tbResList Print — DCA Dichloroacetate

Filters: qv=288, qv2=%, rfv=%

Product

DCA Dichloroacetate
Description: <b>Dichloroacetate (DCA)</b> is a metabolic modulator that targets the altered metabolic state of cancer cells by inhibiting PDKs. This action impacts several key pathways:<br>
<br>
• Reversal of the Warburg effect<br>
• Restoration of mitochondrial function and promotion of apoptosis<br>
• suppresses glycolysis and promotes oxidative phosphorylation, thereby increasing mitochondrial ROS-mediated apoptosis in tumor cells
• Increase in ROS production leading to oxidative stress<br>
• Inhibition of cell cycle progression<br>
• Modulation of HIF-1α signaling: DCA might decrease HIF-1α stabilization, thereby reducing the expression of genes that support glycolysis, angiogenesis, and survival under low-oxygen conditions.<br>
<br>
-DCA has been primarily used in treating congenital lactic acidosis—a rare genetic disorder characterized by the buildup of lactic acid in the body.<br>
-DCA is an anti-diabetic and lipid-lowering drug, as well as treating myocardial and cerebrovascular ischemia.<br>
<br>
-Do not add DCA to hot or warm beverages. DCA is unstable at higher temperatures<br>
-Caffeinated increases effectiveness<br>
-Vitamin B1 reduces neuropathy (500mg-2500mg/day)<br>
-Possibly 20 grams of citric acid 20 minutes before taking DCA<br>
-Procaine, Diclofenac or Sulindac to increase SMCT1 <br>
-Omeprazole 80mg/day to increase DCA effectiveness<br>
-Scorpion venom to increase DCA effectiveness <br>
-Metformin 1000mg to 1500mg/day<br>
-Propranolol (Ref.)<br>
-Fenbendazole shows strong synergy when combined to DCA, So it may make very much sense to combine the two.<br>
<a href="https://www.cancertreatmentsresearch.com/dichloroacetate-dca-treatment-strategy/">
"Note: DCA is not tumor cell specific,> and therefore the same shift in glucose metabolism that occurs in cancer cells will also take place in immune cells, leading to induction of Tregs (Ref.). In order to avoid this possibility, while using DCA I would also use Treg inhibitors such as Cimetidine (Ref.) or low dose Cyclophosphamide (Ref.)." </a><br>
<br>
Dose: 10mg/kg/day and increase slowly to about 25mg/kg/day:(1/2morn,1/2evening) take 5 days on, 2 off? OR 2wks on/ 1wk off: https://www.thedcasite.com/dca_dosage.html<br>
Done by mixing it in water and drinking, suggested that DCA not be taken on an empty stomach.<br>
<br>
**** <br>
DCA-induced apoptosis in cancer cells requires sodium-coupled monocarboxylates transporter SLC5A8 (SMCT1)<br>
-Inhibitors of DNA methylation induce reactivation of SLC5A8<br>
-Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells.<br>
-SMCT1 was found to be stimulated by some other NSAIDs (diclofenac, meclofenamate and sulindac), by activin A143 and by the probiotic Lactobacillus plantarum. <br>
<br>
<a href="https://www.sciencedirect.com/science/article/pii/S2444866416300034"> SMCT1 has been found to be inhibited by some NSAIDs (ibuprofen, ketoprofen, fenoprofen, naproxen135 and indomethacin94), phytochemicals (resveratrol and quercetin) </a> **** Hence these should be avoided with DCA. (also AVOID Bromide, iodide and sulfite )<br>
<br>
****<br>
GSTZ1 an/or chloride anion transport inhibitors also reduce resistance to DCA
(if the tumor expresses GSTZ1 and contains a high chloride anions level, the GSTZ1 will be stable, maintaining the resistance to DCA).<br>
<br>
-<a href="https://www.cancertreatmentsresearch.com/">Dichloroacetate-dca-treatment-strategy </a>GSTZ1 an/or chloride anion transport inhibitors. .<br>
-<a href="http://www.ncbi.nlm.nih.gov/pubmed/1839837">Etacrynic acid is a Cl(-)-ATPase inhibitor </a> <br>
<a href="http://www.ncbi.nlm.nih.gov/pubmed/10711360">-Lansoprazole and Omeprazole inhibit chloride channels. </a><br>
-<a href="https://en.wikipedia.org/wiki/Chlorotoxin">Chlorotoxin found in scorpion venom (see my post on scorpion venom) can also inhibit chlorine channels </a> <br>
<br>
Sources:<br>
<a href="https://northernhealthproducts.com/shop/" >https://northernhealthproducts.com/shop/</a> <br>
<a href="https://www.dcalab.com/">https://www.dcalab.com/ </a> <br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Pyruvate dehydrogenase kinase (PDK) → PDH gatekeeper</td>
<td>↓ PDK activity → ↑ active PDH (dephosphorylated)</td>
<td>Warburg reversal (pyruvate into TCA)</td>
<td>DCA’s canonical mechanism: inhibits PDK, restoring PDH activity and oxidative metabolism in cancer</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20463368/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Glycolysis output (lactate / ECAR)</td>
<td>↓ lactate production / ↓ ECAR</td>
<td>Reduced acidification; metabolic reprogramming</td>
<td>DCA decreases PDH phosphorylation and lowers glycolytic output (lactate/ECAR) in cancer models</td>
<td><a href="https://www.mdpi.com/1422-0067/21/24/9367">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial membrane potential remodeling (ΔΨm)</td>
<td>↓ cancer-associated mitochondrial hyperpolarization (depolarization)</td>
<td>Restores apoptosis susceptibility</td>
<td>Glioblastoma work: DCA reverses cancer-specific mitochondrial remodeling (hyperpolarization → depolarization), enabling apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20463368/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>ROS generation (especially under hypoxia)</td>
<td>↑ ROS</td>
<td>Oxidative stress trigger</td>
<td>DCA increases ROS in hypoxic cancer cells (reported strongly under hypoxia), linking metabolic shift to cytotoxic stress</td>
<td><a href="https://www.mdpi.com/1422-0067/21/24/9367">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Voltage-gated K+ channel axis (Kv1.5) / NFAT signaling</td>
<td>↑ Kv1.5 expression/activity</td>
<td>Pro-apoptotic electrophysiology shift</td>
<td>Endometrial cancer study: DCA engages mitochondrial + NFAT–Kv1.5 mechanisms associated with apoptosis sensitization</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/18423823/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>↑ apoptosis</td>
<td>Programmed cell death</td>
<td>DCA induces apoptosis in glioblastoma and endometrial cancer models as mitochondrial remodeling is reversed</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20463368/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>PUMA-mediated apoptotic priming</td>
<td>↑ PUMA-dependent sensitization</td>
<td>Lower apoptotic threshold</td>
<td>Endometrial cancer paper explicitly reports a PUMA-mediated component in DCA apoptosis sensitization</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/18423823/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Hypoxia resistance axis (HIF-1α / PDK1)</td>
<td>↓ hypoxia-associated resistance (HIF-1α/PDK1 axis engaged)</td>
<td>Improved treatment responsiveness</td>
<td>DCA attenuates hypoxia-associated resistance in gastric cancer context with reported linkage to HIF-1α and PDK1</td>
<td><a href="https://www.sciencedirect.com/science/article/abs/pii/S0014482713005260">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Radiosensitization (hypoxic tumor cells)</td>
<td>↑ radiosensitivity (esp. under hypoxia)</td>
<td>Therapy potentiation</td>
<td>DCA increases ROS under hypoxia and enhances radiotherapy response in TNBC models</td>
<td><a href="https://www.mdpi.com/1422-0067/21/24/9367">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>In vivo / translational anti-tumor activity (glioblastoma)</td>
<td>↓ tumor growth / ↓ proliferation (model-dependent)</td>
<td>Demonstrated anti-tumor effect</td>
<td>Glioblastoma study includes translational evidence that DCA can reverse tumor metabolic remodeling with anti-tumor effects</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/20463368/">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   GSTZ1∅, 1,   mt-H2O2↑, 1,   MPO↓, 1,   mt-OXPHOS↑, 1,   OXPHOS↑, 2,   ROS↑, 10,   ROS∅, 1,   mt-ROS↑, 1,   SOD↑, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,  

