tbResList Print — dietMet diet Methionine-Restricted Diet

Filters: qv=292, qv2=%, rfv=%

Product

dietMet diet Methionine-Restricted Diet
Description: <b>Methionine (MET) restriction (MR)</b> has been shown to arrest cancer growth and sensitizes tumors to chemotherapy. <br>
-Many cancer cells rely heavily on exogenous methionine to sustain rapid growth and proliferation because they often have impaired methionine salvage pathways.<br>
-Methionine contributes to the synthesis of glutathione, a key antioxidant. (Methionine is a precursor of glutathione, a tripeptide that reduces reactive oxygen species.)<br>
-MR diets might influence the redox state of cancer cells, increasing oxidative stress and thereby leading to cell death in metabolically compromised tumor cells.<br>
-Proliferation and growth of several types of cancer cells are inhibited by MR, while normal cells are unaffected by limiting methionine as long as homocysteine is present.<br>
-Methionine restriction is effective when the non-essential amino acid, cysteine, is absent from the diet or media. methionine is the precursor for cysteine which is essential for the formation of GSH.<br>
-Malignant cells lack the enzyme required to recycle homocysteine therefore giving methionine restriction the capacity to alter cancer cells while maintaining normal, healthy cells. <br>
<br>
While vegan diets are typically low in methionine, some nuts and legumes (such as Brazil nuts and kidney beans) are rich in methionine.<br>
<br>
Foods to avoid for MR diet:<br>
Animal Proteins: <br>
-Red Meat (Beef, Pork, Lamb):<br>
-Poultry (Chicken, Turkey): <br>
-Fish and Seafood: <br>
-Eggs: Both the egg whites and yolks are protein rich.<br>
-Dairy Products: Milk, cheese, and yogurt <br>
Certain Plant Proteins:<br>
-Soy Products:<br>
-Legumes: <br>
Protein Supplements:<br>
<br>
Foods Lower in Methionine (Often Favorable on an MR Diet)<br>
Fruits & Vegetables: leafy greens, berries, apples, and citrus fruits.<br>
Grains & Cereals: rice, oats, and barley <br>
Nuts and Seeds: can vary in methionine content. <br>
Alternative Protein Sources: emphasize protein sources with a lower methionine-to-cysteine ratio.<br>
<br>





<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>One-carbon metabolism (methionine cycle → folate cycle coupling)</td>
<td>↓ one-carbon flux (Met/SAM-linked metabolites)</td>
<td>Core metabolic constraint</td>
<td>Nature study shows dietary MR produces controlled, reproducible changes to one-carbon metabolism that alter cancer outcomes</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31367041/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Nucleotide biosynthesis (purines/thymidylate via one-carbon units)</td>
<td>↓ nucleotide synthesis capacity</td>
<td>DNA/RNA synthesis limitation</td>
<td>Same MR Nature paper links MR-driven one-carbon changes to pathways needed for proliferation and therapy response</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31367041/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Therapy sensitivity (chemo / targeted one-carbon therapy synergy)</td>
<td>↑ sensitivity / ↑ efficacy</td>
<td>Therapeutic potentiation</td>
<td>Dietary MR influences outcomes and can enhance responses to standard therapies through one-carbon metabolic rewiring</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31367041/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>mTORC1 nutrient sensing (Met/SAM → SAMTOR mechanism)</td>
<td>↓ mTORC1 signaling when Met/SAM low</td>
<td>Reduced anabolic growth signaling</td>
<td>Mechanistic review: SAMTOR senses SAM (derived from methionine) and, when SAM is low, inhibits mTORC1 signaling</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/32850834/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Integrated Stress Response (ISR; ATF4 induction under MR)</td>
<td>↑ ISR / ↑ ATF4</td>
<td>Amino-acid stress adaptation</td>
<td>MR activates ISR in TNBC cells (eIF2α phosphorylation; ATF4 and targets up), demonstrating stress signaling engagement under methionine restriction</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6726988/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Glutathione (GSH) / ferroptosis coupling (CHAC1 axis)</td>
<td>↑ CHAC1 / ↓ GSH / ↑ ferroptosis (context-dependent)</td>
<td>Redox vulnerability</td>
<td>Intermittent dietary methionine deprivation augments tumoral ferroptosis; paper links effect to CHAC1 upregulation (CHAC1 promotes GSH degradation)</td>
<td><a href="https://www.nature.com/articles/s41467-023-40518-0">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>Epigenetic methylation capacity (SAM-dependent methylation)</td>
<td>↓ methylation potential (via ↓ SAM availability)</td>
<td>Altered gene regulation</td>
<td>Review focused on dietary methionine and cancer: MR impacts SAM-dependent methylation processes central to biosynthesis/regulation in tumors</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6951023/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Systemic growth signaling (IGF-1)</td>
<td>↓ IGF-1</td>
<td>Lower systemic pro-growth cue</td>
<td>Intermittent MR reduces circulating IGF-1 (healthspan paper, but the endocrine direction is explicit and relevant to tumor growth biology)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/35570387/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Radiation sensitization (clinical feasibility context)</td>
<td>↑ RT sensitivity (preclinical); feasible in humans</td>
<td>Translational evidence</td>
<td>Phase I pilot: MR diet given concurrently with radiation—supports feasibility/safety; paper states preclinical evidence of MRD sensitizing cancer to RT</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11407292/">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>In vivo tumor growth</td>
<td>↓ tumor growth / ↓ progression (model-dependent)</td>
<td>Demonstrated anti-tumor effect</td>
<td>Nature MR paper demonstrates MR can influence tumor outcomes in mouse cancer models</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/31367041/">(ref)</a></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

