tbResList Print — AL Allicin (mainly Garlic)

Filters: qv=27, qv2=%, rfv=%

Product

AL Allicin (mainly Garlic)
Description: <b>Garlic</b> (Allium sativum L.) (active ingredient- Allicin, an active sulfer compound).<br>
Summary:<br>
- Four main organic sulfides in garlic, diallyl disulfide (DADS), diallyl trisulfide (DATS), S-allylmercaptocysteine (SAMC) and allicin.<br>
- Reversible inhibitor of ACSS2.<br>
- may inhibit NF-κB signaling<br>
- induce oxidative stress in cancer cells by generating ROS<br>
- might downregulate STAT3 activation<br>
- Inconclusive evidence for cancer treatment.<br>
- may inhibit <a href="tbResEdit.php?rid=2558">platelet aggregation</a><br>
Allicin is a reactive sulfur species (RSS) [23] with oxidizing properties, and it is able to oxidize thiols in cells, e.g., glutathione and cysteine residues in proteins.<br>
-Allicin is not present in intact garlic; rather, it is formed when garlic is chopped or crushed.
-Using crushed or chopped raw garlic or adding garlic at the end of the cooking process (after the heat is reduced) can help preserve its potential allicin content.<br>
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6073756/"> "Consumption of alliinase-inhibited cooked garlic was found to give higher than expected allicin bioequivalence, with AMS formation being about 30% (roasted garlic) or 16% (boiled garlic) that of crushed raw garlic."</a> <br>
<br>
-Allicin is not present in intact garlic.<br>
-It's formed enzymatically when alliin (a sulfur-containing amino acid) is converted by alliinase when garlic is chopped or crushed.Best consumed raw immediately after crushing (wait 5–10 min before consuming for full conversion)<br>
-Allicin is unstable, degrading within hours into other sulfur compounds (like diallyl disulfide).<br>
<br>


-Note <a href="tbResList.php?qv=27&tsv=1109&wNotes=on&exSp=open">half-life</a> reports vary 2.5-90hrs?.<br>
-low solubility of apigenin in water :
<a href="tbResList.php?qv=27&tsv=792&wNotes=on&exSp=open">BioAv</a>

<br><br>
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=27&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?&qv=27&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?&qv=27&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?&qv=27&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?&qv=27&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?&qv=27&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?&qv=27&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?&qv=27&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?&qv=27&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?&qv=27&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers
<a href="tbResList.php?&qv=27&tsv=1103&wNotes=on&word=antiOx↓">AntiOxidant</a> defense in Cancer Cells:
<a href="tbResList.php?&qv=27&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?&qv=27&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<br>

- Raises
<a href="tbResList.php?&qv=27&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?&qv=27&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?&qv=27&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?&qv=27&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?&qv=27&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?&qv=27&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?&qv=27&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?&qv=27&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?&qv=27&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?&qv=27&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?&qv=27&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?&qv=27&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?&qv=27&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>


- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.<br>

<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓-->
- inhibit Growth/Metastases :
<a href="tbResList.php?&qv=27&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?&qv=27&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?&qv=27&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?&qv=27&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=27&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=27&tsv=140&wNotes=on">HDAC↓</a>(not commonly listed as inhibitor),
<a href="tbResList.php?qv=27&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=27&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?&qv=27&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?&qv=27&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?&qv=27&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?&qv=27&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?&qv=27&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?&qv=27&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?&qv=27&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?&qv=27&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?&qv=27&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=27&tsv=105&wNotes=on">ERK↓</a>,
<br>



<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=27&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=27&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=27&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=27&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=27&tsv=795&wNotes=on">CSC↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=27&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=27&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=27&tsv=373&wNotes=on">STAT3</a>,
<a href="tbResList.php?qv=27&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=27&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=27&tsv=9&wNotes=on">AMPK↓</a>,

