tbResList Print — ALA Alpha-Lipoic-Acid

Filters: qv=29, qv2=%, rfv=%

Product

ALA Alpha-Lipoic-Acid
Features: antioxidant, energy production in cell mitochondria
Description: <b>Alpha-Lipoic-Acid:</b> also known as lipoic acid or thioctic acid (reduced form is dihydrolipoic acid).<br>
"Universal antioxidant" because it is both water- and fat-soluble and can neutralize free radicals.<br>
-Treatment sometimes as ALA/N (alpha-lipoic acid/low-dose naltresone)<br>
-Also done in IV<br>
-Decreases ROS production, but also has pro-oxidant role.<br>
Normal adult can take 300 milligrams twice a day with food, but they should always take a B-complex vitamin with it. Because B complex vitamins, especially thiamine, and biotin, and riboflavin, are depleted during this metabolic process.<br>
α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.<br>
-It seems a paradox that LA functions as both antioxidant and prooxidant. LA functions the pro-oxidant only in special cancer cells, such as A549 and PC9 cells which should show high-level NRF2 expression and high glycolytic level. Through inhibiting PDK1 to further prohibit NRF2; LA functions as anticancer prooxidant.<br>
<br>
α-lipoic acid possesses excellent silver chelating properties.<br>
<br>
<pre>
ALA → ROS ↑ (cancer cells; high dose / stressed mitochondria)
ALA → ROS ↓ (normal cells; low–moderate dose)
same pattern seen with: Vitamin C, Menadione, Quercetin, EGCG, Resveratrol
</pre>

- ALA acts as pro-Oxidant only in <a href="tbResEdit.php?rid=278">cancer cells:#278</a>
- Pro-Oxidant Dose <a href="tbResEdit.php?rid=304">margin >100uM:#304 </a><br>
<br>
- Bioavailability: 80-90%, but conversion to EPA/DHA is 5-10% (and takes longer time).<br>
- AI (Adequate Intake): 1.1-1.6g/day. <br>
- human studies have shown that ALA levels decline significantly with age <br>
- 1g of ALA might achieve 500uM in the blood. <br>
- ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability. <br>
- Pilot studies or observational interventions have used flaxseed supplementation (rich in ALA) in doses providing roughly 3–4 g of ALA daily.<br>
- Flaxseed oil is even more concentrated in ALA – typical 50–60% ALA by weight.<br>
- single walnut may contain 300mg of ALA<br>
- chia oil contains 55-65% ALA.<br>
- α-LA can also be obtained from the diet through the consumption of dark green leafy vegetables and meats<br>
- ALA is more stable in chia seeds, (2grams of ALA per tablespoon)<br>
- ALA degrades when exposed to heat, light, and air. (prone to oxidation)<br>

<br>
-Note <a href="tbResList.php?qv=29&tsv=1109&wNotes=on&exSp=open">half-life</a> 1-2 hrs.<br>
<a href="tbResList.php?qv=29&tsv=792&wNotes=on&exSp=open">BioAv</a> 30-40% from walnuts, 60-80% from supplements. Co-ingestion with fat improves absorption. Both fat and water soluble
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=29&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?qv=29&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=29&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=29&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=29&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=29&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, -->
<a href="tbResList.php?qv=29&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=29&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<!-- <a href="tbResList.php?qv=29&tsv=239&wNotes=on">cl-PARP↑</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=HSP">HSP↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=Prx">Prx</a>, --><!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=29&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<!-- <a href="tbResList.php?qv=29&word=Trx&wNotes=on">TrxR↓**</a>, --><!-- major antioxidant system -->
<a href="tbResList.php?qv=29&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=29&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=29&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=29&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=29&wNotes=on&word=GPx">GPx↓</a>


