tbResList Print — And Andrographis

Filters: qv=30, qv2=%, rfv=%

Product

And Andrographis
Description: <b>Andrographis</b> (typically referring to Andrographis paniculata).<br>
Bitter tasting annual plant prevalent in much of Asia.<br>
Andrographis paniculata is a medicinal plant whose principal bioactive diterpenoid lactone is andrographolide. It is widely studied for anti-inflammatory and immunomodulatory effects, and in preclinical oncology models is reported to modulate NF-κB, JAK/STAT3, PI3K/AKT, MAPK, and cell-cycle pathways, with downstream effects on apoptosis, invasion, and angiogenesis.<br
Oral bioavailability of andrographolide is limited, and many in-vitro anticancer concentrations exceed typical plasma levels achieved with standard supplementation.<br

<br
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4032030/">"used traditionally for the treatment of array of diseases such as cancer, diabetes, high blood pressure, ulcer, leprosy, bronchitis, skin diseases, flatulence, colic, influenza, dysentery, dyspepsia and malaria for centuries in Asia, America and Africa continents."</a><br>
<br>
Andrographolide:<br>
– Is a specific diterpenoid lactone and the major active constituent extracted from Andrographis paniculata.<br>
– It is responsible for many of the therapeutic effects attributed to the plant, including anti-inflammatory and antioxidant properties.<br>
<br>
A. Anti-Inflammatory Effects.<br>
• Andrographolide has been shown to inhibit the NF-κB pathway, leading to a reduction in the transcription of inflammatory cytokines (e.g., TNF-α, IL-6).<br>
• Andrographolide has been reported to cause cell cycle arrest at critical checkpoints (such as G0/G1 or G2/M phase) in some cancer cell models.<br>
<br>
Andrographis, primarily through its active constituent andrographolide, offers compelling anti-inflammatory, immunomodulatory, pro-apoptotic, and antiproliferative properties. While not a standard anticancer agent, its capacity to modulate key pathways in cellular stress response and inflammation makes it an attractive candidate for complementary research in oncology.<br>
<br>
Andrographis paniculata, also known as the "King of Bitters," is a plant native to India and Southeast Asia. Its aqueous extract, Andrographis paniculata aqueous extract (APAE), has been studied for its potential anti-cancer properties.<br>
• Inhibition of cancer cell growth: APAE has been shown to inhibit the growth of various cancer cell lines, including breast, lung, colon, and prostate cancer cells.<br>
• Induction of apoptosis: APAE has been found to induce apoptosis (programmed cell death) in cancer cells, which may help to prevent tumor growth and progression.<br>
• Anti-inflammatory effects: APAE has anti-inflammatory properties, which may help to reduce the risk of cancer development and progression.<br>
• Antioxidant activity: APAE has antioxidant activity, which may help to protect against oxidative stress and DNA damage.<br>
<br>
Key compounds:Andrographolide, Neoandrographolide<br>
APAE may interact with certain medications, including blood thinners and diabetes medications, and may not be suitable for individuals with certain medical conditions, such as autoimmune disorders.<br>
<br>



<!-- Andrographis (Andrographolide) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory / survival transcription</td>
<td>NF-κB ↓; COX-2, cytokines, Bcl-2 family ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory + anti-survival transcription</td>
<td>One of the most consistently reported mechanisms; contributes to reduced tumor-promoting inflammation.</td>
</tr>

<tr>
<td>2</td>
<td>JAK/STAT3 signaling</td>
<td>STAT3 activation ↓ (reported)</td>
<td>↔</td>
<td>R, G</td>
<td>Oncogenic transcription suppression</td>
<td>STAT3 inhibition is frequently reported in tumor models and linked to reduced proliferation and survival.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K → AKT (± mTOR)</td>
<td>PI3K/AKT signaling ↓ (model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Often described as downstream of inflammatory signaling suppression.</td>
</tr>

<tr>
<td>4</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>Stress MAPKs (JNK/p38) frequently activated; ERK modulation varies by cell type and dose.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle arrest (G0/G1 or G2/M)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often associated with Cyclin D1/CDK downregulation and checkpoint protein modulation.</td>
</tr>

<tr>
<td>6</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Apoptosis ↑; Bax ↑; caspases ↑ (reported)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Frequently observed downstream of survival pathway inhibition and stress signaling.</td>
</tr>

<tr>
<td>7</td>
<td>ROS modulation</td>
<td>ROS ↑ or ↓ depending on context</td>
<td>Antioxidant support in inflammatory models</td>
<td>P, R, G</td>
<td>Redox modulation</td>
<td>Andrographolide may induce ROS in some tumor cells but act antioxidant in inflammatory settings; context-dependent.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis (MMPs / EMT)</td>
<td>MMP2/MMP9 ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often linked to NF-κB and STAT3 pathway suppression.</td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Generally secondary to inflammatory and survival pathway changes.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint</td>
<td>Low oral bioavailability; rapid metabolism</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Plasma levels after oral dosing are typically lower than many in-vitro cytotoxic concentrations.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid signaling interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute transcription and stress-response shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

