tbResList Print — VitE Vitamin E

Filters: qv=307, qv2=%, rfv=%

Product

VitE Vitamin E
Description: <p><b>Vitamin E (VitE)</b> = fat-soluble antioxidant family (tocopherols: α-, β-, γ-, δ-; tocotrienols: α-, β-, γ-, δ-), from diet (vegetable oils, nuts/seeds) and supplements (commonly <i>α-tocopherol</i>).<br>
<b>Primary mechanisms (conceptual rank):</b><br>
1) Lipid-peroxidation chain-breaking antioxidant → ↓ membrane oxidative damage / ↓ lipid-ROS (anti-ferroptotic bias).<br>
2) Redox-signaling modulation (secondary): alters ROS-triggered stress pathways (NF-κB, MAPK), inflammation tone.<br>
3) Gene-regulatory adaptation: shifts antioxidant/stress programs (incl. NRF2 axis; context can be protective in normal tissues yet pro-survival in tumors).<br>
4) Isoform-dependent anti-cancer signaling (notably tocotrienols): apoptosis/anti-proliferation, membrane/ER stress effects (model-dependent).<br>
<b>PK / bioavailability:</b> absorption is fat-dependent; circulating levels rise modestly vs many in-vitro study doses; isoforms differ (tocotrienols often have distinct kinetics vs αT).<br>
<b>In-vitro vs systemic exposure:</b> many cell studies use ≥10–100 µM or high bolus conditions that commonly exceed achievable free plasma/tissue levels from typical oral dosing (esp. for non-α isoforms).<br>
<b>Clinical evidence status:</b> cancer prevention data are mixed and isoform-specific; high-dose αT (e.g., 400 IU/d) showed harm in prostate cancer risk (SELECT). Evidence is not “anti-cancer RCT–proven” and is best framed as context-/isoform-dependent with meaningful clinical constraints.</p>



It primarily comprises two families:<br>
Tocopherols<br>
&nbsp; α-Tocopherol (most active and abundant form found in human tissues)<br>
&nbsp; β-Tocopherol<br>
&nbsp; γ-Tocopherol <br>
&nbsp; δ-Tocopherol<br>
Tocotrienols<br>
&nbsp; α-Tocotrienol<br>
&nbsp; β-Tocotrienol<br>
&nbsp;<a href="tbResList.php?qv=321&exTr=open">γ-Tocotrienol</a> <br>
&nbsp; δ-Tocotrienol<br>
<br>
<br>
-Vitamin E can neutralize free radicals, which are reactive molecules that may damage cells and potentially contribute to cancer development. This antioxidant property has led researchers to explore whether vitamin E could help protect cells from damage during cancer treatment.<br>
-Cancer Prevention: Some epidemiological studies suggested that higher intake of vitamin E (usually through diet rather than supplements) might be associated with a lower risk of certain cancers. <br>



<br>
<h3>Vitamin E (VitE) — Cancer-Relevant Pathways (isoform- and context-dependent)</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Lipid peroxidation / membrane protection</td>
<td>↓ (context-dependent)</td>
<td>↓</td>
<td>P</td>
<td>Antioxidant “chain-breaker” in membranes</td>
<td>Core pharmacology; can protect normal tissue but may also protect tumor cells from oxidative stress therapies (model-dependent).</td>
</tr>

<tr>
<td>2</td>
<td>ROS tone</td>
<td>↓ (context-/dose-dependent)</td>
<td>↓</td>
<td>P→R</td>
<td>↓ oxidative stress signaling</td>
<td>Often secondary to lipid radical scavenging; can blunt ROS-mediated cytotoxicity from chemo/radiation in some settings (context-dependent).</td>
</tr>