<a href="tbResList.php?qv=27&tsv=105&wNotes=on">ERK↓</a>,

<a href="tbResList.php?qv=27&tsv=168&wNotes=on">JNK</a>,
<br>

<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=27&tsv=1106&wNotes=on&exSp=open">chemo-sensitization</a>,
<a href="tbResList.php?qv=27&tsv=1171&wNotes=on&exSp=open">chemoProtective</a>,
<a href="tbResList.php?qv=27&tsv=1107&wNotes=on&exSp=open">RadioSensitizer</a>,
<a href="tbResList.php?qv=27&tsv=1185&wNotes=on&exSp=open">RadioProtective</a>,
<a href="tbResList.php?qv=27&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=27&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=27&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=27&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=27&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=27&tsv=1188&wNotes=on">CardioProtective</a>,
<br>


<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=27&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>









Allicin has been reported to exhibit a range of effects, including:<br>
Antimicrobial activity: 10-50 μM<br>
Antioxidant activity: 10-100 μM<br>
Anti-inflammatory activity: 20-50 μM <br>
Anticancer activity: 50-100 μM or (50–300uM) (2–5 mg allicin per kilogram of body weight per day)<br>
Cardiovascular health: 20-50 μM<br>
<br>
Approximate μM concentrations of allicin that can be achieved:<br>
1 clove of garlic (3g): approximately 10-50 μM of allicin<br>
single clove of garlic may yield about 5–9 mg of allicin,<br>
1 tablespoon of minced garlic (15g): approximately 50-150 μM of allicin<br>
1 cup of chopped garlic (100g): approximately 200-500 μM of allicin<br>
1 tablespoon of chopped garlic chives (15g): approximately 5-20 μM of allicin<br>
1 cup of chopped garlic chives (100g): approximately 20-50 μM of allicin<br>
1 ounce (28g) of garlic microgreens: approximately 50-200 μM of allicin<br>
1 cup of garlic microgreens (100g): approximately 200-500 μM of allicin<br>
1 ounce (28g) of garlic chive microgreens: approximately 20-50 μM of allicin<br>
1 cup of garlic chive microgreens (100g): approximately 50-100 μM of allicin<br>
<br>
Allicin is a bioactive compound derived from garlic that has garnered significant interest for its potential anticancer properties through multiple mechanisms, including antioxidant activity, induction of apoptosis, cell cycle arrest, and modulation of key signaling pathways. While regular dietary intake of garlic is associated with cancer prevention benefits, allicin is also being explored as an adjunct to conventional cancer treatments. <br>
<br>
Available in supplement tablet/capsule form for example at 2000mg (fresh bulb equilvalent)<br>
IC50 of normal cells it >160mg/mL (large selectivity).<br>
IC50 might be about 12-30ug/ml (approximately 62-185 µM) (which is about 30-90 grams of garlic consumption).<br>
This makes it difficult to consume enough supplements to achieve that level.<br>
<br>
Pathways:<br>
<br>
ROS Generation and Oxidative Stress (inducing)<br>
• ROS generation is often considered a primary trigger that feeds into downstream pathways (e.g., MAPK activation, mitochondrial membrane permeabilization).<br>
Mitochondrial (Intrinsic) Apoptotic Pathway<br>
• ROS-induced mitochondrial damage can lead to the release of cytochrome c and subsequent activation of caspases (e.g., caspase-9 and caspase-3).<br>
NF-κB Signaling Inhibition (block)<br>
Modulation of MAPK Pathways (e.g., p38 MAPK and JNK)<br>
• ROS generation by allicin can activate stress-responsive kinases such as p38 MAPK and c-Jun N-terminal kinase (JNK).<br>
Inhibition of PI3K/Akt Pathway<br>
ROS levels and PI3K/Akt signaling, with increased oxidative stress often correlating with reduced Akt phosphorylation and activity.<br>
<br>