<br>

- Raises
<a href="tbResList.php?qv=29&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=29&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=29&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=29&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=29&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=29&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<!-- genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM -->
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=29&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=29&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=29&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=235&wNotes=on&word=p38↓">p38↓</a>, --> Pro-Inflammatory Cytokines :
<!-- <a href="tbResList.php?qv=29&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>, -->
<a href="tbResList.php?qv=29&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=29&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=29&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=29&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=29&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=29&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=29&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=29&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=29&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=29&tsv=203&wNotes=on">MMP9↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=308&wNotes=on">TIMP2</a>, -->
<a href="tbResList.php?qv=29&wNotes=on&word=IGF">IGF-1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=428&wNotes=on">uPA↓</a>, -->
<a href="tbResList.php?qv=29&tsv=334&wNotes=on">VEGF↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=1284&wNotes=on">ROCK1↓</a>, -->
<a href="tbResList.php?qv=29&tsv=110&wNotes=on">FAK↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=29&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=29&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=29&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=29&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
<!--
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=29&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=29&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=29&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=29&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=TET">TET↑</a>
<br> -->

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=29&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=29&tsv=73&wNotes=on">cyclin D1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=378&wNotes=on">cyclin E↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=467&wNotes=on">CDK2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=894&wNotes=on">CDK4↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=29&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=29&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=29&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<a href="tbResList.php?qv=29&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=29&tsv=96&wNotes=on">EMT↓</a>,
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=TOP">TOP1↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=29&tsv=129&wNotes=on">glycolysis</a>
<!-- /<a href="tbResList.php?qv=29&tsv=947&wNotes=on">Warburg Effect</a> --> and
<a href="tbResList.php?qv=29&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=29&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=29&tsv=772&wNotes=on">PKM2↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=35&wNotes=on">cMyc↓</a>, -->
<a href="tbResList.php?qv=29&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=906&wNotes=on">LDH↓</a>, -->
<a href="tbResList.php?qv=29&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=29&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=29&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=29&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=29&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=29&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?qv=29&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=29&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=29&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=29&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=PDGF">PDGF↓</a>, -->
<a href="tbResList.php?qv=29&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=29&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- small indication of inhibiting Cancer Stem Cells :
<a href="tbResList.php?qv=29&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=524&wNotes=on">CK2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=141&wNotes=on">Hh↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=434&wNotes=on">GLi↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=124&wNotes=on">GLi1↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=677&wNotes=on">CD133↓</a>, -->
<a href="tbResList.php?qv=29&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=29&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=357&wNotes=on">n-myc↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=656&wNotes=on">sox2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&wNotes=on&word=NOTCH">Notch2↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=1024&wNotes=on">nestin↓</a>, -->
<!-- <a href="tbResList.php?qv=29&tsv=508&wNotes=on">OCT4↓</a>, -->
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=29&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=29&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=29&wNotes=on&word=STAT">STAT↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=377&wNotes=on">Wnt↓</a>, -->
<a href="tbResList.php?qv=29&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=29&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=29&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=29&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=29&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=29&tsv=168&wNotes=on">JNK</a>,


<!-- - <a href="tbResList.php?qv=29&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol). --><br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=29&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=29&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=29&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=29&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=29&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=29&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=29&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=29&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=29&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=29&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=29&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>


Cancer-Relevant Pathways


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (dose- & stress-dependent)</td>
<td>↓ ROS</td>
<td>Conditional Driver</td>
<td>Biphasic redox behavior</td>
<td>ALA/DHLA redox cycling can push already stressed cancer mitochondria past tolerance while buffering ROS in normal cells</td>
</tr>

<tr>
<td>2</td>
<td>Glutathione (GSH) system</td>
<td>↓ functional buffering</td>
<td>↑ GSH regeneration</td>
<td>Secondary</td>
<td>Redox amplification vs protection</td>
<td>In cancer cells, GSH consumption accompanies ROS escalation; in normal cells DHLA supports GSH recycling</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial function (ΔΨm)</td>
<td>↓ ΔΨm (stress-induced)</td>
<td>↔ stabilized</td>
<td>Secondary</td>
<td>Mitochondrial selectivity</td>
<td>Cancer cells with unstable ETC show depolarization; normal cells tolerate or benefit metabolically</td>
</tr>