DJ-1↓, 1,   Ferroptosis↑, 2,   GCLC↑, 1,   GCLM↑, 1,   GPx4↓, 1,   GSH↓, 1,   Iron↑, 1,   MDA↑, 1,   MPO↓, 1,   NOX4↓, 1,   NRF2↑, 1,   ROS↓, 1,   ROS↑, 6,   SOD2↑, 1,   xCT↓, 1,  

Metal & Cofactor Biology

FTL↑, 1,   STEAP3↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

ACSL5↑, 2,   p‑AMPK↑, 1,   i-FASN↓, 1,   SAT1↑, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 6,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   cl‑Casp3↑, 1,   Casp3↑, 1,   Casp9↑, 1,   cl‑Casp9↑, 1,   Cyt‑c↑, 1,   Ferroptosis↑, 2,   iNOS↓, 1,   survivin↓, 1,  

Transcription & Epigenetics

HATs↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 2,   HSP90↓, 1,   XBP-1↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

TP53↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

cFos↓, 1,   CREB2↓, 1,   p‑ERK↓, 1,   ERK↝, 1,   FOXM1↓, 1,   FOXO3↑, 1,   Gli1↓, 1,   HDAC↓, 1,   HH↓, 1,   mTOR↓, 1,   PI3K↓, 1,   Smo↓, 1,   STAT3↓, 2,   TumCG↓, 2,   Wnt/(β-catenin)↓, 1,  

Migration

Ki-67↓, 1,   MMP2↓, 2,   MMP9↓, 1,   p‑SMAD2↓, 1,   p‑SMAD3↓, 1,   SMAD4↓, 1,   TGF-β↓, 1,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   TumMeta↓, 1,  

Angiogenesis & Vasculature

ECM/TCF↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL1↓, 1,   IL6↓, 1,   IL8↓, 1,   NF-kB↓, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

ERα/ESR1↓, 2,  

Drug Metabolism & Resistance

ChemoSen↑, 3,   eff↑, 4,   eff↓, 1,  

Clinical Biomarkers

ERα/ESR1↓, 2,   FOXM1↓, 1,   IL6↓, 1,   Ki-67↓, 1,   TP53↑, 1,  

Functional Outcomes

TumW↓, 1,  
Total Targets: 97

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

Catalase↝, 1,   MDA↓, 1,   ROS↓, 2,   SOD↝, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   NO↓, 1,  

Functional Outcomes

toxicity↓, 1,  
Total Targets: 7

Research papers

Year Title Authors PMID Link Flag
2024In vitro and in silico evaluation of Andrographis paniculata ethanolic crude extracts on fatty acid synthase expression on breast cancer cellsNur Amanina JohariPMC11204123https://pmc.ncbi.nlm.nih.gov/articles/PMC11204123/0
2024Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancerZhaohong WangPMC11216212https://pmc.ncbi.nlm.nih.gov/articles/PMC11216212/0
2024Effect of Andrographis Paniculata Aqueous Extract on Hyperammonemia Induced Alteration of Oxidative and Nitrosative Stress Factors in the Liver, Spleen and Kidney of RatsArghya Mukherjeeahttps://www.tandfonline.com/doi/full/10.1080/10496475.2024.23709680
2023Exploring the potential of Andrographis paniculata for developing novel HDAC inhibitors: an in silico approachDebalina Das37969010https://pubmed.ncbi.nlm.nih.gov/37969010/0
2022Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR SignalingRuhainee TohkayomateePMC9182433https://pmc.ncbi.nlm.nih.gov/articles/PMC9182433/0
2022Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancerHuang Hong35599281https://pubmed.ncbi.nlm.nih.gov/35599281/0
2022Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α AxisTong XuPMC9124841https://pmc.ncbi.nlm.nih.gov/articles/PMC9124841/0
2022Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunctionLi Jiaqi36610134https://pubmed.ncbi.nlm.nih.gov/36610134/0
2021Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and OrganoidsNeha ShardaPMC8182223https://pmc.ncbi.nlm.nih.gov/articles/PMC8182223/0
2020Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancerPriyanka SharmaPMC7566354https://pmc.ncbi.nlm.nih.gov/articles/PMC7566354/0
2020Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cellsTamara T LahPMC7521220https://pmc.ncbi.nlm.nih.gov/articles/PMC7521220/0
2020Andrographolide Induces Apoptosis and Cell Cycle Arrest through Inhibition of Aberrant Hedgehog Signaling Pathway in Colon Cancer CellsImran Khan33030050https://pubmed.ncbi.nlm.nih.gov/33030050/0
2020Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular MetabolismRafael Agustín BurgosPMC7792620https://pmc.ncbi.nlm.nih.gov/articles/PMC7792620/0
2018Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathwayYulin PengPMC6186120https://pmc.ncbi.nlm.nih.gov/articles/PMC6186120/0
2017Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expressionShih-Liang YangPMC5739685https://pmc.ncbi.nlm.nih.gov/articles/PMC5739685/0
2016Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expressionWeicheng Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00062952163030700
2013Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancySheng-Hung Liu24161787https://pubmed.ncbi.nlm.nih.gov/24161787/0
2013Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancerGuo-Qing Bao23845849https://pubmed.ncbi.nlm.nih.gov/23845849/0
2000Suppression of rat neutrophil reactive oxygen species production and adhesion by the diterpenoid lactone andrographolideY C Shen10865445https://pubmed.ncbi.nlm.nih.gov/10865445/0