Mitochondria & Bioenergetics

mitResp↑, 3,   MMP↓, 9,   OCR↑, 2,  

Core Metabolism/Glycolysis

ECAR↓, 1,   glucoNG↓, 1,   GlucoseCon↓, 2,   Glycolysis↑, 1,   Glycolysis↓, 9,   lactateProd↓, 8,   LDH↑, 1,   NAD↑, 1,   NADH:NAD↓, 1,   p‑PDH↑, 1,   p‑PDH↓, 2,   PDH↑, 5,   PDK1↓, 4,   PDKs↓, 15,   PDKs↑, 1,   p‑PDKs↓, 1,   Warburg↓, 3,  

Cell Death

Apoptosis↑, 8,   BAX↑, 1,   Bcl-2↓, 1,   Casp↑, 1,   Casp3↑, 4,   Cyt‑c↑, 2,   iNOS↓, 1,   MCT1↓, 1,   PUMA↑, 1,   survivin↓, 1,  

Transcription & Epigenetics

other↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   LC3s↓, 1,   p62↑, 1,   TumAuto↑, 2,  

DNA Damage & Repair

DNA-PK↑, 1,   P53↑, 2,   cl‑PARP↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

CSCs↓, 2,   EMT↓, 1,   mTOR↓, 2,   TumCG↓, 8,  

Migration

i-Ca+2↓, 1,   Ca+2↓, 1,   Chl∅, 1,   TumCP↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   Hif1a↓, 3,   Hif1a↝, 1,  

Barriers & Transport

SMCT1∅, 1,  

Cellular Microenvironment

pH↝, 2,   pH↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 2,   Dose∅, 7,   Dose↝, 2,   eff↑, 21,   eff↓, 3,   Half-Life∅, 1,   RadioS↑, 3,   selectivity↑, 8,   selectivity↓, 1,  

