tbResList Print — H2 Hydrogen Gas

Filters: qv=295, qv2=%, rfv=%

Product

H2 Hydrogen Gas
Description: <b>Hydrogen Gas</b>, Powerful Antioxidant <br>
Mechanistically, H₂ is most defensibly framed as a selective antioxidant + anti-inflammatory signaling modulator (often via Nrf2↑ and NF-κB↓ / NLRP3↓), with strongest clinical relevance in oncology being reduction of treatment toxicities (radiation/CCRT side-effects), with mixed/early evidence for direct anticancer effects. <br>
<br>
1.Antioxidant and Nrf2/ARE Pathway: activate Nrf2, which induces antioxidant enzymes. <br>
2.NF-κB Pathway: reported to inhibit NF-κB activation, thereby reducing inflammatory cytokine production <br>
3.Mitochondrial Apoptosis Pathway <br>
4.MAPK (Mitogen-Activated Protein Kinases) Pathway <br>
5.PI3K/Akt/mTOR Pathway <br>
6.Inflammatory Cytokine Signaling: Reducing cytokines (such as IL-6, TNF-α) <br>
7.p53 Pathway <br>
8.Autophagy Pathways: might regulate autophagy, (dual roles in cancer) <br>
<br>
<a href="https://suiso-madoguchi.com/product/11/">Example unit sometimes used in studies</a><br>
<a href="https://qlifecanada.ca/">Example Canadian Supplier</a><br>
<br>
Hydrogen gas can be generated in small amount by hydrogenase of certain members of the human gastrointestinal tract microbiota from unabsorbed carbohydrates in the intestine through degradation and metabolism, which then is partially diffused into blood flow and released and detected in exhaled breath, indicating its potential to serve as a biomarker.<br>
<br>
<a href="tbResList.php?qv=295&wNotes=on">Many studies</a>
have shown that H2 therapy can reduce oxidative stress. This, however, contradicts radiation therapy and chemotherapy, in which ROS are required to induce apoptosis and combat cancer. Yet many studies show
<a href="tbResList.php?qv=295&tsv=1171&wNotes=on">chemoprotective</a>
and
<a href="tbResList.php?qv=295&tsv=1185&wNotes=on">radioprotective</a>
and some even show
<a href="tbResList.php?qv=295&tsv=1106&wNotes=on">chemosentizing</a>
<br>
Nevertheless there are some papers claiming
<a href="tbResList.php?qv=295&&tsv=275&esv=2&exSp=open&wNotes=on"> ROS ↑</a>
for cancer cells<br>
<br>
Hydrogen Gas in Water is also used. <br>
- the amount of H2 dissolved in solutions is limited: up to 0.8 mM (1.6 mg/L) H2 can be dissolved in water under atmospheric pressure at room temperature<br>
<br>



<!-- Hydrogen Gas (H2) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Selective ROS/RNS buffering (•OH, ONOO− emphasis)</td>
<td>Oxidative damage tone ↓ (context-dependent)</td>
<td>Radiation/chemo oxidative injury ↓</td>
<td>P, R</td>
<td>Rapid cytoprotection</td>
<td>Landmark work proposes H2 selectively reduces highly reactive species (e.g., hydroxyl radical) rather than globally suppressing signaling ROS. Treat as "selective antioxidant" rather than broad ROS quencher.</td>
</tr>

<tr>
<td>2</td>
<td>Nrf2 antioxidant response (Keap1/Nrf2; SOD/GPx/GSH systems)</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; endogenous antioxidant enzymes ↑</td>
<td>R, G</td>
<td>Endogenous antioxidant upshift</td>
<td>Multiple reviews describe H2 as engaging Nrf2-linked programs and increasing antioxidant enzyme activity; direction in tumors is model-specific and should not be oversold as uniformly anti-tumor.</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB inflammatory transcription</td>
<td>Inflammatory/pro-survival transcription ↓ (context)</td>
<td>Inflammation ↓ (tissue protective)</td>
<td>R, G</td>
<td>Anti-inflammatory signaling</td>
<td>Commonly reported downstream of redox modulation: reduced NF-κB activity and reduced inflammatory cytokine outputs.</td>
</tr>

