Neurotransmission

BDNF↑, 1,   p‑tau↓, 1,   TrkB↑, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↑, 3,   Dose↝, 2,   Dose↑, 1,   eff↑, 4,  

Clinical Biomarkers

BG↓, 1,   creat↓, 1,   GutMicro↑, 1,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   motorD↑, 1,   neuroP↑, 2,   OS↑, 2,   radioP↑, 1,   Strength↑, 1,   toxicity↓, 1,  
Total Targets: 39

Research papers

Year Title Authors PMID Link Flag
2024Long-term NMN treatment increases lifespan and healthspan in mice in a sex dependent mannerAlice E KanePMC11230277https://pmc.ncbi.nlm.nih.gov/articles/PMC11230277/0
2023The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an UpdateQin SongPMC10721522https://pmc.ncbi.nlm.nih.gov/articles/PMC10721522/0
2023High-Dosage NMN Promotes Ferroptosis to Suppress Lung Adenocarcinoma Growth through the NAM-Mediated SIRT1-AMPK-ACC PathwayMingjiong ZhangPMC10177531https://pmc.ncbi.nlm.nih.gov/articles/PMC10177531/0
2023NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signalingYi Jiang36690678https://pubmed.ncbi.nlm.nih.gov/36690678/0
2022The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trialLin YiPMC9735188https://pmc.ncbi.nlm.nih.gov/articles/PMC9735188/0
2022NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7Xiaotong Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S0891584922008978?casa_token=hqQ2_zyuKmYAAAAA:Tviq2N92VltLv7O6uVXTsoN2r9wO7x0e0atz4N5t7aFDDA_QWyBEG1o86C0m0tBxltl-ZAxf0
2021Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concernsHarshani NadeeshaniPMC9039735https://pmc.ncbi.nlm.nih.gov/articles/PMC9039735/0
2021NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STINGYujun HouPMC8449423https://pmc.ncbi.nlm.nih.gov/articles/PMC8449423/0
2020NAD+ Repletion Rescues Female Fertility during Reproductive AgingMichael J BertoldoPMC7063679https://pmc.ncbi.nlm.nih.gov/articles/PMC7063679/0
2020Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachmentXiaohong ChenPMC7803565https://pmc.ncbi.nlm.nih.gov/articles/PMC7803565/0
2018NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiencyYujun HouPMC5828618https://pmc.ncbi.nlm.nih.gov/articles/PMC5828618/0
2014The biochemical pathways of central nervous system neural degeneration in niacin deficiencyLinshan FuPMC4192966https://pmc.ncbi.nlm.nih.gov/articles/PMC4192966/0