tbResList Print — Api Apigenin (mainly Parsley)

Filters: qv=32, qv2=%, rfv=%

Product

Api Apigenin (mainly Parsley)
Description: <b> Apigenin</b> present in parsley, celery, chamomile, oranges and beverages such as tea, beer and wine.<br>
<a href="https://pubmed.ncbi.nlm.nih.gov/32059077/">"It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways." </a>
<br>

-Note <a href="tbResList.php?qv=32&tsv=1109&wNotes=on&exSp=open">half-life</a> reports vary 2.5-90hrs?.<br>
-low solubility of apigenin in water :
<a href="tbResList.php?qv=32&tsv=792&wNotes=on&exSp=open">BioAv</a>
(improves when mixed with oil/dietary fat or
<a href="https://www.mcsformulas.com/vitamins-supplements/apigenin-pro-liposomal/">lipid based formulations</a>)<br>
-best oil might be
<a href="tbResList.php?&qv=333&wNotes=onn&exSp=open&word=MCT">MCT</a> oils (medium-chain fatty acids)<br>
<br>

<br>
Pathways:<br>
<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- Often considered an antioxidant, in cancer cells it can paradoxically induce
<a href="tbResList.php?qv=32&tsv=275&wNotes=on">ROS</a> production<br>
(one report that goes against most others, by
<a href="tbResEdit.php?rid=2638">lowering ROS</a> in cancer cells but still effective)<br>
- ROS↑ related:
<a href="tbResList.php?&qv=32&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?&qv=32&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?&qv=32&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?&qv=32&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?&qv=32&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?&qv=32&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?&qv=32&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?&qv=32&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?&qv=32&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?&qv=32&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?&qv=32&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
(<a href="https://www.mdpi.com/2076-3921/9/10/973">Conflicting evidence </a>about Nrf2)
<br>
        - Combined with
<a href="tbResList.php?&qv=32&qv2=11&wNotes=on">Metformin</a> (reduces Nrf2)
amplifies ROS production in cancer cells while sparing normal cells.<br>

- Raises
<a href="tbResList.php?&qv=32&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?&qv=32&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?&qv=32&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?&qv=32&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?&qv=32&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?&qv=32&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?&qv=32&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?&qv=32&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?&qv=32&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?&qv=32&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?&qv=32&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?&qv=32&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?&qv=32&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>


<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓-->
- inhibit Growth/Metastases :
<a href="tbResList.php?&qv=32&tsv=96&wNotes=on"EMT↓</a>,
<a href="tbResList.php?&qv=32&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?&qv=32&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?&qv=32&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?&qv=32&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?&qv=32&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?&qv=32&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=32&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=32&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=32&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=32&tsv=86&wNotes=on">DNMT3A↓</a>,
<a href="tbResList.php?qv=32&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=32&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?&qv=32&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?&qv=32&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?&qv=32&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?&qv=32&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?&qv=32&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?&qv=32&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?&qv=32&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?&qv=32&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?&qv=32&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?&qv=32&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=32&tsv=105&wNotes=on">ERK↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=32&tsv=129&wNotes=on&exSp=open">glycolysis</a> and
<a href="tbResList.php?qv=32&tsv=21&wNotes=on&exSp=open&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?&qv=32&tsv=143&wNotes=on&exSp=open">HIF-1α↓</a>,
<a href="tbResList.php?&qv=32&tsv=772&wNotes=on&exSp=open">PKM2↓</a>,
<a href="tbResList.php?&qv=32&tsv=35&wNotes=on&exSp=open">cMyc↓</a>,
<a href="tbResList.php?&qv=32&tsv=246&wNotes=on&exSp=open">PDK1↓</a>,
<a href="tbResList.php?&qv=32&tsv=566&wNotes=on&exSp=open&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?&qv=32&tsv=175&wNotes=on&exSp=open&word=LDH">LDHA↓</a>,
<a href="tbResList.php?&qv=32&tsv=773&wNotes=on&exSp=open">HK2↓</a>,
<a href="tbResList.php?&qv=32&tsv=1278&wNotes=on&exSp=open">Glucose↓</a>,
<a href="tbResList.php?&qv=32&tsv=623&wNotes=on&exSp=open">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=32&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=32&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=32&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=32&tsv=361&wNotes=on">PDGF↓</a>,
<a href="tbResList.php?&qv=32&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?&qv=32&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=32&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=32&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=32&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=32&tsv=434&wNotes=on">GLi↓</a>,
<a href="tbResList.php?qv=32&tsv=124&wNotes=on">GLi1↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=32&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=32&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=32&tsv=162&wNotes=on">JAK↓</a>,
<a href="tbResList.php?qv=32&tsv=163&wNotes=on">1</a>,
<a href="tbResList.php?qv=32&tsv=164&wNotes=on">2</a>,
<a href="tbResList.php?qv=32&tsv=165&wNotes=on">3</a>,
<a href="tbResList.php?qv=32&tsv=294&wNotes=on">STAT↓</a>,
<a href="tbResList.php?qv=32&tsv=270&wNotes=on">1</a>,
<a href="tbResList.php?qv=32&tsv=738&wNotes=on">2</a>,
<a href="tbResList.php?qv=32&tsv=373&wNotes=on">3</a>,
<a href="tbResList.php?qv=32&tsv=371&wNotes=on">4</a>,
<a href="tbResList.php?qv=32&tsv=372&wNotes=on">5</a>,
<a href="tbResList.php?qv=32&tsv=1157&wNotes=on">6</a>,
<a href="tbResList.php?qv=32&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=32&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=32&tsv=9&wNotes=on">AMPK↓</a>,,
<a href="tbResList.php?qv=32&tsv=475&wNotes=on">α↓</a>,,
<a href="tbResList.php?qv=32&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=32&tsv=1014&wNotes=on">5↓</a>,
<a href="tbResList.php?qv=32&tsv=168&wNotes=on">JNK↓</a>,
<br>