Leptin↓, 1,  

Redox & Oxidative Stress

Ferroptosis↑, 1,   GSH↑, 1,   GSH↓, 5,   GSTs↑, 1,   ROS↑, 4,  

Mitochondria & Bioenergetics

Insulin↓, 2,   Raf↓, 1,  

Core Metabolism/Glycolysis

adiP↑, 1,   MATs↓, 1,   MethCyc↓, 1,   polyA↓, 1,   TS↓, 2,  

Cell Death

Akt↓, 1,   Apoptosis↑, 1,   Bak↑, 1,   Casp3↑, 1,   Casp9↑, 1,   Ferroptosis↑, 1,   p27↑, 2,  

Transcription & Epigenetics

other↝, 2,   other↑, 1,  

Protein Folding & ER Stress

p‑eIF2α↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   SESN2↑, 1,   TumAuto↑, 2,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   P21↑, 2,   TumCCA↑, 2,  

Proliferation, Differentiation & Cell State

IGF-1↓, 2,   mTORC1↓, 1,   TumCG↓, 6,  

Migration

Ki-67↓, 1,   TumCP↓, 3,  

Angiogenesis & Vasculature

ATF4↑, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 7,   ChemoSen↓, 1,   eff↑, 7,   eff↝, 2,   eff↓, 2,   RadioS↑, 6,   selectivity↑, 3,  

Clinical Biomarkers

BG↓, 1,   Ki-67↓, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↑, 1,   OS↑, 5,   toxicity↝, 1,   TumVol↓, 1,   Weight↓, 3,  
Total Targets: 50

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   GSH↓, 2,   GSH↑, 2,   HO-1↑, 1,   MDA↓, 1,   NQO1↑, 1,   NRF2↑, 1,   ROS↓, 3,   ROS?, 1,   mt-ROS↓, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

Insulin↓, 2,  

Core Metabolism/Glycolysis

adiP↑, 3,   FGF21↑, 3,   glucose↓, 2,   GlucoseCon↑, 2,   Glycolysis↑, 1,   H2S↑, 1,   HK2↑, 1,   PFK↑, 1,   PIP3↑, 1,   PKM2↑, 1,   PPARα↑, 1,   SCD1↓, 1,  

Cell Death

Akt↑, 1,  

Proliferation, Differentiation & Cell State

FGF↑, 1,   IGF-1↓, 3,   mTOR↓, 1,   PTEN↓, 1,  

Angiogenesis & Vasculature

ATF4↑, 1,  

Barriers & Transport

GLUT4↑, 1,  

Drug Metabolism & Resistance

eff↓, 1,   eff↑, 2,  

Clinical Biomarkers

GutMicro↓, 1,   GutMicro↑, 1,  

Functional Outcomes

cognitive↑, 1,   neuroP↑, 1,   OS↑, 3,   OS↓, 1,   Weight↓, 2,  
Total Targets: 40

