tbResList Print — ART/DHA Artemisinin

Filters: qv=34, qv2=%, rfv=%

Product

ART/DHA Artemisinin
Description: <b>Artemisinin</b> a compound in a Chinese herb that may inhibit tumor growth and metastasis
Artemisinin (antimalarial drugs)<br>
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044 <br>
<br>
The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.<br>
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.<br>
<br>
Summary:<br>
- One of the strongest tumor-selective pro-oxidants, mechanism related with iron. Synergizes with iron-rich tumors<br>
-<a href="tbResList.php?qv=34&tsv=275&wNotes=on">ROS</a> seems to affect both cancer and normal cells<br>
- Delivery of <a href="tbResEdit.php?rid=2577">
artemisinin in conjugate form with transferrin</a> or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.<br>
- Potential direct inhibitor of
<a href="tbResList.php?qv=34&tsv=373&wNotes=on&exSp=open">STAT3 </a><br>
- <a href="tbResList.php?qv=34&qv2=19&wNotes=on&exSp=open">
Artemisinin synergized with the glycolysis inhibitor 2DG</a> (2-deoxy- D -glucose)<br>
ART Combined Therapy:
<a href="tbResList.php?qv=34&qv2=27&wNotes=on&exSp=open">Allicin</a>,
<a href="tbResList.php?qv=34&qv2=141&wNotes=on&exSp=open">Resveratrol</a>,
<a href="tbResList.php?qv=34&qv2=65&wNotes=on&exSp=open">Curcumin</a>,
<a href="tbResList.php?qv=34&qv2=166&wNotes=on&exSp=open">VitC</a> (but not orally at same time),
<a href="tbResList.php?qv=34&qv2=15&wNotes=on&exSp=open">Butyrate </a>,
<a href="tbResList.php?qv=34&qv2=19&wNotes=on&exSp=open">2-DG</a>,
<a href="tbResList.php?qv=34&qv2=332&wNotes=on&exSp=open">Aminolevulinic AcidG</a>
<br>
-possible problems with <a href="tbResEdit.php?rid=2571">liver toxicity??</a><br>
<br>
-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.<br>

<br>
Pathways:<br>
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.<br>
- Downregulate HIF-1α<br>
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.<br>
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)<br>
- Minimal NRF2 activation<br>
<br>

-Artemisinin has a <a href="tbResList.php?qv=34&&tsv=1109&wNotes=on&exSp=open">half-life </a> of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.<br>
<a href="tbResList.php?qv=34&tsv=792&wNotes=on&exSp=open">BioAv</a> 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=34&tsv=275&wNotes=on">ROS</a> production, iron dependent (affect both cancer and normal cells)<br>
- ROS↑ related:
<a href="tbResList.php?qv=34&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=34&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=34&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=34&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=34&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=34&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=34&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=34&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=HSP">HSP↓</a>,
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=Prx">Prx</a>,--><!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=34&tsv=226&wNotes=on&word=NRF2">NRF2↓</a>(contary),
<!-- <a href="tbResList.php?qv=34&word=Trx&wNotes=on">TrxR↓**</a>, --><!-- major antioxidant system -->
<a href="tbResList.php?qv=34&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=34&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=34&tsv=46&wNotes=on">Catalase↓</a>
<!-- <a href="tbResList.php?qv=34&tsv=597&wNotes=on">HO1↓</a> -->
<a href="tbResList.php?qv=34&wNotes=on&word=GPx">GPx↓</a>


<br>

- Small evidence of Raising
<a href="tbResList.php?qv=34&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=34&tsv=275&wNotes=on&word=ROS">ROS↓</a>(contary),
<a href="tbResList.php?qv=34&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=34&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>(contary),
<a href="tbResList.php?qv=34&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=34&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=34&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=34&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=34&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=34&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=34&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>, -->
<a href="tbResList.php?qv=34&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=34&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=34&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=34&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=34&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=34&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=34&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=34&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=34&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=34&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=IGF">IGF-1↓</a>,
<a href="tbResList.php?qv=34&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=34&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=34&tsv=1284&wNotes=on">ROCK1↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=110&wNotes=on">FAK↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=34&tsv=214&wNotes=on">NF-κB↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=79&wNotes=on">CXCR4↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=1247&wNotes=on">SDF1↓</a>, -->
<a href="tbResList.php?qv=34&tsv=304&wNotes=on">TGF-β↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=719&wNotes=on">α-SMA↓</a>, -->
<a href="tbResList.php?qv=34&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=34&tsv=1178&wNotes=on">MARK4↓</a> --><!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
<!--
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=34&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=DNMT">DNMTs↓</a>,
<a href="tbResList.php?qv=34&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=34&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=34&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=TET">TET↑</a>
<br> -->