- Shown to modulate the nuclear translocation of
<a href="tbResList.php?&qv=32&tsv=1132&wNotes=on&exSp=open&word=SREBP2">SREBP-2</a> (related to cholesterol).<br>

<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=32&tsv=1106&wNotes=on&exSp=open">chemo-sensitization</a>,
<a href="tbResList.php?qv=32&tsv=1171&wNotes=on&exSp=open">chemoProtective</a>,
<a href="tbResList.php?qv=32&tsv=1107&wNotes=on&exSp=open">RadioSensitizer</a>,
<a href="tbResList.php?qv=32&tsv=1185&wNotes=on&exSp=open">RadioProtective</a>,
<a href="tbResList.php?qv=32&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a><br>
        -Ex: other flavonoids(chrysin, Luteolin, querectin) curcumin, metformin, sulforaphane, ASA<br>
<a href="tbResList.php?qv=32&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=32&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=32&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=32&tsv=1188&wNotes=on">CardioProtective</a>,
<br>


<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=32&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>


<br>
Apigenin exhibits biological effects (anticancer, anti-inflammatory, antioxidant, neuroprotective, etc.) typically at concentrations roughly in the range of 1–50 µM.<br>
<br>
Parsley microgreens can contain up to 2-3 times more apigenin than mature parsley.<br>
Apigenin is typically measured in the range of 1-10 μM for biological activity. Assuming a molecular weight of 270 g/mol for apigenin, we can estimate the following μM concentrations:<br>
10uM*5L(blood)*270g/mol=13.5mg apigenin (assumes 100% bioavailability)<br>
then an estimated 10-20 mg of apigenin per 100 g of fresh weight parlsey<br>
2.2mg/g of apigenin fresh parsley<br>
45mg/g of apigenin in dried parsley (wikipedia)<br>
so 100g of parsley might acheive 10uM blood serum level (100% bioavailability)<br>
BUT bioavailability is only 1-5%<br>
(Supplements available in 75mg liposomal)(
<a href="https://www.mcsformulas.com/vitamins-supplements/apigenin-pro-liposomal/">Apigenin Pro Liposomal</a>, 200 mg from mcsformulas.com)<br>
<br>

<a href="https://pubmed.ncbi.nlm.nih.gov/16407641/"> A study</a> had 2g/kg bw (meaning 160g for 80kg person) delivered a maximum 0.13uM of plasma concentration @ 7.2hrs.<br>
Assuming parsley is 90-95% water, then that would be ~16g of dried parsley<br>
Conclusion: to reach 10uM would seem very difficult by oral ingestion of parsley.<br>
Other quotes:<br>
      “4g of dried parsley will be enough for 50kg adult”<br>
      5mg/kg BW yields 16uM, so 80Kg person means 400mg (if dried parsley is 130mg/g, then would need 3g/d)
<br>
In many cancer cell lines, concentrations in the range of approximately 20–40 µM have been reported to shift apigenin’s activity from mild antioxidant effects (or negligible ROS changes) toward a clear pro-oxidant effect with measurable ROS increases.<br>
<br>
Low doses: At lower concentrations, apigenin is more likely to exhibit its antioxidant properties, scavenging ROS and protecting cells from oxidative stress. <br>
In normal cells with robust antioxidant systems, apigenin’s antioxidant effects might prevail, whereas cancer cells—often characterized by an already high level of basal ROS—can be pushed over the oxidative threshold by increased ROS production induced by apigenin.<br>
In environments with lower free copper levels, this pro-oxidant activity is less pronounced, and apigenin may tilt the balance toward its antioxidant function.<br>
<br>

Apigenin — Cancer vs Normal Cell Effects

<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Cell cycle regulation (CDK / cyclin axis)</td>
<td>↑ G1/G2 arrest</td>
<td>↔ spared</td>
<td>Driver</td>
<td>Cytostatic growth suppression</td>
<td>Apigenin is particularly strong as a cell-cycle regulator compared with other flavones</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT signaling</td>
<td>↓ AKT signaling</td>
<td>↔ adaptive suppression</td>
<td>Driver</td>
<td>Reduced survival signaling</td>
<td>AKT inhibition underlies apoptosis sensitization and growth arrest</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of inflammatory survival transcription</td>
<td>NF-κB inhibition contributes to chemopreventive and anti-inflammatory effects</td>
</tr>