<tr>
<td>4</td>
<td>NF-κB signaling</td>
<td>↓ survival signaling</td>
<td>↓ inflammatory tone</td>
<td>Secondary</td>
<td>Redox-sensitive transcription</td>
<td>NF-κB suppression reduces cancer cell survival programs but is anti-inflammatory in normal tissue</td>
</tr>

<tr>
<td>5</td>
<td>Cell proliferation</td>
<td>↓ proliferation</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic selectivity</td>
<td>ALA slows cancer cell cycling without universal apoptosis</td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis</td>
<td>↑ apoptosis (conditional)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Threshold-dependent death</td>
<td>Occurs in cancer cells when redox stress exceeds buffering capacity</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive, often insufficient)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Stress compensation</td>
<td>NRF2 reflects attempted redox recovery; not a kill mechanism</td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

frataxin↑, 1,   GSTP1/GSTπ↓, 1,   H2O2↑, 1,   HO-1↓, 1,   lipid-P↑, 1,   MDA↓, 1,   NRF2↓, 2,   NRF2↑, 1,   OXPHOS↓, 1,   ROS↑, 1,   ROS↓, 3,   mt-ROS↑, 2,   SOD↓, 1,   SOD↑, 1,   SOD1↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 3,   mitResp↓, 1,   MMP↓, 3,   mtDam↑, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

ACLY↓, 1,   AMPK↑, 4,   AMPK↝, 1,   p‑AMPK↑, 1,   CREB↓, 1,   ECAR↓, 1,   FDG↓, 1,   GlucoseCon↓, 3,   Glycolysis↓, 4,   HK2↓, 1,   lactateProd↓, 1,   LDHA↓, 2,   NAD↓, 1,   NADPH↓, 1,   PDH↑, 2,   PDK1↓, 2,   PDKs↓, 1,   PFK↓, 1,   PKM2↓, 2,  

Cell Death

p‑Akt↓, 2,   Akt↓, 5,   Apoptosis↑, 7,   BAX↑, 3,   Bax:Bcl2↑, 1,   Bcl-2↓, 3,   Bcl-xL↓, 4,   BIM↑, 1,   Casp↑, 3,   Casp3↑, 5,   Casp9↑, 4,   Cyt‑c↑, 1,   GRP58↓, 1,   JNK↑, 3,   MAPK↓, 1,   Mcl-1↓, 2,   p27↑, 1,   p38↑, 1,   survivin↓, 2,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

other↓, 1,   other↝, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   GRP78/BiP↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   LC3B-II↑, 1,   p62↓, 1,   p62↑, 1,   TumAuto↓, 1,  

DNA Damage & Repair

DNAdam↑, 1,   MGMT↓, 1,   p‑P53↑, 1,   P53↓, 1,   P53↑, 3,   PARP1↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

Cyc↓, 1,   cycD1/CCND1↓, 1,   P21↑, 2,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CD24↓, 1,   CD44↓, 1,   cFos↓, 1,   CSCs↓, 2,   EMT↓, 1,   ERK↓, 1,   GSK‐3β↓, 1,   IGF-1R↓, 3,   mTOR↓, 4,   p‑mTOR↑, 2,   p‑P70S6K↑, 1,   p‑P70S6K↓, 1,   PI3K↝, 1,   PI3K↓, 2,   STAT3↓, 1,   TumCG↓, 5,   TumCG∅, 1,   TumCG↑, 1,  

Migration

E-cadherin↑, 1,   FAK↓, 1,   Furin↓, 3,   ITGB1↓, 2,   ITGB3↓, 1,   Ki-67↓, 1,   MMP11↓, 1,   MMP2↓, 1,   MMP9↓, 1,   MMPs↓, 1,   MUC4↓, 1,   NeuroT↓, 1,   p‑SMAD2↓, 1,   Snail↓, 2,   TGF-β↓, 1,   TumCI↓, 3,   TumCMig↓, 5,   TumCP↓, 2,   TumMeta↓, 2,   Twist↓, 1,   Vim↓, 2,   Zeb1↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 2,   EGR4↓, 1,   Hif1a↑, 2,   Hif1a↓, 1,   PDI↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IKKα↓, 1,   Inflam↓, 1,   NF-kB↓, 2,   NF-kB↑, 1,   PSA↓, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