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=34&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=34&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=34&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=34&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=34&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=34&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=34&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=34&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=34&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<!-- <a href="tbResList.php?qv=34&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=34&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=34&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=TOP">TOP1↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=657&wNotes=on">TET1</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=34&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=34&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=34&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=34&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=34&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=34&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=34&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=34&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=34&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=34&tsv=773&wNotes=on">HK2↓</a>,
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=PFK">PFKs↓</a>, -->
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=PDK">PDKs↓</a>, -->
<a href="tbResList.php?qv=34&tsv=847&wNotes=on">ECAR↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=230&wNotes=on">OXPHOS↓</a>, -->
<a href="tbResList.php?qv=34&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=34&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=34&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=34&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=34&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=34&tsv=143&wNotes=on">HIF-1α↓</a>,
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=NOTCH">Notch↓</a>, -->
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=FGF">FGF↓</a>, -->
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=PDGF">PDGF↓</a>, -->
<a href="tbResList.php?qv=34&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=34&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- some small indication of inhibiting Cancer Stem Cells :
<a href="tbResList.php?qv=34&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=524&wNotes=on">CK2↓</a>, -->
<a href="tbResList.php?qv=34&tsv=141&wNotes=on">Hh↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=434&wNotes=on">GLi↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=124&wNotes=on">GLi1↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=677&wNotes=on">CD133↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=655&wNotes=on">CD24↓</a>, -->
<a href="tbResList.php?qv=34&tsv=342&wNotes=on">β-catenin↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=357&wNotes=on">n-myc↓</a>, -->
<a href="tbResList.php?qv=34&tsv=656&wNotes=on">sox2↓</a>,
<!-- <a href="tbResList.php?qv=34&wNotes=on&word=NOTCH">Notch2↓</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=1024&wNotes=on">nestin↓</a>, -->
<a href="tbResList.php?qv=34&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=34&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=34&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=34&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=34&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=34&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=34&tsv=9&wNotes=on">AMPK</a>,
<!-- <a href="tbResList.php?qv=34&tsv=475&wNotes=on">α↓</a>, -->
<a href="tbResList.php?qv=34&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=34&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=34&tsv=168&wNotes=on">JNK</a>,


<!-- - <a href="tbResList.php?qv=34&wNotes=on&word=SREBP">SREBP</a> (related to cholesterol). -->
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=34&tsv=1106&wNotes=on">chemo-sensitization</a>,
<!-- <a href="tbResList.php?qv=34&tsv=1171&wNotes=on">chemoProtective</a>, -->
<a href="tbResList.php?qv=34&tsv=1107&wNotes=on">RadioSensitizer</a>,
<!-- <a href="tbResList.php?qv=34&tsv=1185&wNotes=on">RadioProtective</a>, -->
<a href="tbResList.php?qv=34&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<!-- <a href="tbResList.php?qv=34&tsv=1105&wNotes=on">Neuroprotective</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=557&wNotes=on">Cognitive</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=1175&wNotes=on">Renoprotection</a>, -->
<!-- <a href="tbResList.php?qv=34&tsv=1179&wNotes=on">Hepatoprotective</a>, -->
<!-- <a href="tbResList.php?&qv=34&tsv=1188&wNotes=on">CardioProtective</a>, -->

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=34&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
Often synergistic with ROS-based chemo<br>
<br>