At lower doses, allicin may lead to a modest increase in ROS levels that the cell’s antioxidant defenses (e.g., glutathione, superoxide dismutase) can manage<br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Protein thiol modification (S-thioallylation of cysteines)</td>
<td>↑ S-thioallylation / ↓ free protein thiols</td>
<td>Primary chemical mechanism</td>
<td>Direct proteomics evidence that allicin modifies cysteine residues in human cells via S-thioallylation</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6342545/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Glutathione pool chemistry (GSH → mixed disulfide)</td>
<td>↑ GSSA formation (S-allylmercaptoglutathione) / functional GSH depletion</td>
<td>Redox buffering impairment</td>
<td>Primary chemistry paper: allicin reacts with reduced glutathione; product (GSSA) identified by HPLC/NMR/MS</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/11118647/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Thioredoxin reductase (TrxR) as a thiol-enzyme target</td>
<td>↓ TrxR activity (by thiol reaction)</td>
<td>Redox control disruption</td>
<td>Review explicitly describing allicin reacting with thiol groups of enzymes including thioredoxin reductase (allicin named)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/10594976/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Reactive oxygen species generation (oxidative stress)</td>
<td>↑ ROS</td>
<td>Upstream stress trigger</td>
<td>Experimental work examining allicin-induced oxidative stress and accumulation of reactive species (allicin named; ROS assays described)</td>
<td><a href="https://www.mdpi.com/2076-3921/6/1/1">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial pathway engagement (cytochrome c release)</td>
<td>↑ cytochrome c release</td>
<td>Mitochondria-driven death signaling</td>
<td>Gastric cancer study: allicin induces cytochrome c release from mitochondria (intrinsic pathway)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/21042755/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis execution (caspase-3/8/9)</td>
<td>↑ caspase activation</td>
<td>Programmed cell death</td>
<td>Allicin-induced apoptosis with caspase activation and PARP cleavage reported in cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/14757128/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB pathway signaling</td>
<td>Reduced pro-survival / inflammatory transcription</td>
<td>Colorectal cancer radiosensitization paper: allicin-associated inhibition of NF-κB signaling components (mRNA/protein assays)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/32418198/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Cell cycle regulation</td>
<td>↑ cell-cycle arrest</td>
<td>Proliferation blockade</td>
<td>Breast cancer study: allicin induces cell-cycle arrest and apoptosis (allicin named as treatment)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/34626309/">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 2,   Ferroptosis↑, 1,   GSH↓, 6,   GSH∅, 1,   GSSG↑, 1,   HO-1↓, 1,   HO-2↑, 1,   Iron↑, 2,   MDA↑, 1,   NRF2↑, 1,   NRF2⇅, 1,   NRF2↓, 1,   RNS↓, 1,   ROS↑, 17,   ROS↓, 1,   Thiols↓, 3,  

Metal & Cofactor Biology

FTH1↓, 1,   NCOA4↑, 1,   TfR1/CD71↓, 1,   Zn2+↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   MMP↓, 6,  

Core Metabolism/Glycolysis

ACSS2↓, 1,   AMPK↑, 1,   p‑AMPK↑, 1,   ATG7↑, 2,   ENO1↓, 1,   GlucoseCon∅, 1,   Glycolysis↓, 1,   lactateProd∅, 1,   LDL↓, 1,   PI3K/Akt↓, 1,   PI3k/Akt/mTOR↝, 1,   SIRT1↑, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↑, 9,   Apoptosis↓, 1,   BAX↑, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 1,   Bcl-2↑, 1,   Casp↑, 2,   Casp12↑, 2,   Casp3↑, 13,   cl‑Casp3↑, 1,   Casp8↑, 6,   Casp9↑, 9,   Cyt‑c↑, 7,   DR5↑, 1,   Fas↑, 5,   Ferroptosis↑, 1,   JNK↑, 2,   JNK↓, 1,   MAPK↑, 1,   necrosis↑, 1,   p38↑, 1,   p‑p38↓, 1,   Telomerase↓, 2,  