BNP↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   ChemoSen↑, 4,   Dose∅, 2,   Dose↑, 1,   Dose↝, 1,   eff↑, 3,   eff↓, 2,   Half-Life↓, 1,   RadioS↑, 1,   selectivity↑, 4,  

Clinical Biomarkers

EGFR↓, 2,   HER2/EBBR2↓, 1,   Ki-67↓, 1,   PSA↓, 1,  

Functional Outcomes

AntiCan↑, 1,   chemoP↑, 1,   cognitive?, 1,   neuroP↑, 1,   OS↑, 6,   RenoP↑, 1,   TumVol↓, 1,   Weight↑, 1,   Weight∅, 1,  
Total Targets: 161

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 25,   Catalase↑, 4,   GPx↑, 5,   GSH↑, 19,   GSR↑, 1,   GSSG↓, 1,   GSTs↑, 1,   H2O2∅, 1,   H2O2↓, 1,   HK1↑, 1,   HO-1↑, 5,   Iron↓, 1,   lipid-P↓, 9,   MDA↓, 3,   NOX4↓, 1,   NQO1↑, 3,   NRF2↑, 10,   ROS↓, 25,   ROS↑, 1,   SIRT3↑, 1,   SOD↑, 4,   SOD1↑, 1,   TAC↑, 1,   VitC↑, 4,   VitE↑, 4,  

Metal & Cofactor Biology

IronCh↑, 17,  

Mitochondria & Bioenergetics

ATP↑, 2,   MMP↑, 2,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

ACC↑, 1,   Acetyl-CoA↑, 3,   adiP↑, 2,   ALAT↓, 1,   AMPK↑, 2,   AMPK⇅, 1,   BUN↓, 1,   cAMP↑, 2,   cMyc↓, 1,   FAO↑, 1,   glucose↑, 1,   GlucoseCon↑, 11,   Glycolysis↑, 1,   LDH↓, 1,   NADPH↑, 1,   PDH↑, 1,   PDKs↓, 1,   SIRT1↑, 2,  

Cell Death

Akt↑, 3,   Akt?, 1,   Apoptosis↓, 2,   Casp3↓, 2,   Casp6↓, 1,   Casp9↓, 3,   iNOS↓, 4,   JNK↓, 1,   MAPK↑, 2,   MAPK↓, 1,   p38↑, 1,  

Transcription & Epigenetics

Ach↑, 7,   other↓, 1,   other↝, 4,   other↑, 2,  

DNA Damage & Repair

ATM↑, 1,  

Proliferation, Differentiation & Cell State

CD34↑, 1,   ERK↑, 3,   FOXO1↑, 1,   FOXO3↑, 1,   IGF-1↑, 1,   PI3K↑, 3,   PTEN↓, 2,   STAT↓, 1,  

Migration

Ca+2↓, 1,   COL3A1↓, 1,   E-sel↓, 1,   MMP9↓, 2,   PKCδ↑, 2,   VCAM-1↓, 7,   α-SMA↓, 1,  

Angiogenesis & Vasculature

eNOS↑, 1,   eNOS↓, 1,   Hif1a↑, 3,   NO↓, 3,   VEGF↑, 2,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 13,   GLUT1↑, 1,   GLUT3↑, 3,   GLUT4↑, 5,  

Immune & Inflammatory Signaling

COX2↓, 2,   ICAM-1↓, 3,   IL1β↓, 6,   IL2↓, 1,   IL6↓, 5,   IL8↓, 1,   INF-γ↓, 1,   Inflam↓, 17,   JAK↓, 1,   MCP1↓, 1,   NF-kB↓, 11,   p‑NF-kB↓, 1,   PGE2↓, 1,   TNF-α↓, 6,  