<tr>
<td>4</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (mild, context-dependent)</td>
<td>↓ ROS</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>Apigenin has weaker pro-oxidant behavior than luteolin</td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Secondary</td>
<td>Execution of apoptosis</td>
<td>Apoptosis occurs downstream of cell-cycle arrest and signaling inhibition</td>
</tr>

<tr>
<td>6</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 activation</td>
<td>↔ minimal</td>
<td>Secondary</td>
<td>Reduced proliferation and invasion signaling</td>
<td>STAT3 effects are supportive rather than primary</td>
</tr>

<tr>
<td>7</td>
<td>Migration / invasion</td>
<td>↓ migration & invasion</td>
<td>↔</td>
<td>Phenotypic</td>
<td>Anti-metastatic phenotype</td>
<td>Reduced motility reflects upstream signaling suppression</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   Catalase↑, 1,   GSH↓, 3,   HK1↓, 1,   lipid-P↑, 1,   MDA↑, 1,   MPO↓, 1,   NADH↓, 1,   NRF2↓, 6,   ROS↑, 1,   ROS↓, 1,   SIRT3↓, 1,   SOD↓, 1,  

Metal & Cofactor Biology

Ikaros↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 3,   CDC25↓, 3,   p‑CDC25↑, 1,   p‑MEK↓, 1,   MMP↓, 2,   MMP↑, 1,   mtDam↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

ALDOA↓, 1,   AMPK↑, 1,   cMyc↓, 2,   CYP3A4↓, 1,   ENO1↓, 1,   FASN↓, 1,   glucose↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 5,   HK2↓, 2,   lactateProd↓, 1,   LDHA↓, 1,   NADPH↓, 1,   NADPH↑, 1,   PGK1↓, 1,   PI3K/Akt↓, 3,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 4,   PKM2:PKM1↓, 1,   PPP↓, 1,   p‑S6↓, 1,   SREBP2↓, 1,  

Cell Death

p‑Akt↓, 2,   Akt↓, 1,   APAF1↑, 2,   Apoptosis↑, 2,   Bak↑, 1,   BAX↑, 2,   BAX∅, 1,   Bax:Bcl2↑, 7,   Bcl-2↓, 3,   Bcl-2∅, 1,   cl‑Bcl-2↓, 1,   Bcl-xL↓, 2,   Bcl-xL∅, 1,   cl‑BID↑, 1,   BIM↑, 2,   Casp↑, 3,   Casp12↑, 1,   proCasp3↓, 1,   cl‑Casp3↑, 5,   Casp3↑, 2,   Casp3∅, 1,   Casp7↑, 1,   cl‑Casp7↑, 1,   proCasp8↓, 1,   cl‑Casp8↑, 5,   Casp8↑, 4,   Casp8∅, 1,   proCasp9↓, 1,   Casp9↑, 8,   cl‑Casp9↑, 2,   CK2↓, 1,   Cyt‑c↑, 12,   DR5↑, 2,   cl‑IAP2↑, 1,   iNOS↓, 1,   JNK↑, 3,   JNK↓, 1,   p‑JNK↓, 2,   MAPK↝, 1,   MAPK↓, 1,   Mcl-1↓, 2,   MDM2↓, 1,   MLKL↑, 2,   p‑MLKL↓, 1,   Necroptosis↑, 2,   p27↑, 2,   p‑p38↑, 1,   p38↓, 1,   p38↑, 1,   Paraptosis↑, 1,   survivin↓, 2,   Telomerase↓, 3,   TumCD↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   HER2/EBBR2↓, 2,   p‑p70S6↓, 1,  

Transcription & Epigenetics

cJun↓, 1,   EZH2↓, 1,   ac‑H3↑, 1,   other↑, 1,   p‑pRB↓, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 3,   ER Stress↑, 5,   ER Stress↓, 1,   GRP78/BiP↑, 1,   GRP78/BiP↓, 1,   HSP90↓, 2,   HSPs↓, 1,   UPR↑, 1,  

Autophagy & Lysosomes

AVOs↑, 1,   Beclin-1↑, 2,   LC3B↑, 1,   LC3s↝, 1,   p62↓, 1,   p62↑, 1,   TumAuto↑, 2,   TumAuto↝, 1,  