Kinase & Signal Transduction

TSC2↑, 1,  

Transcription & Epigenetics

other↝, 1,   other↓, 1,   other↑, 2,   tumCV↓, 6,  

Protein Folding & ER Stress

ER Stress↑, 3,   HSP70/HSPA5↓, 1,   UPR↑, 1,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   p62↓, 1,   TumAuto↑, 4,  

DNA Damage & Repair

CHK1↑, 1,   CHK1↓, 1,   DNA-PK↑, 1,   DNAdam↑, 3,   DNMT1↓, 1,   DNMTs↓, 1,   MGMT↓, 1,   P53↓, 1,   P53↑, 6,   PARP↑, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   CDK4↓, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↑, 3,   TumCCA↑, 7,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   p‑ERK↑, 1,   ERK↑, 1,   ERK↓, 1,   HDAC↓, 1,   mTOR↓, 2,   PI3K↓, 1,   STAT3↓, 1,   TPM4↓, 1,   TumCG↓, 5,   TumCG?, 1,   Wnt↓, 2,   Zn2+↑, 1,  

Migration

AntiAg∅, 1,   AntiAg↑, 2,   Ca+2↑, 2,   E-cadherin↑, 1,   p‑FAK↓, 1,   MALAT1↓, 2,   MMP2↓, 1,   MMP9↓, 1,   N-cadherin↓, 1,   TGF-β↓, 1,   THBS1↑, 1,   TIMP1↑, 1,   TIMP2↑, 1,   TumCMig↓, 2,   TumCP↓, 2,   VCAM-1↓, 1,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 1,   EGFR↓, 1,   HIF-1↓, 1,   Hif1a↓, 1,   VEGF↓, 1,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL8↓, 2,   Inflam↓, 2,   NF-kB↓, 2,   NF-kB⇅, 1,   PD-L1↓, 1,  

Hormonal & Nuclear Receptors

CDK6↑, 1,  

Drug Metabolism & Resistance

BioAv↝, 3,   BioAv↓, 1,   ChemoSen↑, 3,   ChemoSen↓, 1,   Dose↝, 3,   eff↓, 3,   eff↑, 1,   RadioS↑, 1,   selectivity↑, 2,  

Clinical Biomarkers

BP↓, 1,   EGFR↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 4,   cardioP↑, 1,   chemoP↑, 4,   chemoPv↑, 1,   ChemoSideEff↓, 2,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 1,   Risk↓, 5,   TumVol↓, 1,   TumW↓, 1,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 160

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 8,   Catalase↑, 1,   GSH↑, 3,   GSTs↑, 1,   HO-1↑, 1,   Keap1↓, 1,   lipid-P↓, 2,   MDA↓, 2,   MPO↓, 2,   NRF2↑, 3,   ROS∅, 1,   ROS↓, 6,   SOD↑, 4,   TBARS↓, 2,   Thiols↓, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

ATP∅, 1,   Insulin↑, 1,   MMP↓, 1,   mtDam↓, 1,   mtDam↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   H2S↑, 2,   LDH↓, 3,  

Cell Death

AhR↑, 1,   Akt↓, 1,   Apoptosis↓, 1,   Cyt‑c↓, 1,   iNOS↓, 2,   JNK↓, 1,  

Transcription & Epigenetics

p‑cJun↓, 1,   other↑, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,   HSP70/HSPA5↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   p‑ERK↓, 1,   Jun↑, 1,   PI3K↓, 1,  