<tr>
<td>4</td>
<td>NLRP3 inflammasome (priming/activation)</td>
<td>Inflammasome signaling ↓ (context)</td>
<td>NLRP3 activation ↓; tissue injury signaling ↓</td>
<td>R, G</td>
<td>Inflammasome dampening</td>
<td>Often described as part of an antioxidant–anti-inflammatory synergy (Nrf2↑ with NF-κB/NLRP3↓). Use "reported" language.</td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial protection / mitochondrial ROS</td>
<td>Mito-stress tone ↓ (context)</td>
<td>Mitochondrial function preserved; oxidative injury ↓</td>
<td>R, G</td>
<td>Bioenergetic stabilization</td>
<td>Frequently reported as reduced mitochondrial oxidative injury and improved cellular resilience in injury/inflammation models.</td>
</tr>

<tr>
<td>6</td>
<td>Radiation/CCRT toxicity mitigation (clinical relevance)</td>
<td>Adjunct use: may reduce acute radiation toxicities without obvious loss of tumor control (early evidence)</td>
<td>Mucositis/dermatitis/inflammation severity ↓ (reported)</td>
<td>G</td>
<td>Supportive care</td>
<td>Clinical studies report feasibility/safety and reduced radiotherapy-related toxicities in selected settings; treat as supportive/adjunct, not standalone anti-cancer therapy.</td>
</tr>

<tr>
<td>7</td>
<td>Apoptosis / proliferation control</td>
<td>Mixed reports: apoptosis ↑ or neutral depending on model</td>
<td>Often anti-apoptotic in injury models</td>
<td>G</td>
<td>Context-dependent cell fate shift</td>
<td>Unlike classic cytotoxins, H2 effects on apoptosis/proliferation are not uniform; keep as model-dependent and secondary.</td>
</tr>

<tr>
<td>8</td>
<td>Clinical safety signal (inhalation studies)</td>
<td>—</td>
<td>Generally well tolerated at low concentrations in studied settings</td>
<td>—</td>
<td>Translation constraint / safety framing</td>
<td>Human safety studies exist for low-concentration inhalation; practical use must be medical-grade and safety-controlled due to flammability risk.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (direct chemical/rapid signaling effects)</li>
<li><b>R</b>: 30 min–3 hr (acute redox + inflammatory signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   CoQ10↑, 1,   H2O2↑, 1,   OXPHOS↑, 1,   ROS↑, 7,   ROS↓, 5,   mt-ROS↑, 2,   mt-ROS↓, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   PGC-1α↑, 3,  

Core Metabolism/Glycolysis

ALAT↓, 2,   Glycolysis↓, 1,   HK2↓, 1,   lactateProd↓, 1,   PFK↓, 1,   SIRT1↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↓, 1,   Apoptosis↑, 1,   GSDMD↑, 2,   Pyro↑, 2,   TumCD↑, 1,  

Transcription & Epigenetics

other↝, 9,   other?, 1,   other↑, 1,  

Protein Folding & ER Stress

mt-UPR↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

P53?, 1,  

Proliferation, Differentiation & Cell State

CD133↓, 1,   Diff↑, 1,   EP2↓, 1,   p‑PI3K↓, 1,   TumCG↓, 3,  

Migration

CEA↓, 1,   Ki-67↓, 2,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 3,   TumMeta↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 2,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 2,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 1,   HMGB1↓, 1,   IL1β↓, 1,   IL1β↑, 1,   IL6↓, 2,   IL8↑, 1,   Inflam↑, 1,   Inflam↓, 1,   NF-kB↓, 2,   PDT+↓, 1,   TNF-α↓, 1,   TNF-α↑, 1,  