DNA Damage & Repair

p‑ATM↑, 1,   p‑CHK1↑, 1,   DNAdam↑, 6,   P53↑, 12,   P53↓, 1,   p‑P53↑, 1,   cl‑PARP↑, 11,   PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP1↑, 1,   PCNA↝, 1,   PCNA↓, 1,   SIRT6↓, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 3,   CDK1/2/5/9∅, 1,   CDK2↓, 3,   CDK4↓, 2,   Cyc↓, 2,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 3,   cycD1/CCND1↓, 1,   CycD3↓, 1,   cycE/CCNE↓, 2,   E2Fs↓, 1,   P21↑, 12,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   CD44↓, 1,   cDC2↓, 2,   p‑cDC2↑, 1,   cMET↓, 1,   CSCs↓, 4,   EMT↓, 4,   ERK↓, 1,   p‑ERK⇅, 1,   p‑ERK↓, 3,   FOXO↓, 1,   FOXO3↑, 2,   Gli↓, 1,   Gli1↓, 1,   GSK‐3β↓, 2,   p‑GSK‐3β↓, 2,   HDAC↓, 6,   HDAC1↓, 2,   HDAC3↓, 2,   HH↓, 1,   IGF-1↓, 2,   IGFBP3↑, 1,   p‑mTOR↓, 1,   mTOR↓, 1,   Nanog↓, 3,   OCT4↓, 1,   p‑P70S6K↓, 1,   p‑P90RSK↑, 1,   PI3K↓, 10,   p‑PI3K↓, 1,   SOX2↓, 1,   Src↓, 1,   p‑STAT↓, 1,   STAT↓, 1,   STAT1↓, 1,   p‑STAT3↓, 1,   STAT3↓, 7,   TCF↓, 1,   TumCG↓, 2,   TumCG↑, 2,   Wnt↓, 1,   Wnt/(β-catenin)↓, 1,  

Migration

AntiAg↑, 1,   AXL↓, 1,   Ca+2↑, 6,   cal2↑, 2,   CC(CDKs/cyclins)↓, 1,   CDK4/6↓, 2,   E-cadherin↑, 2,   FAK↓, 1,   p‑FAK↓, 1,   ITGA5↓, 1,   ITGB4↓, 2,   Ki-67↓, 1,   LEF1↓, 1,   miR-215-5p↑, 1,   MMP2↓, 5,   MMP9↓, 1,   MMPs↓, 3,   N-cadherin↓, 1,   NEDD9↓, 1,   PDGF↓, 1,   p‑RIP3↑, 2,   RIP3↑, 1,   Sharpin↓, 1,   Slug↓, 2,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 4,   talin?, 1,   TGF-β↓, 2,   TumCI↓, 10,   TumCMig↓, 8,   TumCP↓, 13,   TumMeta↓, 1,   Twist↓, 1,   Tyro3↓, 1,   uPA↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 4,   ATF4↑, 2,   EGFR↓, 2,   Endoglin↓, 1,   eNOS↓, 1,   Hif1a↓, 1,   VEGF↓, 3,   VEGFR2↓, 1,  

Barriers & Transport

GLUT1↓, 10,   GLUT3↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 5,   COX2∅, 1,   IKKα↓, 1,   IL10↓, 1,   IL1α↓, 1,   IL1β↓, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 2,   p‑JAK↓, 1,   JAK↓, 1,   p‑JAK1↓, 1,   p‑JAK2↓, 3,   NF-kB↓, 2,   p50↓, 1,   p65↓, 2,   PD-L1↓, 2,   PSA↓, 2,   T-Cell↑, 1,   TNF-α↓, 2,   TNF-α∅, 1,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 1,   ERα/ESR1↑, 1,   ERβ/ESR2↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   BioAv↓, 1,   BioEnh↑, 2,   ChemoSen↑, 10,   ChemoSen∅, 1,   CYP1A2↓, 1,   CYP2C9↓, 1,   Dose∅, 9,   Dose?, 2,   Dose↓, 1,   Dose↝, 1,   eff↓, 8,   eff↑, 18,   eff↝, 2,   Half-Life∅, 2,   RadioS↑, 3,   selectivity↑, 8,   selectivity↓, 1,  

Clinical Biomarkers

AR↓, 2,   EGFR↓, 2,   ERα/ESR1↑, 1,   EZH2↓, 1,   HER2/EBBR2↓, 2,   IL6↓, 3,   Ki-67↓, 1,   PD-L1↓, 2,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 1,   chemoP↑, 2,   chemoPv↑, 4,   ChemoSideEff↓, 1,   neuroP↑, 1,   OS↑, 2,   radioP↑, 2,   Remission↓, 1,   RenoP↑, 1,   TumVol↓, 5,   TumW↓, 5,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 306

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 7,   Catalase↑, 2,   Catalase↓, 1,   GPx↑, 4,   GSH↑, 1,   HO-1↑, 1,   MDA↓, 2,   NRF2↑, 4,   ROS∅, 1,   ROS↓, 8,   SOD↑, 4,   TAC↑, 1,  

Mitochondria & Bioenergetics

Insulin↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   p‑CREB↑, 2,   CREB↑, 1,   PKM2↓, 2,   PPARγ↑, 1,   SREBF2↓, 1,  

Cell Death

Akt↑, 2,   Apoptosis↓, 1,   cl‑Casp3↓, 1,   MAPK↓, 2,  

Transcription & Epigenetics

Ach↑, 2,   other↝, 1,  

Protein Folding & ER Stress

CHOP↓, 1,  

DNA Damage & Repair

DNMT1↓, 1,   DNMT3A↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↑, 1,   GSK‐3β↓, 1,   HDAC↓, 1,   HMGCR↓, 1,   PI3K↓, 1,   PI3K↑, 1,  