Migration

AntiAg↑, 3,   AP-1↓, 1,   Ca+2↝, 1,   COL1↓, 1,   E-cadherin↑, 1,   NFAM1↑, 1,   NFAT↑, 2,   PKCδ↑, 1,   TGF-β1↓, 1,   Vim↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

p‑eNOS↑, 1,   Hif1a↑, 1,   NO↓, 1,   REL↑, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CXCc↑, 1,   ICAM-1↓, 1,   IL1β↓, 1,   IL2↑, 1,   IL6↑, 1,   IL6↓, 2,   Inflam↓, 3,   LIF↑, 1,   NF-kB↓, 3,   OSM↑, 1,   PGE2↓, 1,   TLR4↓, 2,   TNF-α↓, 2,  

Cellular Microenvironment

NOX↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

ARNT↑, 1,   RAAS↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 3,   Dose∅, 1,   eff↓, 1,   eff↑, 5,   Half-Life∅, 1,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   BP↓, 2,   creat↓, 1,   GutMicro↑, 2,   IL6↑, 1,   IL6↓, 2,   LDH↓, 3,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   cardioP↑, 4,   cognitive↑, 2,   hepatoP↑, 2,   memory↑, 2,   neuroP↑, 7,   radioP↑, 1,   RenoP↑, 1,   toxicity∅, 2,   toxicity↓, 2,  