Synaptic & Neurotransmission

5HT↑, 2,   AChE↓, 2,   BDNF↑, 1,   ChAT↑, 7,   p‑tau↓, 1,   tau↓, 1,  

Protein Aggregation

Aβ↓, 7,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 5,   BioAv↝, 7,   Dose↝, 1,   eff↓, 1,   eff↑, 5,   Half-Life↓, 4,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   BG↓, 1,   BP↝, 1,   BP↓, 1,   creat↓, 1,   GutMicro↑, 1,   IL6↓, 5,   LDH↓, 1,  

Functional Outcomes

AntiAge↑, 3,   AntiCan↑, 1,   cardioP↑, 3,   cardioP?, 1,   cardioP↓, 1,   chemoP↑, 1,   cognitive↑, 17,   cognitive∅, 2,   hepatoP↑, 2,   memory↑, 10,   motorD↑, 3,   neuroP↑, 18,   radioP↑, 1,   RenoP↑, 1,   toxicity↓, 3,   toxicity∅, 1,   Weight↓, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 144

Research papers

Year Title Authors PMID Link Flag
2021Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic CancerXuefeng AnPMC8507678https://pmc.ncbi.nlm.nih.gov/articles/PMC8507678/0
2025Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insightsBandana Chakravartihttps://www.sciencedirect.com/science/article/pii/S07533322250031540
2025Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel Bandana Chakravartihttps://www.sciencedirect.com/science/article/pii/S07533322250031540
2025Alpha-Lipoic Acid Nootropic Review: Benefits, Use, Dosage & Side EffectsJohn Bartholdi, MPharmacolhttps://nootropicology.com/alphalipoic-acid/0
2024Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementiaOh. Yoen Kimhttps://www.sciencedirect.com/science/article/pii/S00243205230099180
2024Anti-cancer effects of alpha lipoic acid, cisplatin and paclitaxel combination in the OVCAR-3 ovarian adenocarcinoma cell lineHatice Şiyzen Çoban38578399https://pubmed.ncbi.nlm.nih.gov/38578399/0
2024Revisiting the molecular mechanisms of Alpha Lipoic Acid (ALA) actions on metabolismMercy Oluwaseun Awoleyehttps://www.sciencedirect.com/science/article/abs/pii/S29501997240006120
2024The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and TreatmentShuai Yanhttps://www.mdpi.com/2076-3921/13/8/8970
2024α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiationK. M. Abdullahhttps://www.nature.com/articles/s41598-024-54479-x.pdf0
2024α-lipoic acid modulates prostate cancer cell growth and bone cell differentiationK. M. Abdullahhttps://www.nature.com/articles/s41598-024-54479-x0
2024Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axisFlorencia Hidalgohttps://www.nature.com/articles/s41598-024-72309-y0
2023Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expressionAybuke Celik37453954https://pubmed.ncbi.nlm.nih.gov/37453954/0
2023Cognitive and Mood Effect of Alpha-Lipoic Acid Supplementation in a Nonclinical Elder Sample: An Open-Label Pilot StudyGianpaolo Antonio BasilePMC9916195https://pmc.ncbi.nlm.nih.gov/articles/PMC9916195/0
2023Alpha lipoic acid treatment in late middle age improves cognitive function: Proteomic analysis of the protective mechanisms in the hippocampusJian Zhanghttps://www.sciencedirect.com/science/article/abs/pii/S03043940230005260
2023Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease PreventionAmit Kumar TripathiPMC9904877https://pmc.ncbi.nlm.nih.gov/articles/PMC9904877/0
2023Cancer Metabolism: Fasting Reset, the Keto-Paradox and Drugs for UndoingMaurice IsraëlPMC9960359https://pmc.ncbi.nlm.nih.gov/articles/PMC9960359/0
2023Protective effects of alpha lipoic acid (ALA) are mediated by hormetic mechanismsEdward J. Calabresehttps://www.sciencedirect.com/science/article/abs/pii/S02786915230020770
2023Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro StudiesSabrina Bossiohttps://www.mdpi.com/1422-0067/24/23/171110