Migration

Ca+2?, 1,   PKCδ↓, 1,   TGF-β↓, 1,   TXNIP↓, 1,   Vim↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 2,   NO↓, 1,  

Barriers & Transport

AQPs↑, 1,   AQPs↓, 1,   BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 3,   IL1β↓, 1,   Inflam↓, 10,   NF-kB↓, 1,   PGE2↓, 1,   TLR4↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

5HT↑, 2,   AChE↓, 2,   BDNF↑, 5,   GABA↑, 1,   MAOA↓, 1,   TrkB↑, 3,  

Protein Aggregation

Aβ↓, 4,   BACE↓, 1,   NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 5,   BioAv↑, 11,   BioAv?, 2,   Dose∅, 2,   Dose↑, 1,   eff↑, 1,   eff↝, 1,   Half-Life?, 1,   Half-Life∅, 1,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 1,   cognitive↑, 2,   hepatoP↑, 2,   memory↑, 4,   Mood↑, 1,   motorD↑, 1,   neuroP↑, 5,   toxicity↑, 1,   toxicity↓, 2,   toxicity∅, 3,  
Total Targets: 81

Research papers

Year Title Authors PMID Link Flag
2025Protective effects of apigenin in neurodegeneration: An update on the potential mechanismsAli Mohammadkhanizadehhttps://www.sciencedirect.com/science/article/pii/S26664593250000950
2025The influence of apigenin on cellular responses to radiation: From protection to sensitizationTaha Monadi39134426https://pubmed.ncbi.nlm.nih.gov/39134426/0
2025Apigenin unveiled: an encyclopedic review of its preclinical and clinical insightsRehnuma Siddiqueehttps://link.springer.com/article/10.1007/s44372-024-00039-60
2025Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systemsXiaoyong Huhttps://www.sciencedirect.com/science/article/pii/S26661543250018750
2024The interaction between apigenin and PKM2 restrains progression of colorectal cancerJiangying Shi37597817https://pubmed.ncbi.nlm.nih.gov/37597817/0
2024Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivoChu ZhangPMC10811521https://pmc.ncbi.nlm.nih.gov/articles/PMC10811521/0
2024The versatility of apigenin: Especially as a chemopreventive agent for cancerOm Prakashhttps://www.sciencedirect.com/science/article/pii/S27073688240005660
2024Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer SpreadingValeria NaponelliPMC11122459https://pmc.ncbi.nlm.nih.gov/articles/PMC11122459/0
2024Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stressTao Sun38761750https://pubmed.ncbi.nlm.nih.gov/38761750/0
2024The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical InvestigationsTosin A OlasehindePMC10813036https://pmc.ncbi.nlm.nih.gov/articles/PMC10813036/0
2024Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral deliveryBoontida Morakulhttps://www.nature.com/articles/s41598-024-59617-z0
2023Therapeutical properties of apigenin: a review on the experimental evidence and basic mechanismsZarina Mushtaqhttps://www.tandfonline.com/doi/full/10.1080/10942912.2023.2236329#abstract0
2023Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathwayChen Chenhttps://www.ajol.info/index.php/tjpr/article/view/2489010
2023A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanismsSiamak DaneshvarPMC10630840https://pmc.ncbi.nlm.nih.gov/articles/PMC10630840/0
2023Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer TreatmentLorena Bonilla-VidalPMC10680483https://pmc.ncbi.nlm.nih.gov/articles/PMC10680483/0
2023The neurotrophic activities of brain‐derived neurotrophic factor are potentiated by binding with apigenin, a common flavone in vegetables, in stimulating the receptor signalingAlex Xiong GaoPMC10493664https://pmc.ncbi.nlm.nih.gov/articles/PMC10493664/0
2023Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer TreatmentJuan ZhangPMC10321279https://pmc.ncbi.nlm.nih.gov/articles/PMC10321279/0
2023Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-CellsStella Amarachi Ihimhttps://www.jstage.jst.go.jp/article/bpb/46/4/46_b22-00913/_html/-char/en0
2023Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agentsAbhishek Wahihttps://link.springer.com/article/10.1007/s00210-023-02674-40
2022The Potential Role of Apigenin in Cancer Prevention and TreatmentArshad Husain Rahmanihttps://www.researchgate.net/publication/363656562_The_Potential_Role_of_Apigenin_in_Cancer_Prevention_and_Treatment0
2022Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stressYan-Cui Lianghttps://www.sciencedirect.com/science/article/pii/S17564646220018640
2022Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticlesMoein Adehttps://www.researchgate.net/publication/359907593_Chemotherapeutic_effects_of_Apigenin_in_breast_cancer_Preclinical_evidence_and_molecular_mechanisms_enhanced_bioavailability_by_nanoparticles0
2022New approach to clearing toxic waste from brainWashington University School of Medicinehttps://www.sciencedaily.com/releases/2022/08/220824120827.htm0
2022Enhancing Amyloid-β Clearance May Improve Brain Function in Alzheimer DiseaseJessica Nye, PhDhttps://www.psychiatryadvisor.com/features/enhancing-amyloid-beta-clearance-may-improve-brain-function-alzheimer-disease/?itm_campaign=Bibblio_related&itm_medium=Bibblio_carousel&itm_source=Bibblio0
2022Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysisChanghao Jiahttps://www.sciencedirect.com/science/article/abs/pii/S09552863220010970