<tr>
<td>3</td>
<td>Ferroptosis axis (iron/lipid-ROS death)</td>
<td>↓ (anti-ferroptotic bias)</td>
<td>↓</td>
<td>P→R</td>
<td>Suppresses lipid-ROS propagation</td>
<td>Mechanistically coherent: VitE tends to oppose ferroptotic lipid peroxidation; may be undesirable where ferroptosis is leveraged therapeutically.</td>
</tr>

<tr>
<td>4</td>
<td>NRF2 antioxidant program</td>
<td>↑ (context-dependent)</td>
<td>↑</td>
<td>G</td>
<td>Adaptive antioxidant response</td>
<td>NRF2 can be tissue-protective in normal cells yet pro-survival / resistance-promoting in some tumors (context-dependent).</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB / inflammatory signaling</td>
<td>↓ (model-dependent)</td>
<td>↓ (often)</td>
<td>R→G</td>
<td>Anti-inflammatory bias</td>
<td>Redox-linked; magnitude varies by isoform (αT vs γT vs tocotrienols) and stimulus.</td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis / mitochondrial stress</td>
<td>↑ (tocotrienols &amp; high concentration only)</td>
<td>↔ / ↓ (protective)</td>
<td>R→G</td>
<td>Pro-apoptotic signaling (select models)</td>
<td>Tocotrienols are more often reported pro-apoptotic vs αT; frequently requires supra-physiologic exposure (model-dependent).</td>
</tr>

<tr>
<td>7</td>
<td>Ca²⁺ handling (ER/mitochondrial stress coupling)</td>
<td>↔ (model-dependent)</td>
<td>↔</td>
<td>R</td>
<td>Stress-modulating cross-talk</td>
<td>Not a universal “signature axis” for VitE, but can matter when ER stress/mitochondrial dysfunction is the readout.</td>
</tr>

<tr>
<td>8</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Prevention/adjunct limitations</td>
<td>Isoform + dose matter; high-dose αT (400 IU/d) increased prostate cancer risk in SELECT; in-vitro dosing often exceeds realistic systemic exposure.</td>
</tr>
</table>

<p><b>TSF Legend:</b> P: 0–30 min (direct redox/membrane effects) &nbsp; | &nbsp; R: 30 min–3 hr (acute stress signaling) &nbsp; | &nbsp; G: &gt;3 hr (gene-regulatory adaptation)</p>



<br>
<h3>Vitamin E (α-tocopherol) — Alzheimer’s Disease (AD) / Neuronal-Protection-Relevant Axes</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cells (AD-relevant; mostly “normal” neurons/glia under stress)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Lipid peroxidation / membrane oxidative injury</td>
<td>↓</td>
<td>P</td>
<td>Neuroprotective antioxidant (membrane)</td>
<td>Mechanistic fit to oxidative-stress hypothesis; strongest “core” axis for VitE in CNS stress contexts.</td>
</tr>

<tr>
<td>2</td>
<td>ROS tone</td>
<td>↓</td>
<td>P→R</td>
<td>↓ oxidative stress signaling</td>
<td>Often downstream of lipid radical scavenging; may reduce oxidative damage markers (model-dependent).</td>
</tr>

<tr>
<td>3</td>
<td>Neuroinflammation (NF-κB-linked)</td>
<td>↓ (model-dependent)</td>
<td>R→G</td>
<td>Anti-inflammatory bias</td>
<td>Magnitude depends on model and background diet/status.</td>
</tr>

<tr>
<td>4</td>
<td>Clinical evidence constraint</td>
<td>—</td>
<td>—</td>
<td>Mixed RCT outcomes by stage</td>
<td>MCI: 2000 IU/d VitE did not significantly delay progression to AD in a 3-year trial; mild–moderate AD: 2000 IU/d αT slowed functional decline vs placebo in TEAM-AD; earlier ADCS trial also reported slowed progression signals (stage-dependent).</td>
</tr>
</table>

<p><b>TSF Legend:</b> P: 0–30 min &nbsp; | &nbsp; R: 30 min–3 hr &nbsp; | &nbsp; G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