<table>
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Iron-activated endoperoxide chemistry (radical formation)</td>
<td>↑ carbon-centered radicals (iron-dependent activation)</td>
<td>Primary cytotoxic trigger</td>
<td>Artemisinin-class endoperoxides generate carbon-centered radicals that drive downstream cytotoxicity (mechanistic chemical evidence)</td>
<td><a href="https://www.jbc.org/article/S0021-9258%2819%2933590-2/fulltext" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>ROS accumulation</td>
<td>↑ ROS</td>
<td>Oxidative stress overload</td>
<td>DHA induces cytotoxicity associated with ROS overproduction; ROS accompanies mitochondrial dysfunction in cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5651661/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial dysfunction</td>
<td>DHA decreases mitochondrial membrane potential during intrinsic apoptotic progression in cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2653522/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>↑ caspase-3 activation</td>
<td>Programmed cell death</td>
<td>DHA induces apoptosis via a caspase-3–dependent mitochondrial death pathway (lung adenocarcinoma model)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2653522/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Ferroptosis (iron-dependent lipid peroxidation)</td>
<td>↑ ferroptosis</td>
<td>Non-apoptotic oxidative death modality</td>
<td>Demonstrates DHA initiates ferroptosis with lipid peroxide readouts and ferroptosis-inhibitor rescue (glioblastoma context)</td>
<td><a href="https://portlandpress.com/bioscirep/article/40/6/BSR20193314/225000/Dihydroartemisinin-initiates-ferroptosis-in" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Transferrin receptor / iron uptake dependence</td>
<td>↑ dependence on TfR1 axis</td>
<td>Iron-selective vulnerability</td>
<td>DHA anticancer activity is linked to regulation/usage of cell-surface transferrin receptor-1 in cancer cells</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042703" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>ER stress / UPR (GRP78, CHOP, eIF2α)</td>
<td>↑ ER stress markers</td>
<td>Proteotoxic stress apoptosis signaling</td>
<td>DHA induces ER-stress pathway engagement (GRP78, CHOP, eIF2α) alongside mitochondrial apoptosis features</td>
<td><a href="https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2017.00310/full" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Autophagy (stress-induced program)</td>
<td>↑ autophagy</td>
<td>Adaptive or pro-death response</td>
<td>DHA stimulates autophagy through repression of NF-κB activity (autophagy induction direction shown)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/24099910/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>PI3K–AKT–mTOR survival signaling</td>
<td>↓ mTORC1 signaling</td>
<td>Reduced growth &amp; survival signaling</td>
<td>DHA inhibits mTORC1 signaling (mechanism shown via AMPK activation) in tumor cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC8226784/" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB nuclear translocation</td>
<td>Reduced pro-survival / inflammatory transcription</td>
<td>DHA blocks NF-κB p65 nuclear translocation and links this to VEGFR2 regulation in endothelial/angiogenesis context</td>
<td><a href="https://www.tandfonline.com/doi/full/10.4161/15384047.2014.955728" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Cell cycle control</td>
<td>↑ G2/M arrest</td>
<td>Proliferation blockade</td>
<td>DHA shows anticancer effect through autophagy-dependent cell cycle arrest at the G2/M phase (esophageal cancer model)</td>
<td><a href="https://link.springer.com/article/10.1186/s13020-020-00318-w" target="_blank">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Angiogenesis signaling (VEGFR2 axis)</td>
<td>↓ VEGFR2 signaling</td>
<td>Anti-angiogenic effect</td>
<td>Directly reports DHA targets VEGFR2 via NF-κB pathway modulation, consistent with anti-angiogenic activity</td>
<td><a href="https://www.tandfonline.com/doi/full/10.4161/15384047.2014.955728" target="_blank">(ref)</a></td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Fenton↑, 2,   Ferroptosis↑, 1,   GPx4↓, 5,   GPx4↑, 1,   GSH↓, 6,   GSTP1/GSTπ↓, 1,   HO-1↓, 2,   Iron↝, 1,   Iron↑, 2,   Iron↓, 1,   i-Iron↓, 1,   Keap1↓, 1,   lipid-P↑, 4,   MDA↑, 1,   NRF2↑, 4,   NRF2↓, 2,   NRF2∅, 1,   ROS↑, 3,   ROS∅, 1,   ROS↓, 1,   xCT∅, 1,  

Metal & Cofactor Biology

Ferritin↓, 2,   NCOA4↝, 1,   Tf↓, 1,   Tf↑, 1,   TfR1/CD71↑, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 1,   AIF↑, 1,   ATP↓, 1,   CDC25↓, 1,   MMP↓, 5,   mtDam↑, 1,   Raf↓, 1,  

