tbResList Print — PLB Plumbagin

Filters: qv=299, qv2=%, rfv=%

Product

PLB Plumbagin
Description: <b>Plumbagin</b> (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naturally occurring naphthoquinone derivative.<br>
<br>
–Plumbagin can undergo redox cycling to generate reactive oxygen species (ROS)<br>
-apototosis, activation of caspases, modulation of Bax, Bcl‑2, loss of MMP.<br>
-Cell cycle arrest in cancer cells, often at the G0/G1, or G2/M phases.<br>
-May inhibit NF‑κB activation<br>
– MAPK Pathways<br>
– PI3K/Akt Pathway<br>
-Downregulation of (VEGF) and matrix metalloproteinases (MMPs).<br>
<br>
-Seems capable of raising ROS in normal and cancer cells (#2004)<br>
<br>
-ic50 cancer cells 1-10uM, normal cells >10uM<br>
<br>

<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Oxidative stress (redox cycling)</td>
<td>↑ ROS</td>
<td>Upstream cytotoxic trigger</td>
<td>Plumbagin induces ROS; ROS generation is causally linked to cell death in cancer models</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/15264212/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial dysfunction</td>
<td>Loss of mitochondrial membrane potential occurs during plumbagin-induced apoptotic progression</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/15264212/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (caspase cascade)</td>
<td>↑ caspase-dependent apoptosis</td>
<td>Programmed cell death</td>
<td>Plumbagin triggers apoptosis in leukemia and solid tumor cells; antioxidant rescue attenuates killing</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3163832/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>Reduced pro-survival / inflammatory transcription</td>
<td>Demonstrates plumbagin suppresses NF-κB signaling in tumor/immune contexts (direction explicitly shown)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3065107/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 phosphorylation</td>
<td>Reduced survival &amp; proliferation signaling</td>
<td>Plumbagin suppresses constitutive and inducible STAT3 phosphorylation in cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2808447/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>PI3K–AKT–mTOR signaling</td>
<td>↓ PI3K/AKT/mTOR activity</td>
<td>Survival pathway suppression</td>
<td>Plumbagin inhibits PI3K/AKT/mTOR signaling in cancer cells with linked apoptosis/autophagy outcomes</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4365758/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>Autophagy program</td>
<td>↑ autophagy</td>
<td>Stress response (context-dependent role)</td>
<td>Plumbagin induces autophagy alongside apoptosis; pathway involvement (p38, PI3K/AKT/mTOR) is demonstrated</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4365758/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Stress MAPK (p38 MAPK)</td>
<td>↑ p38 activation</td>
<td>Stress signaling amplification</td>
<td>p38 MAPK activation is implicated in plumbagin-driven apoptosis/autophagy signaling in cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4365758/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Cell cycle control</td>
<td>↑ G2/M (or S–G2/M) arrest</td>
<td>Proliferation blockade</td>
<td>Plumbagin induces checkpoint arrest with changes in cyclins/CDKs consistent with growth inhibition</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/18023967/">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>Death receptor axis (TRAIL receptors DR4/DR5)</td>
<td>↑ DR4/DR5 expression</td>
<td>Sensitizes to TRAIL-mediated killing</td>
<td>Plumbagin increases DR4/DR5 and enhances TRAIL killing; NAC blocks both ROS and receptor upregulation</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3163832/">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>EMT / invasion programs</td>
<td>↓ EMT (anti-invasive)</td>
<td>Reduced metastasis-related phenotype</td>
<td>Plumbagin suppresses epithelial–mesenchymal transition and stemness-related markers in cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4599573/">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Angiogenesis signaling (VEGFR2/VEGF-driven endothelial responses)</td>
<td>↓ angiogenesis signaling / function</td>
<td>Anti-angiogenic effect</td>
<td>Plumbagin inhibits tumor angiogenesis via interference with VEGFR2-mediated signaling in endothelial/tumor models</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3346245/">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GSH↓, 1,   GSH/GSSG↓, 2,   GSR↓, 1,   GSTA1↓, 1,   NQO1↓, 1,   NRF2↓, 1,   ROS↑, 11,   mt-ROS↑, 1,   i-Thiols↓, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   CDC2↓, 2,   CDC25↑, 1,   CDC25↓, 1,   MMP↓, 2,   mtDam↑, 1,  