2022Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma35513012https://pubmed.ncbi.nlm.nih.gov/35513012/0
2022Apigenin in Cancer Prevention and Therapy: A Systematic Review and Meta-Analysis of Animal ModelsDeepti Singhhttps://www.researchgate.net/publication/361479151_Apigenin_in_Cancer_Prevention_and_Therapy_A_Systematic_Review_and_Meta-Analysis_of_Animal_Models0
2021Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammationQijing Wu33556877https://pubmed.ncbi.nlm.nih.gov/33556877/0
2021Chemoprotective and chemosensitizing effects of apigenin on cancer therapyZahra Nozhathttps://cancerci.biomedcentral.com/articles/10.1186/s12935-021-02282-30
2021Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers?Eva F DeRango-AdemPMC8167032https://pmc.ncbi.nlm.nih.gov/articles/PMC8167032/0
2021Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5pYuan Chenghttps://www.researchgate.net/publication/351818123_Apigenin_inhibits_the_growth_of_colorectal_cancer_through_down-regulation_of_E2F13_by_miRNA-215-5p0
2021Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cellsMadhuri Shende Warkadhttps://www.nature.com/articles/s41598-021-93270-00
2021Flavonoids Targeting HIF-1: Implications on Cancer MetabolismMarek SamecPMC7794792https://pmc.ncbi.nlm.nih.gov/articles/PMC7794792/0
2021Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa CellsSERA KAYACANhttps://ar.iiarjournals.org/content/41/3/12710
2021Apigenin acts as a partial agonist action at estrogen receptors in vivoLu Yao34048736https://pubmed.ncbi.nlm.nih.gov/34048736/0
2021Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer CellsTae Woo KimPMC8706813https://pmc.ncbi.nlm.nih.gov/articles/PMC8706813/0
2020Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathwayBaoxiang ZhangPMC7058778https://pmc.ncbi.nlm.nih.gov/articles/PMC7058778/0
2020Apigenin as an anticancer agentMuhammad Imran32059077https://pubmed.ncbi.nlm.nih.gov/32059077/0
2020Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cellsYoon-Jin LeePMC7585594https://pmc.ncbi.nlm.nih.gov/articles/PMC7585594/0
2020Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic CancerMilad AshrafizadehPMC7593821https://pmc.ncbi.nlm.nih.gov/articles/PMC7593821/0
2019Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cellsShiva Mahmoudihttps://www.sciencedirect.com/science/article/abs/pii/S17732247183092620
2019Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathwayJiafeng TongPMC6522743https://pmc.ncbi.nlm.nih.gov/articles/PMC6522743/0
2019A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut MicrobiotaMinqian WangPMC6817918https://pmc.ncbi.nlm.nih.gov/articles/PMC6817918/0
2019Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cellsAgnieszka KorgaPMC6499973https://pmc.ncbi.nlm.nih.gov/articles/PMC6499973/0
2018USDA Database for the Flavonoid Content of Selected FoodsUSDA Database for the Flavonoid Content of Selected Foods Release 3.3 Prepared by David B. Haytowitzhttps://www.ars.usda.gov/ARSUserFiles/80400535/Data/Flav/Flav3.3.pdf0
2018Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cellsJin DaiPMC5759047https://pmc.ncbi.nlm.nih.gov/articles/PMC5759047/0
2018Plant flavone apigenin: An emerging anticancer agentEswar ShankarPMC5791748https://pmc.ncbi.nlm.nih.gov/articles/PMC5791748/0
2018Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cellsSunwoo Park28617956https://pubmed.ncbi.nlm.nih.gov/28617956/0
2018Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effectsLu XuPMC6206930https://pmc.ncbi.nlm.nih.gov/articles/PMC6206930/0
2017Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signalingXiao-Yu AiPMC5725014https://pmc.ncbi.nlm.nih.gov/articles/PMC5725014/0
2017Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potentialDarshan R Telange27939619https://pubmed.ncbi.nlm.nih.gov/27939619/0
2017Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cellsYan Qin Tan27778136https://pubmed.ncbi.nlm.nih.gov/27778136/0
2017Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancerNadine NelsonPMC5289423https://pmc.ncbi.nlm.nih.gov/articles/PMC5289423/0
2017Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signalingChung-Ming LinPMC5428476https://pmc.ncbi.nlm.nih.gov/articles/PMC5428476/0
2017Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platformsHanaa H Gaballah28025107https://pubmed.ncbi.nlm.nih.gov/28025107/0
2017The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapySuat Erdogan28107698https://pubmed.ncbi.nlm.nih.gov/28107698/0
2017Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation techniqueWeiwei Wuhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8241174/0
2017Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell lineYuwaporn Ketkaew27886571https://www.sciencedirect.com/science/article/abs/pii/S0003996916303338?via%3Dihub0
2017In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant MesotheliomaLaura MasuelliPMC5474957https://pmc.ncbi.nlm.nih.gov/articles/PMC5474957/0
2017Apigenin inhibits renal cell carcinoma cell proliferationShuai MengPMC5386726https://pmc.ncbi.nlm.nih.gov/articles/PMC5386726/0