Protein Aggregation

NLRP3↑, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 3,   Dose↝, 11,   Dose↑, 1,   eff↝, 6,   eff↑, 8,   eff↓, 1,   selectivity↑, 6,  

Clinical Biomarkers

ALAT↓, 2,   AST↓, 1,   CA125↓, 1,   CEA↓, 1,   CYFRA21-1↓, 1,   GutMicro↑, 2,   IL6↓, 2,   Ki-67↓, 2,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 3,   Appetite↑, 1,   cardioP↑, 1,   chemoP↑, 6,   cognitive↑, 1,   hepatoP↑, 1,   neuroP↓, 1,   neuroP↑, 1,   OS↑, 8,   OS↓, 1,   Pain↓, 1,   QoL↑, 3,   radioP↑, 4,   Sleep↑, 1,   toxicity∅, 1,   TumVol↓, 3,   TumVol↑, 1,   TumW↓, 1,  

Infection & Microbiome

CD8+↑, 2,  
Total Targets: 93

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

4-HNE↓, 1,   antiOx↑, 17,   Catalase↑, 7,   Catalase↓, 1,   Ferroptosis↓, 1,   GPx↑, 2,   GPx↓, 1,   GPx1↑, 1,   GSH↑, 1,   HO-1↑, 6,   HO-1↓, 1,   lipid-P↓, 2,   MDA↓, 5,   MDA↑, 1,   MPO↑, 1,   NRF2↑, 8,   ROS↓, 27,   mt-ROS↓, 1,   SIRT3↑, 1,   SOD↑, 6,   SOD1↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   EGF↑, 1,   mtDam↓, 2,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 5,   CREB↑, 1,   FAO↓, 1,   LDL↓, 1,   NADPH↓, 4,   PPARα↑, 1,   SIRT1↑, 5,  

Cell Death

Akt↓, 1,   Apoptosis↓, 4,   ASK1↓, 1,   BAX↓, 1,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Casp12↓, 1,   Casp3↓, 1,   cl‑Casp8↑, 1,   Ferroptosis↓, 1,   JNK↓, 2,   p38↓, 1,   p‑p38↓, 1,  

Transcription & Epigenetics

other↓, 1,   other↝, 1,   other↑, 2,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 2,   GRP78/BiP↓, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   p62↓, 1,  

DNA Damage & Repair

DNMT1↓, 1,   DNMT3A↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   FOXO↑, 1,   FOXO3↑, 4,   mTOR↓, 2,   p‑mTOR↓, 1,   PTEN↓, 1,   Wnt↓, 1,  

Migration

AntiAg↑, 6,   APP↓, 2,   Ca+2↓, 2,   NFAT↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

NO↓, 4,   NO↑, 1,   VEGF↑, 2,  

Barriers & Transport

BBB?, 1,   BBB↑, 6,  

Immune & Inflammatory Signaling

HMGB1↓, 1,   IFN-γ↓, 1,   IL10↓, 2,   IL1β↓, 5,   IL2↓, 1,   IL4↓, 1,   IL6↓, 11,   IL8↓, 1,   Inflam↓, 25,   MCP1↓, 1,   NF-kB↓, 6,   TLR4↓, 1,   TNF-α↓, 11,  

Synaptic & Neurotransmission

BDNF↑, 10,   GABA↓, 1,   p‑tau↓, 4,  

Protein Aggregation

Aβ↓, 5,   BACE↓, 2,   NLRP3↓, 7,   NLRP3↑, 1,  

Hormonal & Nuclear Receptors

ER(estro)↓, 1,   ER(estro)↑, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   Dose↝, 6,   Half-Life↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

AST↓, 1,   BP∅, 1,   creat↓, 1,   GutMicro↑, 1,   IL6↓, 11,  

Functional Outcomes

cardioP↑, 2,   chemoP↑, 2,   cognitive↑, 17,   hepatoP↑, 2,   memory↑, 8,   motorD↑, 1,   neuroP↑, 12,   OS↑, 4,   radioP↑, 1,   RenoP↑, 2,   toxicity∅, 2,   toxicity↓, 1,  