Infection & Microbiome

Bacteria?, 1,  
Total Targets: 98

Research papers

Year Title Authors PMID Link Flag
2025Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagyYue Cheng39986225https://pubmed.ncbi.nlm.nih.gov/39986225/0
2024Allicin improves endoplasmic reticulum stress-related cognitive deficits via PERK/Nrf2 antioxidative signaling pathwayYao-Feng Zhu38575420https://pubmed.ncbi.nlm.nih.gov/26049013/0
2024Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compoundsShivbrat UpadhyayPMC11752123https://pmc.ncbi.nlm.nih.gov/articles/PMC11752123/0
2024Allicin: a promising modulator of apoptosis and survival signaling in cancerSunaina Bhuker39060753https://pubmed.ncbi.nlm.nih.gov/39060753/0
2024Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway Guojian Shi 38411783https://pubmed.ncbi.nlm.nih.gov/38411783/0
2024Allicin and Cancer HallmarksWamidh H. Talibhttps://www.mdpi.com/1420-3049/29/6/13200
2023The Toxic Effect Ways of Allicin on Different Cell LinesBulbul, Esma Nuhttps://journals.lww.com/jons/fulltext/2023/10020/the_toxic_effect_ways_of_allicin_on_different_cell.3.aspx0
2023Allicin: A review of its important pharmacological activitiesVivek D. Savairamhttps://www.sciencedirect.com/science/article/pii/S26671425230006960
2023Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on PhytochemicalsLixia DongPMC9865312https://pmc.ncbi.nlm.nih.gov/articles/PMC9865312/0
2022Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulationsArijit Mondal https://www.sciencedirect.com/science/article/abs/pii/S1043661821004217?via%3Dihub0
2022Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling PathwayWenpeng XiePMC9249524https://pmc.ncbi.nlm.nih.gov/articles/PMC9249524/0
2022Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signalingZhanfang GuoPMC9615361https://pmc.ncbi.nlm.nih.gov/articles/PMC9615361/0
2022Association and mechanism of garlic consumption with gastrointestinal cancer risk: A systematic review and meta‑analysisYangyang Wang https://www.researchgate.net/publication/358701098_Association_and_mechanism_of_garlic_consumption_with_gastrointestinal_cancer_risk_A_systematic_review_and_meta-analysis0
2022Molecular Docking Studies with Garlic Phytochemical Constituents to Inhibit the Human EGFR Protein for Lung Cancer TherapyDiptendu Sarkarhttps://www.researchgate.net/publication/359909783_Molecular_Docking_Studies_with_Garlic_Phytochemical_Constituents_to_Inhibit_the_Human_EGFR_Protein_for_Lung_Cancer_Therapy0
2022Allicin in Digestive System Cancer: From Biological Effects to Clinical TreatmentYang ZhouPMC9234177https://pmc.ncbi.nlm.nih.gov/articles/PMC9234177/0
2021Allicin protects against renal ischemia–reperfusion injury by attenuating oxidative stress and apoptosisMaolin LiPMC9184421https://pmc.ncbi.nlm.nih.gov/articles/PMC9184421/0
2021Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive ImpairmentMuhammad Shahid NadeemPMC8772758https://pmc.ncbi.nlm.nih.gov/articles/PMC8772758/0
2021Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic OpportunitiesMahshad SarvizadehPMC8111078https://pmc.ncbi.nlm.nih.gov/articles/PMC8111078/0
2021Allicin May Promote Reversal of T-Cell Dysfunction in Periodontitis via the PD-1 PathwayShankargouda PatilPMC8431528https://pmc.ncbi.nlm.nih.gov/articles/PMC8431528/0
2021Effects of garlic intake on cancer: a systematic review of randomized clinical trials and cohort studiesJounghee Leehttps://www.researchgate.net/publication/356256163_Effects_of_garlic_intake_on_cancer_a_systematic_review_of_randomized_clinical_trials_and_cohort_studies0
2021Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathwayGuzhalinuer Maitishahttps://link.springer.com/article/10.1007/s11033-021-06722-10
2021Anticancerous and Antimicrobial Properties of GarlicVibha Ranihttps://www.scholarsresearchlibrary.com/articles/anticancerous-and-antimicrobial-properties-of-garlic.pdf0
2020Allicin Overcomes Hypoxia Mediated Cisplatin Resistance in Lung Cancer Cells through ROS Mediated Cell Death Pathway and by Suppressing Hypoxia Inducible FactorsNamita Pandeyhttps://www.cellphysiolbiochem.com/Articles/000253/0
2020Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF-κB signaling pathwayWen-liang Huanghttps://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.151560
2020Therapeutic Effect of Allicin on GlioblastomaCheng Wanghttps://irispublishers.com/ojcam/fulltext/therapeutic-effect-of-allicin-on-glioblastoma.ID.000577.php0
2020Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseasesFeres José Mocayar Marónhttps://www.sciencedirect.com/science/article/abs/pii/S00243205203026170
2019The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effectsMartin CH GruhlkePMC6342545https://pmc.ncbi.nlm.nih.gov/articles/PMC6342545/0
2018Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum StressVoin PetrovicPMC5946235https://pmc.ncbi.nlm.nih.gov/articles/PMC5946235/0
2018Aged Garlic and Cancer: A Systematic ReviewMaryam Miraghajanihttps://www.researchgate.net/publication/327708446_Aged_Garlic_and_Cancer_A_Systematic_Review0