2017Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent GlycolysisShuhua Shanhttps://pubs.acs.org/doi/10.1021/acs.jafc.7b027570
2017Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells Guangming Zhao28260058https://pubmed.ncbi.nlm.nih.gov/28260058/ https://www.spandidos-publications.com/10.3892/or.2017.54500
2017Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cellsBo Wang27959417https://pubmed.ncbi.nlm.nih.gov/27959417/0
2017Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell deathMarisa GranatoPMC5704516https://pmc.ncbi.nlm.nih.gov/articles/PMC5704516/0
2017Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expressionHye-Sook SeoP 26872304MC4708008https://pubmed.ncbi.nlm.nih.gov/26872304/0
2017Apigenin in cancer therapy: anti-cancer effects and mechanisms of actionXiaohui YanPMC5629766https://pmc.ncbi.nlm.nih.gov/articles/PMC5629766/0
2017Anti-Inflammatory and Neuroprotective Effect of Apigenin: Studies in the GFAP-IL6 Mouse Model of Chronic NeuroinflammationH Lianghttps://www.sciencedirect.com/science/article/abs/pii/S08915849173026780
2016Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and AutophagyBokyung SungPMC5207605https://pmc.ncbi.nlm.nih.gov/articles/PMC5207605/0
2016Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s diseaseRachelle Balezhttps://www.nature.com/articles/srep314500
2016Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathwayPMC4840993https://pmc.ncbi.nlm.nih.gov/articles/PMC4840993/0
2016Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV DetectionRafał GłowackiPMC4942635https://pmc.ncbi.nlm.nih.gov/articles/PMC4942635/0
2016Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: In vitro and in vivo evaluationsBum-Keun Kim27041302https://pubmed.ncbi.nlm.nih.gov/27041302/0
2016Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met SignalingBoram Kim27468969https://pubmed.ncbi.nlm.nih.gov/27468969/0
2016Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stressYoon-Mi Lee26573871https://www.spandidos-publications.com/ijo/48/1/399 https://pubmed.ncbi.nlm.nih.gov/26573871/0
2016Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing miceAlex J Kiraly26802941https://pubmed.ncbi.nlm.nih.gov/26802941/0
2016Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanomaPMC4766576https://pmc.ncbi.nlm.nih.gov/articles/PMC4766576/0
2016The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signalingSuat Erdogan27569589https://pubmed.ncbi.nlm.nih.gov/27569589/ https://www.sciencedirect.com/science/article/abs/pii/S0024320516304908?via%3Dihub0
2016Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosisRui Liu PMC5351382https://pmc.ncbi.nlm.nih.gov/articles/PMC5351382/0
2015Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1JIN FANGPMC4626186https://pmc.ncbi.nlm.nih.gov/articles/PMC4626186/0
2015The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68Tsz Yan Wonghttps://www.cambridge.org/core/journals/british-journal-of-nutrition/article/flavone-apigenin-blocks-nuclear-translocation-of-sterol-regulatory-elementbinding-protein2-in-the-hepatic-cells-wrl68/2813A579F8F7C323C208F064DC6D8A630
2015Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3‑derived sphere-forming cells Ai-Qiong Tang25405327https://www.spandidos-publications.com/mmr/11/3/22210
2015Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNKAmit BudhrajaPMC4430727https://pmc.ncbi.nlm.nih.gov/articles/PMC4430727/0
2015Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase InhibitionMd Abul HasnatPMC6332386https://pmc.ncbi.nlm.nih.gov/articles/PMC6332386/0
2015Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1JIN FANGhttps://www.researchgate.net/publication/281261616_Apigenin_inhibits_the_proliferation_of_adenoid_cystic_carcinoma_via_suppression_of_glucose_transporter-10
2015Apigenin blocks IKKα activation and suppresses prostate cancer progressionSanjeev ShuklaPMC4741599https://pmc.ncbi.nlm.nih.gov/articles/PMC4741599/0
2015Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP MiceSanjeev ShuklaPMC4574560https://pmc.ncbi.nlm.nih.gov/articles/PMC4574560/0
2015Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer Yi Zhu25351792https://www.spandidos-publications.com/mmr/11/2/10040
2015Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cellsHye-Sook Seo25936427https://pubmed.ncbi.nlm.nih.gov/25936427/0
2015Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cellsHye-Sook SeoPMC4708008https://pmc.ncbi.nlm.nih.gov/articles/PMC4708008/0
2015Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cellsLi Zhang26292725https://pubmed.ncbi.nlm.nih.gov/26292725/0
2015Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell linesAA MahbubPMC4979421https://pmc.ncbi.nlm.nih.gov/articles/PMC4979421/0
20155-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (ΔΨm)-mediated apoptosis in hepatocellular carcinomaXiao-Yun Hu25363523https://pubmed.ncbi.nlm.nih.gov/25363523/0
2015Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cellsYoung-Ah Suh25544427https://www.spandidos-publications.com/ijo/46/3/14050