Infection & Microbiome

Sepsis↓, 5,  
Total Targets: 117

Research papers

Year Title Authors PMID Link Flag
2025Hydrogen Gas Attenuates Toxic Metabolites and Oxidative Stress-Mediated Signaling to Inhibit Neurodegeneration and Enhance Memory in Alzheimer’s Disease ModelsSofian Abdul-Nasirhttps://www.researchgate.net/publication/393858450_Hydrogen_Gas_Attenuates_Toxic_Metabolites_and_Oxidative_Stress-Mediated_Signaling_to_Inhibit_Neurodegeneration_and_Enhance_Memory_in_Alzheimer%27s_Disease_Models0
2025Role and mechanism of molecular hydrogen in the treatment of Parkinson’s diseasesFengjiao WangPMC12055789https://pmc.ncbi.nlm.nih.gov/articles/PMC12055789/0
2025Therapeutic potential of hydrogen-rich water in zebrafish model of Alzheimer’s disease: targeting oxidative stress, inflammation, and the gut-brain axisJiaxuan HePMC11746902https://pmc.ncbi.nlm.nih.gov/articles/PMC11746902/0
2024The Benefit of Hydrogen Gas as an Adjunctive Therapy for Chronic Obstructive Pulmonary DiseaseShih-Feng LiuPMC10890181https://pmc.ncbi.nlm.nih.gov/articles/PMC10890181/0
2024A biomimetic upconversion nanoreactors for near-infrared driven H2 release to inhibit tauopathy in Alzheimer's disease therapyQin ZhangPMC11402069https://pmc.ncbi.nlm.nih.gov/articles/PMC11402069/0
2024Prospects of molecular hydrogen in cancer prevention and treatmentWenchang Zhouhttps://link.springer.com/article/10.1007/s00432-024-05685-70
2024Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal CancerGrace Russellhttps://www.mdpi.com/2673-9801/4/3/200
2024Hydrogen: an advanced and safest gas option for cancer treatmentNishant Guptahttps://www.researchgate.net/publication/386566067_Hydrogen_an_advanced_and_safest_gas_option_for_cancer_treatment0
2024Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor ImmunityXiaoyan Menghttps://advanced.onlinelibrary.wiley.com/doi/full/10.1002/advs.2024012690
2023Hydrogen and Vitamin C Combination Therapy: A Novel Method of RadioprotectionMichiko Miyakawahttps://www.preprints.org/manuscript/202312.1369/v10
2023Therapeutic Inhalation of Hydrogen Gas for Alzheimer's Disease Patients and Subsequent Long-Term Follow-Up as a Disease-Modifying Treatment: An Open Label Pilot StudyHirohisa OnoPMC10057981https://pmc.ncbi.nlm.nih.gov/articles/PMC10057981/0
2023Therapeutic Inhalation of Hydrogen Gas for Alzheimer’s Disease Patients and Subsequent Long-Term Follow-Up as a Disease-Modifying Treatment: An Open Label Pilot StudyHirohisa Onohttps://pmc.ncbi.nlm.nih.gov/articles/PMC10057981/0
2023The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challengesJiaxuan Hehttps://www.sciencedirect.com/science/article/pii/S07533322230160500
2023Effects of Hydrogen Gas Inhalation on Community-Dwelling Adults of Various Ages: A Single-Arm, Open-Label, Prospective Clinical TrialMd Habibur RahmanPMC10295751https://pmc.ncbi.nlm.nih.gov/articles/PMC10295751/0
2023A Systematic Review of Molecular Hydrogen Therapy in Cancer ManagementMuhammad Nooraiman Zufayri Mohd NoorPMC10152878https://pmc.ncbi.nlm.nih.gov/articles/PMC10152878/0
2022Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein ResponseTomoya Hasegawahttps://www.mdpi.com/1422-0067/23/5/28880
2022Role of Molecular Hydrogen in Ageing and Ageing-Related DiseasesZhiling FuPMC8956398https://pmc.ncbi.nlm.nih.gov/articles/PMC8956398/0
