tbResList Print — SAS Sulfasalazine

Filters: qv=286, qv2=%, rfv=%

Product

SAS Sulfasalazine
Description: <b>Sulfasalazine</b> is primarily known as an anti-inflammatory and disease‐modifying antirheumatic drug (DMARD), used for conditions such as rheumatoid arthritis and inflammatory bowel diseases (e.g., ulcerative colitis). <br>
<br>
-Inhibit the nuclear factor kappa B (NF-κB) pathway.<br>
-Sulfasalazine has been noted to interfere with the cystine/glutamate antiporter (system x_c⁻), which can reduce glutathione levels in cancer cells, potentially making them more susceptible to oxidative stress.<br>
<br>
-Ability to inhibit anti-oxidant production (for ProOxidant effect).<br>
<br>

<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>System xC− (xCT/SLC7A11 cystine–glutamate antiporter)</td>
<td>↓ cystine uptake</td>
<td>Limits cystine supply</td>
<td>Sulfasalazine is used as an xCT inhibitor; blocking cystine uptake is the core upstream action in cancer models</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Glutathione biosynthesis / GSH pool</td>
<td>↓ GSH</td>
<td>Loss of redox buffering</td>
<td>In glioma cells, cystine uptake blockade by sulfasalazine leads to glutathione depletion</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>ROS accumulation</td>
<td>↑ ROS</td>
<td>Oxidative stress amplification</td>
<td>Glioma study: sulfasalazine increases ROS after GSH depletion (mechanistic sequence shown)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>DNA damage (oxidative/genotoxic stress)</td>
<td>↑ DNA damage</td>
<td>Checkpoint/death signaling</td>
<td>Glioma study: sulfasalazine causes DNA damage as part of the ROS-driven cytotoxic cascade</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Radiosensitization (oxidative vulnerability)</td>
<td>↑ radiation sensitivity</td>
<td>Enhances radiotherapy effect</td>
<td>Melanoma model: sulfasalazine decreases glutathione and synergistically enhances X-irradiation cytotoxicity</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195151" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Ferroptosis (system xC− → GSH/GPX4 vulnerability)</td>
<td>↑ ferroptotic death</td>
<td>Iron-dependent oxidative death</td>
<td>Paclitaxel-resistant uterine serous carcinoma model: sulfasalazine (xCT inhibitor) induces ferroptotic cell death signatures</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7400102/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>Mitochondrial apoptosis (caspase pathway)</td>
<td>↑ apoptosis</td>
<td>Programmed cell death</td>
<td>Osteosarcoma work: sulfasalazine blocks system xC− and induces cell death consistent with ferroptosis/apoptosis programs (apoptosis markers reported in the paper’s mechanism set)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC12361513/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>NF-κB activation (IκBα degradation / IKK activity)</td>
<td>↓ NF-κB activation</td>
<td>Reduced pro-survival/inflammatory transcription</td>
<td>Mechanistic paper shows sulfasalazine blocks NF-κB activation by inhibiting IκBα degradation via IKK inhibition</td>
<td><a href="https://www.gastrojournal.org/article/S0016-5085%2800%2902308-8/fulltext" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>NF-κB nuclear translocation</td>
<td>↓ nuclear NF-κB</td>
<td>Transcriptional shutdown</td>
<td>Colon cancer cells: sulfasalazine prevents TNFα-induced NF-κB nuclear translocation and NF-κB–dependent transcription</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC508669/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>Chemo-sensitization via xCT inhibition</td>
<td>↑ chemo sensitivity (context-dependent)</td>
<td>Combination benefit</td>
<td>Mechanistic rationale: xCT inhibition lowers GSH and oxidative defense, increasing sensitivity to cytotoxic stress (glioma + radiation shown explicitly)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Tumor growth suppression in vivo (xCT-targeted stress)</td>
<td>↓ tumor growth</td>
<td>Anti-tumor efficacy</td>
<td>Glioma xenograft model: sulfasalazine plus radiosurgery improves survival compared to control/monotherapy</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25798841/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Resistance axis: xCT-high / antioxidant-high tumors</td>
<td>↑ vulnerability when xCT-high</td>
<td>Targeted susceptibility</td>
<td>Endometrial/USC model: sulfasalazine shows stronger cytotoxicity in resistant (stress-adapted) cells consistent with xCT dependence</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7400102/" target="_blank">(ref)</a></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

cystine↓, 1,   Ferroptosis↑, 4,   GPx4↓, 1,   GSH↓, 11,   H2O2↑, 1,   Iron↑, 1,   lipid-P↑, 1,   MDA↑, 1,   NRF2↓, 1,   ROS↑, 8,   SOD↓, 1,   xCT↓, 12,  