2023Renal-Protective Roles of Lipoic Acid in Kidney DiseaseSulin F KamtPMC10097220https://pmc.ncbi.nlm.nih.gov/articles/PMC10097220/0
2022Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemnessBandana Chakravartihttps://www.sciencedirect.com/science/article/pii/S09254439220012590
2022Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patientsRehab H WeridaPMC9385783 https://pmc.ncbi.nlm.nih.gov/articles/PMC9385783/0
2022Effect of add-on alpha lipoic acid on psychopathology in patients with treatment-resistant schizophrenia: a pilot randomized double-blind placebo-controlled trialArchana MishraPMC9449282https://pmc.ncbi.nlm.nih.gov/articles/PMC9449282/0
2022The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III ExpressionAhlam AlhusainPMC8891863https://pmc.ncbi.nlm.nih.gov/articles/PMC8891863/0
2022Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control CellsFabian DieterPMC9409376https://pmc.ncbi.nlm.nih.gov/articles/PMC9409376/0
2022How Alpha Linolenic Acid May Sustain Blood–Brain Barrier Integrity and Boost Brain Resilience against Alzheimer’s DiseaseAlicia Leikin-FrenkelPMC9737216https://pmc.ncbi.nlm.nih.gov/articles/PMC9737216/0
2021α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer CellsLiduo YuePMC8211503https://pmc.ncbi.nlm.nih.gov/articles/PMC8211503/0
2021Decrypting the potential role of α-lipoic acid in Alzheimer's diseaseDapinder Kaur34450170https://pubmed.ncbi.nlm.nih.gov/34450170/0
2021The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic reviewSahar Sheikholeslamihttps://www.sciencedirect.com/science/article/abs/pii/S15675769210037750
2021Sulfur-containing therapeutics in the treatment of Alzheimer’s diseaseHaizhou ZhuPMC7889054https://pmc.ncbi.nlm.nih.gov/articles/PMC7889054/pdf/nihms-1667349.pdf0
2020The dietary fatty acids α-linolenic acid (ALA) and linoleic acid (LA) selectively inhibit microglial nitric oxide productionJessica R Lowry33161065https://pubmed.ncbi.nlm.nih.gov/33161065/0
2020Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axisYan Nihttps://www.sciencedirect.com/science/article/pii/S13558145230121660
2020Alpha-Lipoic Acid Mediates Clearance of Iron Accumulation by Regulating Iron Metabolism in a Parkinson's Disease Model Induced by 6-OHDAShengyan Tai32670009https://pmc.ncbi.nlm.nih.gov/articles/PMC7330090/0
2020Alpha lipoic acid promotes development of hematopoietic progenitors derived from human embryonic stem cells by antagonizing ROS signalsYong DongPMC7754144https://pmc.ncbi.nlm.nih.gov/articles/PMC7754144/0
2020Potential therapeutic effects of alpha lipoic acid in memory disordersLeonardo Triggianihttps://www.mattioli1885journals.com/index.php/progressinnutrition/article/download/9341/8614/447120
2020Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1Hoon Sik ChoiPMC8291200https://pmc.ncbi.nlm.nih.gov/articles/PMC8291200/0
2020Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulationDiana FarhatPMC7078196 https://pmc.ncbi.nlm.nih.gov/articles/PMC7078196/0
2020α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cellsMonica PibiriPMC7189383 https://pmc.ncbi.nlm.nih.gov/articles/PMC7189383/0
2020α-Lipoic Acid Maintains Brain Glucose Metabolism via BDNF/TrkB/HIF-1α Signaling Pathway in P301S MiceYan-hui ZhangPMC7471806https://pmc.ncbi.nlm.nih.gov/articles/PMC7471806/0
2020Alpha-lipoic acid ameliorates H2O2-induced human vein endothelial cells injury via suppression of inflammation and oxidative stressWei Wanghttps://www.tandfonline.com/doi/full/10.1080/09168451.2020.18022210
2020Lipoic acid a multi-level molecular inhibitor of tumorigenesisD Farhat 31669587https://pubmed.ncbi.nlm.nih.gov/31669587/0