2022Molecular Hydrogen Neuroprotection in Post-Ischemic Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy: Underlying Mechanisms and Potential for Clinical Implementation—Fantasy or Reality?Ryszard Plutahttps://www.mdpi.com/1422-0067/23/12/65910
2022Molecular hydrogen therapy for neurological diseases: a review of current evidenceDinesh RamanathanPMC9979207https://pmc.ncbi.nlm.nih.gov/articles/PMC9979207/0
2022Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain DisordersChongyun Wu36567361https://pubmed.ncbi.nlm.nih.gov/36567361/0
2022Molecular hydrogen is a promising therapeutic agent for pulmonary diseaseZhiling FUPMC8861563https://pmc.ncbi.nlm.nih.gov/articles/PMC8861563/0
2022Long-Term Inhalation of Hydrogen Gas for Patients with Advanced Alzheimer's Disease: A Case Report Showing Improvement in Fecal IncontinenceHirohisa Onohttps://esmed.org/MRA/mra/article/download/2951/193546231/0
2022Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidentsYusuke IchikawaPMC9555030https://pmc.ncbi.nlm.nih.gov/articles/PMC9555030/0
2022PPARα contributes to the therapeutic effect of hydrogen gas against sepsis-associated encephalopathy with the regulation to the CREB-BDNF signaling pathway and hippocampal neuron plasticity-related gene expressionYuanyuan Bai35367313https://pubmed.ncbi.nlm.nih.gov/35367313/0
2021The Impact of Molecular Hydrogen on Mitochondrial ROS and Apoptosis in Colorectal Cancer CellsYi-Hsuan Tsaihttps://www.cell.com/biophysj/fulltext/S0006-3495(20)33076-90
2021Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and ApoptosisYan Tianhttps://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.789507/full0
2021Hydrogen gas alleviates sepsis-induced neuroinflammation and cognitive impairment through regulation of DNMT1 and DNMT3a-mediated BDNF promoter IV methylation in miceMingdong Yuhttps://www.sciencedirect.com/science/article/abs/pii/S15675769210021980
2021Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice ModelEun-Sook JeongPMC8703468https://pmc.ncbi.nlm.nih.gov/articles/PMC8703468/0
2020Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD-1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancerJunji AkagiPMC7509685https://pmc.ncbi.nlm.nih.gov/articles/PMC7509685/0
2020Hydrogen: A Novel Option in Human Disease TreatmentMengling Yanghttps://onlinelibrary.wiley.com/doi/10.1155/2020/83847420
2020Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathwayYe YangPMC6954594https://pmc.ncbi.nlm.nih.gov/articles/PMC6954594/0
2020Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway SwitchYinghao NiuPMC7005324https://pmc.ncbi.nlm.nih.gov/articles/PMC7005324/0
2019Medical Application of Hydrogen in Hematological DiseasesLiren QianPMC6906850https://pmc.ncbi.nlm.nih.gov/articles/PMC6906850/0
2019Brain Metastases Completely Disappear in Non-Small Cell Lung Cancer Using Hydrogen Gas Inhalation: A Case ReportJibing ChenPMC6927257https://pmc.ncbi.nlm.nih.gov/articles/PMC6927257/0
2019Inhibitory effects of hydrogen on in vitro platelet activation and in vivo prevention of thrombosis formationYun Wanghttps://www.researchgate.net/publication/334699544_Inhibitory_effects_of_hydrogen_on_in_vitro_platelet_activation_and_in_vivo_prevention_of_thrombosis_formation0
2019Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosisJunji Akagi30542740https://pubmed.ncbi.nlm.nih.gov/30542740/0