ROS↑, 1,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ERK↓, 1,  

Migration

TumCP∅, 1,   TumCP↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGF↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,   eff↑, 1,  

Functional Outcomes

chemoP↑, 1,   neuroP↑, 1,   toxicity↓, 2,  
Total Targets: 16

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 5,   lipid-P↓, 2,   ROS↓, 3,  

Core Metabolism/Glycolysis

homoC↓, 1,   LDL↓, 1,  

Transcription & Epigenetics

other↑, 2,   other↓, 1,   other↝, 3,  

Immune & Inflammatory Signaling

Inflam↓, 1,   Inflam↑, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   NGF↑, 1,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

BioAv↑, 1,   Dose↝, 2,   Dose↓, 1,   Half-Life↑, 1,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 9,   memory↑, 1,   neuroP↑, 4,   radioP↑, 1,   Risk↓, 6,   Risk∅, 1,   Risk↑, 1,  
Total Targets: 26

Research papers

Year Title Authors PMID Link Flag
2024Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathwayShikha Upretihttps://www.nature.com/articles/s41598-024-76135-00
2016Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s DiseaseNur Adalier Barlashttps://www.researchgate.net/publication/309452537_Vitamin_E_Turmeric_and_Saffron_in_Treatment_of_Alzheimer's_Disease0
2012Reduced risk of Alzheimer’s disease with high folate intake: The Baltimore Longitudinal Study of AgingMaría M CorradaPMC3375831https://pmc.ncbi.nlm.nih.gov/articles/PMC3375831/0
2011Effects of fenbendazole and vitamin E succinate on the growth and survival of prostate cancer cellsAri N Aycock-Williamshttps://www.researchgate.net/publication/260343692_Effects_of_fenbendazole_and_vitamin_E_succinate_on_the_growth_and_survival_of_prostate_cancer_cells0
2021Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trialRebecca Power34999335https://pubmed.ncbi.nlm.nih.gov/34999335/0
2017Serum concentrations of vitamin E and carotenoids are altered in Alzheimer's disease: A case-control studyKathryn MullanPMC5651431https://pmc.ncbi.nlm.nih.gov/articles/PMC5651431/0
2014Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical studyDanilo ZanottaPMC3921088https://pmc.ncbi.nlm.nih.gov/articles/PMC3921088/0
2023Vitamins and Radioprotective Effect: A ReviewInés LledóPMC10045031https://pmc.ncbi.nlm.nih.gov/articles/PMC10045031/0
2016Nutrient intake, nutritional status, and cognitive function with agingKatherine L Tucker27116240https://pubmed.ncbi.nlm.nih.gov/27116240/0
2016Vitamin Supplementation as an Adjuvant Treatment for Alzheimer’s DiseaseAdnan Bashir BhattiPMC5028542https://pmc.ncbi.nlm.nih.gov/articles/PMC5028542/0
2025Unraveling the molecular mechanisms of vitamin deficiency in Alzheimer's disease pathophysiologyVipul Sharmahttps://www.sciencedirect.com/science/article/pii/S26670321250000710
2019Vitamin E and Alzheimer's disease: what do we know so far?Declan BrownePMC6645610https://pmc.ncbi.nlm.nih.gov/articles/PMC6645610/0
2017Vitamin E and Alzheimer’s Disease—Is It Time for Personalized Medicine?Breana CervantesPMC5618073https://pmc.ncbi.nlm.nih.gov/articles/PMC5618073/0
2010Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in ratsAiguo WuPMC2824788https://pmc.ncbi.nlm.nih.gov/articles/PMC2824788/0
2002Effects of fruits and vegetables on levels of vitamins E and C in the brain and their association with cognitive performanceA Martin12459890https://pubmed.ncbi.nlm.nih.gov/12459890/0
2002Cognitive function in elderly people is influenced by vitamin E statusRosa M Ortega12097694https://pubmed.ncbi.nlm.nih.gov/12097694/0