Research papers

Year Title Authors PMID Link Flag
2025Methionine restriction for cancer therapy: From preclinical studies to clinical trialsNagaraju Bandaruhttps://www.sciencedirect.com/science/article/pii/S29497132250000230
2024Long term methionine restriction: Influence on gut microbiome and metabolic characteristicsAkash NagarajanPMC10928566https://pmc.ncbi.nlm.nih.gov/articles/PMC10928566/0
2024A Phase I Trial of a Methionine Restricted Diet with Concurrent Radiation TherapyMalcolm D MattesPMC11407292https://pmc.ncbi.nlm.nih.gov/articles/PMC11407292/0
2023Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockadeYing Xuehttps://www.nature.com/articles/s41467-023-40518-00
2022Intermittent methionine restriction reduces IGF‐1 levels and produces similar healthspan benefits to continuous methionine restrictionJason D PlummerPMC9197402https://pmc.ncbi.nlm.nih.gov/articles/PMC9197402/0
2022Methionine restriction - Association with redox homeostasis and implications on aging and diseasesJulia JelleschitzPMC9508608https://pmc.ncbi.nlm.nih.gov/articles/PMC9508608/0
2020Dietary methionine links nutrition and metabolism to the efficacy of cancer therapiesXia GaoPMC6951023https://pmc.ncbi.nlm.nih.gov/articles/PMC6951023/0
2020Methionine Restriction and Cancer BiologyDesiree WandersPMC7146589https://pmc.ncbi.nlm.nih.gov/articles/PMC7146589/0
2020Role of amino acids in regulation of ROS balance in cancerEmilie Jaune-Ponshttps://www.sciencedirect.com/science/article/abs/pii/S00039861203044710
2020Mechanism of Activation of Mechanistic Target of Rapamycin Complex 1 by MethionineMunehiro KitadaPMC7431653https://pmc.ncbi.nlm.nih.gov/articles/PMC7431653/0
2020Dietary methionine links nutrition and metabolism to the efficacy of cancer therapiesXia GaoPMC6951023https://pmc.ncbi.nlm.nih.gov/articles/PMC6951023/0
2019Methionine metabolism in health and cancer: a nexus of diet and precision medicineSydney M. Sandersonhttps://www.nature.com/articles/s41568-019-0187-80
2019Clinical Studies of Methionine-Restricted Diets for Cancer PatientsRobert M Hoffman30725411https://pubmed.ncbi.nlm.nih.gov/30725411/0
2019Methionine restriction activates the integrated stress response in triple-negative breast cancer cells by a GCN2- and PERK-independent mechanismSai Harisha RajanalaPMC6726988https://pmc.ncbi.nlm.nih.gov/articles/PMC6726988/0
2019Altering Diet Enhances Response to Cancer Treatments in MiceNCI Staffhttps://www.cancer.gov/news-events/cancer-currents-blog/2019/targeting-cancer-metabolism-low-methionine-diet0
2016Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude miceJ R HensPMC4891836https://pmc.ncbi.nlm.nih.gov/articles/PMC4891836/0
2015Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagyHuailei Liu25448282https://pubmed.ncbi.nlm.nih.gov/25448282/0
2015Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restrictionA Gomez25773352https://pubmed.ncbi.nlm.nih.gov/25773352/0
2015Low Protein Intake is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older PopulationMorgan E LevinePMC3988204https://pmc.ncbi.nlm.nih.gov/articles/PMC3988204/0
2014Mechanisms of Increased In Vivo Insulin Sensitivity by Dietary Methionine Restriction in MiceKirsten P StonePMC4207389https://pmc.ncbi.nlm.nih.gov/articles/PMC4207389/0
2012A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extensionPaul Cavuoto22342103https://pubmed.ncbi.nlm.nih.gov/22342103/0
2011Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturaseAmany K ElshorbagyPMC2999932https://pmc.ncbi.nlm.nih.gov/articles/PMC2999932/0
2003Methionine dependency and cancer treatmentE Cellarier14585259https://pubmed.ncbi.nlm.nih.gov/14585259/0