2019Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosisPeng Guan30951745https://pubmed.ncbi.nlm.nih.gov/30951745/0
2019Hydrogen Gas in Cancer TreatmentSai LiPMC6691140https://pmc.ncbi.nlm.nih.gov/articles/PMC6691140/0
2019Recent Advances in Studies of Molecular Hydrogen against SepsisPeng Qiuhttps://www.ijbs.com/v15p1261.htm0
2019The role of hydrogen in Alzheimer’s diseaseXin TanPMC6352568https://pmc.ncbi.nlm.nih.gov/articles/PMC6352568/0
2019The role of hydrogen in Alzheimer's diseaseXin TanPMC6352568https://pmc.ncbi.nlm.nih.gov/articles/PMC6352568/ 0
2019Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiationMeng-yu LiuPMC6528353https://pmc.ncbi.nlm.nih.gov/articles/PMC6528353/0
2018Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive ImpairmentKiyomi NishimakiPMC5872374https://pmc.ncbi.nlm.nih.gov/articles/PMC5872374/0
2018Molecular Hydrogen as an Emerging Candidate for Preventing Alzheimer’s DiseaseShigeo Ohtahttps://www.bioaccent.org/Alzheimers/Article/alzheimers-neurological-003.pdf0
2018Neuroprotective effects of hydrogen inhalation in an experimental rat intracerebral hemorrhage modelKyu-Sun Choihttps://www.sciencedirect.com/science/article/abs/pii/S036192301730566X0
2018The role of hydrogen in Alzheimer′s diseaseXin Ying Tanhttps://www.researchgate.net/publication/329838678_The_role_of_hydrogen_in_Alzheimer's_disease0
2018The healing effect of hydrogen-rich water on acute radiation-induced skin injury in ratsPing ZhouPMC6373674https://pmc.ncbi.nlm.nih.gov/articles/PMC6373674/0
2018Local generation of hydrogen for enhanced photothermal therapyPenghe ZhaoPMC6185976https://pmc.ncbi.nlm.nih.gov/articles/PMC6185976/0
2017Protective effect of hydrogen-rich water on liver function of colorectal cancer patients treated with mFOLFOX6 chemotherapyQingxi YangPMC5666661https://pmc.ncbi.nlm.nih.gov/articles/PMC5666661/0
2017Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitroQiang LiPMC5510297https://pmc.ncbi.nlm.nih.gov/articles/PMC5510297/0
2016Hydrogen therapy: from mechanism to cerebral diseasesCheng-lin LiuPMC5075683https://pmc.ncbi.nlm.nih.gov/articles/PMC5075683/0
2016Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and ApoptosisYunan GaoPMC5220484https://pmc.ncbi.nlm.nih.gov/articles/PMC5220484/0
2016Molecular hydrogen suppresses activated Wnt/β-catenin signalingYingni LinPMC5001535https://pmc.ncbi.nlm.nih.gov/articles/PMC5001535/0
2015Improvement of psoriasis-associated arthritis and skin lesions by treatment with molecular hydrogen: A report of three casesToru Ishibashi25936373https://pubmed.ncbi.nlm.nih.gov/25936373/0
2012Hydrogen May Inhibit Collagen-Induced Platelet Aggregation: An ex vivo and in vivo StudySatoru Takeuchihttps://www.jstage.jst.go.jp/article/internalmedicine/51/11/51_51.7161/_pdf0
2012Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo studySatoru Takeuchi22687834https://pubmed.ncbi.nlm.nih.gov/22687834/0
2010Hydrogen-Rich Saline Protects Against Spinal Cord Injury in RatsChengwen Chenhttps://link.springer.com/article/10.1007/s11064-010-0162-y0
2007Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicalsIkuroh Ohsawa17486089https://pubmed.ncbi.nlm.nih.gov/17486089/0
2020Oral Administration of Si-Based Agent Attenuates Oxidative Stress and Ischemia-Reperfusion Injury in a Rat Model: A Novel Hydrogen Administration MethodMasataka KawamuraPMC7099649https://pmc.ncbi.nlm.nih.gov/articles/PMC7099649/0