Cell Death

Akt↓, 2,   Apoptosis↑, 5,   BAX↑, 2,   Bax:Bcl2↑, 1,   Bcl-2↓, 1,   Bcl-xL↓, 2,   Casp3↑, 5,   Casp9↑, 4,   Cyt‑c↑, 3,   DR4↑, 1,   DR5↑, 1,   FasL↑, 1,   JNK↑, 2,   MAPK↓, 1,   MKP1↓, 2,   MKP2↓, 2,   p27↑, 1,   TRAIL↑, 1,  

Kinase & Signal Transduction

cSrc↓, 1,  

Transcription & Epigenetics

tumCV↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

ER Stress↑, 1,   ER Stress↓, 1,   HSP90↓, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   P53↑, 1,   cl‑PARP↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 3,   cycD1/CCND1↓, 1,   P21↑, 2,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

BMI1↓, 1,   CSCs↓, 1,   EMT↓, 1,   ERK↑, 1,   GSK‐3β↓, 1,   mTOR↓, 2,   Nanog↓, 1,   OCT4↓, 1,   PI3K↓, 2,   SHP1↑, 1,   SOX2↓, 1,   STAT3↓, 1,   TumCG↓, 3,  

Migration

Ca+2↓, 1,   MMP9↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGF↓, 1,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

JAK1↓, 1,   JAK2↓, 1,   NF-kB↓, 2,  

Drug Metabolism & Resistance

ChemoSen↑, 2,   eff↓, 8,   selectivity∅, 1,   selectivity↑, 1,  

Functional Outcomes

toxicity↓, 1,  
Total Targets: 80

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

GSH↓, 1,   ROS↑, 3,  
Total Targets: 2

Research papers

Year Title Authors PMID Link Flag
2022Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell linePrasad Narayanan35253318https://pubmed.ncbi.nlm.nih.gov/35253318/0
2023Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical EvidenceZohra Nausheen NizamiPMC10295724https://pmc.ncbi.nlm.nih.gov/articles/PMC10295724/0
2017Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathwayChia-Chia Chao28849158https://pubmed.ncbi.nlm.nih.gov/28849158/0
2015Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2)Rahul Checker25444924https://pubmed.ncbi.nlm.nih.gov/25444924/0
2015Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cellsShu-Ting PanPMC4365758https://pmc.ncbi.nlm.nih.gov/articles/PMC4365758/0
2015Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cellsShu-Ting PanPMC4599573https://pmc.ncbi.nlm.nih.gov/articles/PMC4599573/0
2012Plumbagin treatment leads to apoptosis in human K562 leukemia cells through increased ROS and elevated TRAIL receptor expressionJingping SunPMC3163832https://pmc.ncbi.nlm.nih.gov/articles/PMC3163832/0
2012Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2Li LaiPMC3346245https://pmc.ncbi.nlm.nih.gov/articles/PMC3346245/0
2011Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular ThiolsRahul CheckerPMC3065107https://pmc.ncbi.nlm.nih.gov/articles/PMC3065107/0
2011Plumbagin, Vitamin K3 Analogue, Suppresses STAT3 Activation Pathway through Induction of Protein Tyrosine Phosphatase, SHP-1: Potential Role in ChemosensitizationSantosh K SandurPMC2808447https://pmc.ncbi.nlm.nih.gov/articles/PMC2808447/0
2008Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cellsClay C C Wang18023967https://pubmed.ncbi.nlm.nih.gov/18023967/0
2004Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cellsPriya Srinivas15264212https://pubmed.ncbi.nlm.nih.gov/15264212/0