2020Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell linesDiana Farhathttps://www.nature.com/articles/s41388-020-1211-x0
2020Alpha‐lipoic acid inhibits lung cancer growth via mTOR‐mediated autophagy inhibitionPeipei PengPMC7137803https://pmc.ncbi.nlm.nih.gov/articles/PMC7137803/0
2019Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell lineHaci Ahmet Devecihttps://www.sciencedirect.com/science/article/pii/S07533322183550700
2019Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicologyGeir Bjørklund30939378https://pubmed.ncbi.nlm.nih.gov/30939378/0
2019The Antioxidant Alpha-Lipoic Acid Inhibits Proliferation and Invasion of Human Gastric Cancer Cells via Suppression of STAT3-Mediated MUC4 Gene ExpressionYu YangPMC6930776https://pmc.ncbi.nlm.nih.gov/articles/PMC6930776/0
2019Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease?Sávio Monteiro dos SantosPMC6914903https://pmc.ncbi.nlm.nih.gov/articles/PMC6914903/0
2019Insights on the Use of α-Lipoic Acid for Therapeutic PurposesBahare SalehiPMC6723188https://pmc.ncbi.nlm.nih.gov/articles/PMC6723188/0
2019Metabolic therapies inhibit tumor growth in vivo and in silicoJorgelindo da Veiga Moreirahttps://www.nature.com/articles/s41598-019-39109-10
2019α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathwayJoohyung LeePMC6932784https://pmc.ncbi.nlm.nih.gov/articles/PMC6932784/0
2017Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and NeurodegenerationPatrícia MolzPMC5732919https://pmc.ncbi.nlm.nih.gov/articles/PMC5732919/0
2017Alpha-Lipoic Acid Downregulates IL-1β and IL-6 by DNA Hypermethylation in SK-N-BE Neuroblastoma CellsSimona DinicolaPMC5745484https://pmc.ncbi.nlm.nih.gov/articles/PMC5745484/0
2017The Long-Term Survival of a Patient With Stage IV Renal Cell Carcinoma Following an Integrative Treatment Approach Including the Intravenous α-Lipoic Acid/Low-Dose Naltrexone ProtocolBurton M BerksonPMC6142095https://pmc.ncbi.nlm.nih.gov/articles/PMC6142095/0
2017The Potent Antioxidant Alpha Lipoic AcidSamy Azizahttps://www.researchgate.net/publication/321551866_The_Potent_Antioxidant_Alpha_Lipoic_Acid0
2016Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cellsMin Ji Jeonhttps://www.sciencedirect.com/science/article/abs/pii/S03037207153010640
2015The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical studyOla M Omran 25847504https://pubmed.ncbi.nlm.nih.gov/25847504/0
2015Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells leading to cell deathPerrine KafaraPMC4470044https://pmc.ncbi.nlm.nih.gov/articles/PMC4470044/0
2015α-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-κB in H. pylori-Infected Gastric Epithelial AGS CellsJi Hyun ChoiPMC4696963https://pmc.ncbi.nlm.nih.gov/articles/PMC4696963/0
2014Metabolic treatment of cancer: intermediate results of a prospective case seriesLaurent Schwartz 24511042https://pubmed.ncbi.nlm.nih.gov/24511042/0
2013Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicinLaurent Schwartz 22797854https://pubmed.ncbi.nlm.nih.gov/22797854/0
2013α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cellsMasao YamasakiPMC3882485https://pmc.ncbi.nlm.nih.gov/articles/PMC3882485/0
2013Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A ReviewMargaret E SearsPMC3654245https://pmc.ncbi.nlm.nih.gov/articles/PMC3654245/0
2013The Effect of Lipoic Acid Therapy on Cognitive Functioning in Patients with Alzheimer's DiseaseAntonietta FavaPMC4437336https://pmc.ncbi.nlm.nih.gov/articles/PMC4437336/0
2012The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral folliclesAli TalebiPMC3270132https://pmc.ncbi.nlm.nih.gov/articles/PMC3270132/0