2018Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic FoodsLarry D LawsonPMC6073756https://pmc.ncbi.nlm.nih.gov/articles/PMC6073756/0
2017Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signalingLing HuangPMC5494782https://pmc.ncbi.nlm.nih.gov/articles/PMC5494782/0
2017The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell LinesMartin C. H. Gruhlkehttps://www.mdpi.com/2076-3921/6/1/10
2016Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathwayFenrong Chenhttps://www.sciencedirect.com/science/article/abs/pii/S17564646163017000
2016The Mechanism in Gastric Cancer Chemoprevention by AllicinRunlan Luo26555611https://pubmed.ncbi.nlm.nih.gov/26555611/0
2016Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitroHong HuangPMC5244860https://pmc.ncbi.nlm.nih.gov/articles/PMC5244860/0
2016Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathwayXuejing Zouhttps://www.sciencedirect.com/science/article/pii/S13478613163003420
2016Comparison of antiplatelet activity of garlic tablets with cardio-protective dose of aspirin in healthy volunteers: a randomized clinical trialMojtaba ShafiekhaniPMC5052418https://pmc.ncbi.nlm.nih.gov/articles/PMC5052418/0
2016Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cellsJianhui Zhuang26771864https://pubmed.ncbi.nlm.nih.gov/26771864/0
2015Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial DynamicsHao Liu26087780https://pubmed.ncbi.nlm.nih.gov/26087780/0
2015A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of HumansCharron Craig Shttps://www.sciencedirect.com/science/article/pii/S002231662208912X0
2015A Review on Anticancer Activities of Garlic (Allium sativum L.)Faisal Nourozhttps://www.researchgate.net/publication/280050302_A_Review_on_Anticancer_Activities_of_Garlic_Allium_sativum_L0
2015Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathwayXuecheng Zhang25523417https://pubmed.ncbi.nlm.nih.gov/25523417/0
2015Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-αChung Gi Leehttps://www.sciencedirect.com/science/article/abs/pii/S17564646150012550
2014Allicin: Chemistry and Biological PropertiesJan BorlinghausPMC6271412https://pmc.ncbi.nlm.nih.gov/articles/PMC6271412/0
2014Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathwayXuecheng Zhanghttps://www.spandidos-publications.com/10.3892/mmr.2014.31090
2013Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and AutophagyYung-Lin Chuhttps://pubs.acs.org/doi/10.1021/jf403241s0
2012Effect of the Garlic Pill in comparison with Plavix on Platelet Aggregation and Bleeding TimeH FakharPMC3915434https://pmc.ncbi.nlm.nih.gov/articles/PMC3915434/0
2012Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathwayCha, J.Hhttps://www.scopus.com/record/display.uri?eid=2-s2.0-84861560573&origin=inward&txGid=8d3256e60a815ed8381b34dfc3c0caee0
2012Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer CellsYung-Lin Chuhttps://pubs.acs.org/doi/10.1021/jf301298y0
2012Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathwayJAE HUN CHAhttps://www.spandidos-publications.com/10.3892/or.2012.1772/download0
2010Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathwaysWenlu Zhang21042755https://pubmed.ncbi.nlm.nih.gov/21042755/0
2009Garlic as an antithrombotic and antiplatelet aggregation agentFarouk El-Sabbanhttps://www.researchgate.net/publication/286291271_Garlic_as_an_antithrombotic_and_antiplatelet_aggregation_agent0
2008Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cellsY. Hehttps://www.researchgate.net/publication/282725006_Effect_of_allicin_on_the_expression_of_Bcl-2_and_Bax_protein_in_LM-8_cells0
2006Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathwayEun-Wha Son17052669https://pubmed.ncbi.nlm.nih.gov/17052669/0
2004Allicin (from garlic) induces caspase-mediated apoptosis in cancer cellsSuby Oommen14757128https://pubmed.ncbi.nlm.nih.gov/14757128/0
2004Allicin inhibits spontaneous and TNF-α induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cellsAlon Langhttps://www.clinicalnutritionjournal.com/article/S0261-5614(04)00058-5/abstract0
2001Garlic and Cancer: A Critical Review of the Epidemiologic LiteratureFleischauer Aaron T.https://www.sciencedirect.com/science/article/pii/S00223166221479290
2001The Influence of Heating on the Anticancer Properties of GarlicMichael Songhttps://www.researchgate.net/publication/12092847_The_Influence_of_Heating_on_the_Anticancer_Properties_of_Garlic0
1999Antimicrobial properties of allicin from garlicS Ankri10594976https://pubmed.ncbi.nlm.nih.gov/10594976/0
1996Effect of garlic on platelet aggregation in humans: a study in healthy subjects and patients with coronary artery diseaseA. Bordiahttps://www.sciencedirect.com/science/article/abs/pii/S095232789690099X0
1990Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetaseManfred Fockehttps://www.sciencedirect.com/science/article/pii/0014579390806472?ref=pdf_download&fr=RR-2&rr=909b7bf3debb48ff0
1990Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase19683991968399https://pubmed.ncbi.nlm.nih.gov/1968399/0
2013The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in VivoWei Jiang24083713https://pubmed.ncbi.nlm.nih.gov/24083713/0