ALA Alpha-Lipoic-Acid
Features: antioxidant, energy production in cell mitochondria
Description: <b>Alpha-Lipoic-Acid:</b> also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).<br>
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.<br>
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)<br>
-Also done in IV<br>
-Decreases ROS production, but also has pro-oxidant role.<br>
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.<br>
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.<br>
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.<br>
<br>
α-lipoic acid possesses excellent silver chelating properties.<br>
<br>
<pre>
ALA → ROS ↑ (cancer cells; high dose / stressed mitochondria)
ALA → ROS ↓ (normal cells; low–moderate dose)
same pattern seen with: Vitamin C, Menadione, Quercetin, EGCG, Resveratrol
</pre>
- ALA acts as pro-Oxidant only in <a href="tbResEdit.php?rid=278">cancer cells:#278</a>
- Pro-Oxidant Dose <a href="tbResEdit.php?rid=304">margin >100uM:#304 </a><br>
<br>
- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).<br>
- AI (Adequate Intake): 1.1-1.6g/day. <br>
- human studies have shown that ALA levels decline significantly with age <br>
- 1g of ALA might achieve 500uM in the blood. <br>
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. <br>
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.<br>
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.<br>
- single walnut may contain 300mg of ALA<br>
- chia oil contains 55-65% ALA.<br>
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats<br>
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)<br>
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)<br>
<br>
-Note <a href="tbResList.php?qv=29&tsv=1109&wNotes=on&exSp=open">half-life</a> 1-2 hrs.<br>
<a href="tbResList.php?qv=29&tsv=792&wNotes=on&exSp=open">BioAv</a> 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
<br>
Pathways:<br>
<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=29&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?qv=29&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=29&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=29&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=29&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=29&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, -->
<a href="tbResList.php?qv=29&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=29&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<!-- <a href="tbResList.php?qv=29&tsv=239&wNotes=on">cl-PARP↑</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=Prx">Prx</a>, --><!-- mitochondrial antioxidant enzyme-->
<br>
<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=29&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<!-- <a href="tbResList.php?qv=29&word=Trx&wNotes=on">TrxR↓**</a>, --><!-- major antioxidant system -->
<a href="tbResList.php?qv=29&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=29&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=29&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=29&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=29&wNotes=on&word=GPx">GPx↓</a>
<br>
- Raises
<a href="tbResList.php?qv=29&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=29&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=29&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=29&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=29&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=29&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<!-- genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM -->
<br>
<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=29&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=29&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=29&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=235&wNotes=on&word=p38↓">p38↓</a>, --> Pro-Inflammatory Cytokines :
<!-- <a href="tbResList.php?qv=29&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>, -->
<a href="tbResList.php?qv=29&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=29&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=29&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=29&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>
<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=29&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=29&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=29&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=29&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=29&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=29&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=29&wNotes=on&word=IGF">IGF-1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=29&tsv=334&wNotes=on">VEGF↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<a href="tbResList.php?qv=29&tsv=110&wNotes=on">FAK↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=29&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=29&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=29&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=29&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>
<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
<!--
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=29&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=29&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=29&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=29&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=TET">TET↑</a>
<br> -->
<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=29&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=29&tsv=73&wNotes=on">cyclin D1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=378&wNotes=on">cyclin E↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=467&wNotes=on">CDK2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=894&wNotes=on">CDK4↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>
<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=29&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=29&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=29&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=29&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=29&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=657&wNotes=on">TET1</a>, -->
<br>
<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=29&tsv=129&wNotes=on">glycolysis</a>
<!-- /<a href="tbResList.php?qv=29&tsv=947&wNotes=on">Warburg Effect</a> --> and
<a href="tbResList.php?qv=29&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=29&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=29&tsv=772&wNotes=on">PKM2↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=35&wNotes=on">cMyc↓</a>, -->
<a href="tbResList.php?qv=29&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=906&wNotes=on">LDH↓</a>, -->
<a href="tbResList.php?qv=29&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=29&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=29&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=29&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=29&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=29&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=29&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>
<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=29&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=29&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=29&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=PDGF">PDGF↓</a>, -->
<a href="tbResList.php?qv=29&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=29&&wNotes=on&word=ITG">Integrins↓</a>,
<br>
<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- small indication of inhibiting Cancer Stem Cells :
<a href="tbResList.php?qv=29&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=524&wNotes=on">CK2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=141&wNotes=on">Hh↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=434&wNotes=on">GLi↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=124&wNotes=on">GLi1↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=677&wNotes=on">CD133↓</a>, -->
<a href="tbResList.php?qv=29&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=29&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=357&wNotes=on">n-myc↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=656&wNotes=on">sox2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=NOTCH">Notch2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=1024&wNotes=on">nestin↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=508&wNotes=on">OCT4↓</a>, -->
<br>
<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=29&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=29&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=STAT">STAT↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=377&wNotes=on">Wnt↓</a>, -->
<a href="tbResList.php?qv=29&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=29&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=29&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=29&tsv=168&wNotes=on">JNK</a>,
<!-- - <a href="tbResList.php?qv=29&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol). --><br>
<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=29&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=29&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=29&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=29&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=29&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=29&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=29&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=29&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=29&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=29&tsv=1188&wNotes=on">CardioProtective</a>,
<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=29&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>
Cancer-Relevant Pathways
<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Interpretation</th>
<th>Notes</th>
</tr>
<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (dose- & stress-dependent)</td>
<td>↓ ROS</td>
<td>Conditional Driver</td>
<td>Biphasic redox behavior</td>
<td>ALA/DHLA redox cycling can push already stressed cancer mitochondria past tolerance while buffering ROS in normal cells</td>
</tr>
<tr>
<td>2</td>
<td>Glutathione (GSH) system</td>
<td>↓ functional buffering</td>
<td>↑ GSH regeneration</td>
<td>Secondary</td>
<td>Redox amplification vs protection</td>
<td>In cancer cells, GSH consumption accompanies ROS escalation; in normal cells DHLA supports GSH recycling</td>
</tr>
<tr>
<td>3</td>
<td>Mitochondrial function (ΔΨm)</td>
<td>↓ ΔΨm (stress-induced)</td>
<td>↔ stabilized</td>
<td>Secondary</td>
<td>Mitochondrial selectivity</td>
<td>Cancer cells with unstable ETC show depolarization; normal cells tolerate or benefit metabolically</td>
</tr>
<tr>
<td>4</td>
<td>NF-κB signaling</td>
<td>↓ survival signaling</td>
<td>↓ inflammatory tone</td>
<td>Secondary</td>
<td>Redox-sensitive transcription</td>
<td>NF-κB suppression reduces cancer cell survival programs but is anti-inflammatory in normal tissue</td>
</tr>
<tr>
<td>5</td>
<td>Cell proliferation</td>
<td>↓ proliferation</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic selectivity</td>
<td>ALA slows cancer cell cycling without universal apoptosis</td>
</tr>
<tr>
<td>6</td>
<td>Apoptosis</td>
<td>↑ apoptosis (conditional)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Threshold-dependent death</td>
<td>Occurs in cancer cells when redox stress exceeds buffering capacity</td>
</tr>
<tr>
<td>7</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive, often insufficient)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Stress compensation</td>
<td>NRF2 reflects attempted redox recovery; not a kill mechanism</td>
</tr>
</table>