Metal & Cofactor Biology

FTH1↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Core Metabolism/Glycolysis

glut↓, 1,  

Cell Death

Apoptosis↓, 1,   Apoptosis↑, 1,   Ferroptosis↑, 4,   Myc↓, 1,  

Transcription & Epigenetics

other?, 1,  

DNA Damage & Repair

DNAdam↑, 1,   DNArepair↓, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

CD44↓, 1,   Diff↑, 1,   TumCG↓, 6,  

Migration

TumCI↓, 2,   TumCMig↓, 1,   TumCP↓, 2,   TumMeta↓, 1,  

Immune & Inflammatory Signaling

IKKα↓, 1,   IL1↓, 1,   IL2↓, 1,   Inflam↓, 2,   NF-kB↓, 3,   TNF-α↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,   Dose↝, 1,   eff↑, 2,   eff↓, 3,   RadioS↓, 1,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

BMPs↑, 1,   Myc↓, 1,  

Functional Outcomes

Mood↑, 1,   OS↑, 3,   toxicity↓, 3,  
Total Targets: 49

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   xCT↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Functional Outcomes

toxicity↝, 1,  
Total Targets: 4

Research papers

Year Title Authors PMID Link Flag
2022The structure of erastin-bound xCT–4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosisRenhong Yanhttps://www.nature.com/articles/s41422-022-00642-w0
2025Sulfasalazine induces ferroptosis in osteosarcomas by regulating Nrf2/SLC7A11/GPX4 signaling axisQingqing QinPMC12361513https://pmc.ncbi.nlm.nih.gov/articles/PMC12361513/0
2024Targeting xCT with sulfasalazine suppresses triple-negative breast cancer growth via inducing autophagy and coordinating cell cycle and proliferationLong, Yapinghttps://journals.lww.com/anti-cancerdrugs/abstract/2024/10000/targeting_xct_with_sulfasalazine_suppresses.4.aspx0
2024Regulatory network of ferroptosis and autophagy by targeting oxidative stress defense using sulfasalazine in triple-negative breast cancerTomoka Takatani-Nakasehttps://www.sciencedirect.com/science/article/abs/pii/S00243205230104690
2023Inhibition of xCT by sulfasalazine alleviates the depression-like behavior of adult male mice subjected to maternal separation stressShengwen Wanghttps://www.sciencedirect.com/science/article/abs/pii/S01664328230027720
2023Sulfasalazine, a potent cystine-glutamate transporter inhibitor, enhances osteogenic differentiation of canine adipose-derived stem cellsHarumichi ITOHPMC10686774https://pmc.ncbi.nlm.nih.gov/articles/PMC10686774/0
2021Sulfasalazine, a potent suppressor of gastric cancer proliferation and metastasis by inhibition of xCT: Conventional drug in new useJinfu ZhuangPMC8184680https://pmc.ncbi.nlm.nih.gov/articles/PMC8184680/0
2021Structure-Activity-Relationship-Aided Design and Synthesis of xCT Antiporter InhibitorsDr. Davide Cirillohttps://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmdc.2021002040
2021Sulfur-containing therapeutics in the treatment of Alzheimer's diseaseHaizhou ZhuPMC7889054https://pmc.ncbi.nlm.nih.gov/articles/PMC7889054/0
2021Chronic Sulfasalazine Treatment in Mice Induces System xc− - Independent Adverse EffectsLise Verbruggenhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.625699/full0
2020xCT: A Critical Molecule That Links Cancer Metabolism to Redox SignalingJinyun Liuhttps://www.sciencedirect.com/science/article/pii/S15250016203045730
2020xCT inhibitor sulfasalazine depletes paclitaxel-resistant tumor cells through ferroptosis in uterine serous carcinomaAkiko SugiyamaPMC7400102https://pmc.ncbi.nlm.nih.gov/articles/PMC7400102/0
2018Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanomaMasaki NaganePMC5896924https://pmc.ncbi.nlm.nih.gov/articles/PMC5896924/0
2015Xc− inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanismMing-zhe Mahttps://www.sciencedirect.com/science/article/abs/pii/S03043835150048630
2015Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletionL Sleire25798841https://pubmed.ncbi.nlm.nih.gov/25798841/0
2000Suppression of NF-κB activity by sulfasalazine is mediated by direct inhibition of IκB kinases α and βChristoph K. Weberhttps://www.gastrojournal.org/article/S0016-5085%2800%2902308-8/fulltext0
1998Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa BC Wahlhttps://pmc.ncbi.nlm.nih.gov/articles/PMC508669/0