2015Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2αJie Liu25334018https://www.spandidos-publications.com/mmr/11/1/6650
2015Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathwayXiaofeng Liu26035210https://www.spandidos-publications.com/or/34/2/10350
2014Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo studyMitali PandeyPMC4019962https://pmc.ncbi.nlm.nih.gov/articles/PMC4019962/0
2014Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cellsYujin Lee24626522https://www.spandidos-publications.com/ijo/44/5/15990
2014Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancerSanjeev ShuklaPMC3997183https://pmc.ncbi.nlm.nih.gov/articles/PMC3997183/0
2014Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cellsHye-Sook Seo24922650https://ar.iiarjournals.org/content/34/6/2869.long0
2014Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanismSalida Mirzoeva23359392https://pubmed.ncbi.nlm.nih.gov/23359392/0
2014Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro studyYing-Ying XuPMC4129005https://pmc.ncbi.nlm.nih.gov/articles/PMC4129005/0
2014Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics ModificationsXimena Paredes-GonzalezPMC4070251https://pmc.ncbi.nlm.nih.gov/articles/PMC4070251/0
2013Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancementJianjun Zhanghttps://www.sciencedirect.com/science/article/abs/pii/S09280987130000550
2013Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathwayAi-Mei Gao23563091https://pubmed.ncbi.nlm.nih.gov/23563091/0
2013Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosisDaniele Maggioni23969487https://www.spandidos-publications.com/10.3892/ijo.2013.20720
2013Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitroJodee L Johnson23871783https://pubmed.ncbi.nlm.nih.gov/23871783/0
2013Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse ModelLe ZhaoPMC6270497https://pmc.ncbi.nlm.nih.gov/articles/PMC6270497/0
2013Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cellsXuchen CaoPMC3626985https://pmc.ncbi.nlm.nih.gov/articles/PMC3626985/0
2013Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKTLi Chunhua23773626https://pubmed.ncbi.nlm.nih.gov/23773626/0
2012Apigenin inhibits the TNFα-induced expression of eNOS and MMP-9 via modulating Akt signalling through oestrogen receptor engagementDaniela Palmieri22899172https://pubmed.ncbi.nlm.nih.gov/22899172/0
2011The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in miceRui Liu21297270https://pubmed.ncbi.nlm.nih.gov/21297270/0
2010Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapyR R Ruela-de-SousaPMC3032507https://pmc.ncbi.nlm.nih.gov/articles/PMC3032507/0
2010Flavonoids inhibit angiogenic cytokine production by human glioma cellsSandra Freitas21170924https://pubmed.ncbi.nlm.nih.gov/21170924/0
2010Apigenin: A Promising Molecule for Cancer PreventionSanjeev ShuklaPMC2874462https://pmc.ncbi.nlm.nih.gov/articles/PMC2874462/0
2010Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate CancerAnna Slusarzhttps://aacrjournals.org/cancerres/article/70/8/3382/562551/Common-Botanical-Compounds-Inhibit-the-Hedgehog0
2009Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathwaysSurajit KarmakarPMC3103942https://pmc.ncbi.nlm.nih.gov/articles/PMC3103942/0
2008Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activationSanjeev ShuklaPMC2538676https://pmc.ncbi.nlm.nih.gov/articles/PMC2538676/0
2008Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cellsWei-Jiunn Lee17961621https://pubmed.ncbi.nlm.nih.gov/17961621/0
2008Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrenceHarald HoenschPMC2703843https://pmc.ncbi.nlm.nih.gov/articles/PMC2703843/0
2008Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase Xiao-Wen Hu18974065https://pubmed.ncbi.nlm.nih.gov/18974065/0
2006Bioavailability of Apigenin from Apiin-Rich Parsley in HumansHellen Meyerhttps://www.researchgate.net/publication/7363831_Bioavailability_of_Apigenin_from_Apiin-Rich_Parsley_in_Humans0
2002Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells Sanjay Gupta12032841https://pubmed.ncbi.nlm.nih.gov/12032841/0
1999Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cellsI K Wang10673981https://pubmed.ncbi.nlm.nih.gov/10673981/0
2010Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate CancerAnna SlusarzPMC4546096https://aacrjournals.org/cancerres/article/70/8/3382/562551/Common-Botanical-Compounds-Inhibit-the-Hedgehog0
2014Flavonoid-induced glutathione depletion: Potential implications for cancer treatmentRemy KachadourianPMC3983951https://pmc.ncbi.nlm.nih.gov/articles/PMC3983951/0
2022In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil TypeYanping Lin36580279https://pubmed.ncbi.nlm.nih.gov/36580279/0
2021Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancerZe-Bo Jiang34052328https://pubmed.ncbi.nlm.nih.gov/34052328/0
2013Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive actionHusain Yar Khan24123728https://pubmed.ncbi.nlm.nih.gov/24123728/0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290