Clinical Biomarkers

BG↓, 1,   Ferritin↓, 1,   LDH↑, 1,  

Functional Outcomes

AntiCan↑, 2,   neuroP↑, 1,   OS↑, 5,   QoL∅, 1,   QoL↑, 1,   Remission↑, 1,   toxicity∅, 3,   toxicity↓, 4,   toxicity↑, 1,   toxicity↝, 1,   TumVol↓, 2,   TumW↓, 1,  
Total Targets: 91

Pathway results for Effect on Normal Cells

Functional Outcomes

toxicity∅, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2025Dichloroacetate and Salinomycin as Therapeutic Agents in CancerSunny Hunthttps://www.mdpi.com/2076-3271/13/2/470
2024Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific mannerPanjamurthy KuppusamyPMC11228363https://pmc.ncbi.nlm.nih.gov/articles/PMC11228363/0
2020Dichloroacetate Radiosensitizes Hypoxic Breast Cancer CellsSven de Meyhttps://www.mdpi.com/1422-0067/21/24/93670
2018Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell LinesAistė Skeberdytėhttps://www.nature.com/articles/s41598-018-35815-40
2017Sensitization of breast cancer cells to paclitaxel by dichloroacetate through inhibiting autophagyMinghao Wanghttps://www.sciencedirect.com/science/article/abs/pii/S0006291X173097860
2017Long-term stabilization of metastatic melanoma with sodium dichloroacetateAkbar KhanPMC5554882https://pmc.ncbi.nlm.nih.gov/articles/PMC5554882/0
2016Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapyAkbar KhanPMC5067498https://pmc.ncbi.nlm.nih.gov/articles/PMC5067498/0
2016GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetateStephan Jahnhttps://www.researchgate.net/publication/292950601_GSTZ1_expression_and_chloride_concentrations_modulate_sensitivity_of_cancer_cells_to_dichloroacetate0
2015Dual-targeting of aberrant glucose metabolism in glioblastomaHan ShenPMC4324653https://pmc.ncbi.nlm.nih.gov/articles/PMC4324653/0
2015Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer CellsAllison B HaugrudPMC4184194https://pmc.ncbi.nlm.nih.gov/articles/PMC4184194/0
2014A Novel Form of Dichloroacetate Therapy for Patients With Advanced Cancer: A Report of 3 CasesAkbar Khanhttps://alternative-therapies.com/at/web_pdfs/s202khan.pdf0
2014Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolismYi Xuanhttps://www.sciencedirect.com/science/article/abs/pii/S00144827130052600
2014Dichloroacetate induces autophagy in colorectal cancer cells and tumoursG LinPMC4102941https://pmc.ncbi.nlm.nih.gov/articles/PMC4102941/0
2014Dichloroacetate, a selective mitochondria-targeting drug for oral squamous cell carcinoma: a metabolic perspective of treatmentVitalba RuggieriPMC4359228https://pmc.ncbi.nlm.nih.gov/articles/PMC4359228/0
2012Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cellsSerena Vella21557214https://pubmed.ncbi.nlm.nih.gov/21557214/0
2012Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case reportTatsuaki Ishiguro22580646https://pubmed.ncbi.nlm.nih.gov/22580646/0
2012Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetateEllappan BabuPMC3140604https://pmc.ncbi.nlm.nih.gov/articles/PMC3140604/0
2011Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal CancerJingtao Tonghttps://onlinelibrary.wiley.com/doi/10.1155/2011/7405640
2011Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stressGhassan M Saed21701041https://pubmed.ncbi.nlm.nih.gov/21701041/0
2011In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell linesWolfgang Fiebiger21239354https://pubmed.ncbi.nlm.nih.gov/21239354/0
2010Metabolic modulation of glioblastoma with dichloroacetateE D Michelakis20463368https://pubmed.ncbi.nlm.nih.gov/20463368/0
2010Non-Hodgkin′s Lymphoma Reversal with DichloroacetateMichael A. Carduccihttps://onlinelibrary.wiley.com/doi/10.1155/2010/4147260
2010Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivoRamon C. Sun19543830https://pubmed.ncbi.nlm.nih.gov/19543830/0
2009Dichloroacetate induces apoptosis in endometrial cancer cellsJason YY WongPMC2735772https://pmc.ncbi.nlm.nih.gov/articles/PMC2735772/0
2008Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancerE D MichelakisPMC2567082https://pmc.ncbi.nlm.nih.gov/articles/PMC2567082/0
2008Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiationWengang Cao18465755https://pubmed.ncbi.nlm.nih.gov/18465755/0
2007A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growthSébastien Bonnet17222789https://pubmed.ncbi.nlm.nih.gov/17222789/0
1996In vivo metabolic response of glucose to dichloroacetate in humansJ A Brown8656614https://pubmed.ncbi.nlm.nih.gov/8656614/0
2015Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetateRosa FerrieroPMC4551558https://pmc.ncbi.nlm.nih.gov/articles/PMC4551558/0
2014High Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to DichloroacetateBradley S HanberryPMC3963161https://pmc.ncbi.nlm.nih.gov/articles/PMC3963161/0