2012Tolerance of oral lipoid acid and hydroxycitrate combination in cancer patients: first approach of the cancer metabolism research groupNicole A. Delepinehttps://aacrjournals.org/cancerres/article/72/8_Supplement/3832/580877/Abstract-3832-Tolerance-of-oral-lipoid-acid-and0
2012Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivoBenedikt FeuereckerPMC3542233 https://pmc.ncbi.nlm.nih.gov/articles/PMC3542233/0
2010A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary resultsLaurent Schwartz 20372858https://pubmed.ncbi.nlm.nih.gov/20372858/0
2010alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cellsHyun Sook Lee 20650348https://pubmed.ncbi.nlm.nih.gov/20650348/0
2010Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant functionZhekang YingPMC5832356https://pmc.ncbi.nlm.nih.gov/articles/PMC5832356/0
2010The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cellsElena Dozio20580704https://pubmed.ncbi.nlm.nih.gov/20580704/0
2010Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potentialKate Petersen ShayPMC2756298https://pmc.ncbi.nlm.nih.gov/articles/PMC2756298/0
2009Revisiting the ALA/N (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases Burton M Berkson 20042414https://pubmed.ncbi.nlm.nih.gov/20042414/0
2009Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potentialKate Petersen ShayPMC2756298https://pmc.ncbi.nlm.nih.gov/articles/PMC2756298/pdf/nihms-142024.pdf0
2009Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cellsMi Hee NaPMC2809232 https://pmc.ncbi.nlm.nih.gov/articles/PMC2809232/0
2007Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cellsG Simbula17136495https://pubmed.ncbi.nlm.nih.gov/17136495/0
2007Alpha-lipoic acid as a new treatment option for Alzheimer's disease--a 48 months follow-up analysisK Hager17982894https://pubmed.ncbi.nlm.nih.gov/17982894/0
2006The long-term survival of a patient with pancreatic cancer with metastases to the liver after treatment with the intravenous alpha-lipoic acid/low-dose naltrexone protocolBurton M Berkson 16484716https://pubmed.ncbi.nlm.nih.gov/16484716/0
2006Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulationJirapan Moungjaroen16990509https://pubmed.ncbi.nlm.nih.gov/16990509/0
2005alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generationU Wenzel15843897https://pubmed.ncbi.nlm.nih.gov/15843897/0
2004Alpha lipoic acid for dementiaJ Sauer14974062https://pubmed.ncbi.nlm.nih.gov/14974062/0
2003Alpha-lipoic acid induces p27Kip-dependent cell cycle arrest in non-transformed cell lines and apoptosis in tumor cell linesKaryn van de Mark 12548552https://pubmed.ncbi.nlm.nih.gov/12548552/0
2001Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cellsW J ZhangPMID: 11689467https://pubmed.ncbi.nlm.nih.gov/11689467/0
1995Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant?P Ou7605337https://pubmed.ncbi.nlm.nih.gov/7605337/0
2016Addition of Hydroxy Citrate improves effect of ALABurt Berkson MDhttps://jeffreydachmd.com/2016/05/alpha-lipoic-acid-anticancer-agent-burt-berkson-md/0
2012Adding a combination of hydroxycitrate and lipoic acid (METABLOC™) to chemotherapy improves effectiveness against tumor development: experimental results and case report Adeline Guais 20931262https://pubmed.ncbi.nlm.nih.gov/20931262/0
2016Antileukemic effects of piperlongumine and alpha lipoic acid combination on Jurkat, MEC1 and NB4 cells in vitroMerve Alpay27461609https://pubmed.ncbi.nlm.nih.gov/27461609/0
2024Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer ModelsPing ChenPMC11528587https://pmc.ncbi.nlm.nih.gov/articles/PMC11528587/0
2013Vitamin C and Cancer: Is There A Use For Oral Vitamin C?Steve Hickey, PhDhttps://isom.ca/article/vitamin-c-cancer-use-oral-vitamin-c/0