Core Metabolism/Glycolysis

ACSL4∅, 1,   AMP↓, 1,   AMPK↑, 3,   cMyc↓, 3,   p‑CREB↓, 1,   ECAR↓, 1,   GlucoseCon↓, 3,   Glycolysis↓, 4,   HK2↓, 1,   lactateProd↓, 3,   LDH↓, 1,   LDHA↓, 2,   NADPH↓, 1,   PKM2↓, 6,   PPARγ↑, 1,   p‑S6↓, 1,   SIRT1↑, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 4,   p‑Akt↓, 2,   Apoptosis↑, 2,   Apoptosis↓, 1,   BAX↑, 6,   Bcl-2↓, 4,   Bcl-2↑, 1,   Bcl-xL↓, 1,   Bcl-xL↝, 1,   Casp↑, 1,   Casp12↑, 1,   pro‑Casp3↝, 1,   Casp3↑, 7,   Casp3↓, 1,   cl‑Casp3↑, 1,   Casp8↑, 2,   Casp9↑, 5,   p‑Chk2↑, 1,   p‑Chk2↓, 1,   Cyt‑c↑, 4,   DR5↑, 1,   FADD↑, 1,   Fas↑, 1,   Ferroptosis↑, 1,   p‑JNK↓, 1,   JNK↑, 1,   JNK↓, 1,   Mcl-1↓, 3,   MDM2↓, 1,   MOMP↑, 1,   Myc↓, 1,   necrosis↑, 2,   oncosis↑, 2,   p27↑, 2,   p‑p38↓, 1,   p38↑, 1,   Pyro↑, 1,   p‑RSK↓, 1,   survivin↓, 3,   survivin↝, 1,  

Transcription & Epigenetics

other↝, 2,   tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 3,   eIF2α↑, 2,   ER Stress↑, 5,   ER Stress↓, 1,   GRP78/BiP↑, 5,   HSP70/HSPA5↑, 1,   HSP70/HSPA5↓, 1,   PERK↑, 2,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3II↑, 1,   p62↓, 1,   TumAuto↑, 9,  

DNA Damage & Repair

p‑ATM↑, 1,   p‑ATR↑, 1,   p‑CHK1↑, 1,   DNAdam↑, 5,   HR↓, 2,   p16↑, 2,   P53↓, 1,   P53↑, 1,   cl‑PARP↑, 2,   PCNA↓, 1,   RAD51↓, 2,  

Cell Cycle & Senescence

CDK1↑, 1,   CDK2↓, 2,   CDK2↑, 1,   CDK4↓, 3,   CDK4↑, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 2,   cycE1↓, 1,   E2Fs↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

cMET↓, 1,   CREBBP↓, 1,   CSCs↓, 2,   Diff↑, 2,   EMT↓, 3,   ERK↓, 1,   p‑ERK↓, 1,   HH↓, 1,   IGF-1R↓, 1,   mTOR↓, 1,   mTOR↑, 2,   mTORC1↓, 1,   Nanog↓, 1,   OCT4↓, 1,   P70S6K↑, 1,   PI3K↓, 3,   SOX2↓, 1,   STAT↓, 1,   STAT3↓, 2,   p‑STAT3↓, 1,   p‑STAT5↓, 1,   TOP2↓, 1,   TRF2↓, 1,   TumCG↓, 5,   Wnt↓, 1,   Wnt/(β-catenin)↓, 1,   Wnt/(β-catenin)↑, 1,  

Migration

AP-1↑, 1,   AP-1↓, 1,   AXL↓, 1,   Ca+2↑, 1,   CAFs/TAFs↓, 1,   CD31↓, 1,   Cdc42↑, 1,   CDK4/6↓, 1,   E-cadherin↑, 1,   EMMPRIN↓, 1,   ITGB1↑, 1,   Ki-67↓, 2,   LysoPr↑, 1,   MMP17↓, 1,   MMP2↓, 5,   MMP7↓, 1,   MMP9↓, 5,   N-cadherin↓, 2,   NCAM↑, 1,   NFAT↑, 1,   p‑PKCδ↓, 1,   PKCδ↓, 1,   Slug↓, 1,   Snail?, 1,   TGF-β↓, 1,   TIMP2↑, 2,   Treg lymp↓, 2,   TumCI↓, 2,   TumCMig↓, 3,   TumCP↓, 8,   TumMeta↓, 3,   Twist↓, 1,   uPA↓, 3,   Vim↓, 1,   Zeb1↓, 1,   ZEB2↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 6,   ATF4↑, 3,   EGFR↓, 2,   p‑EGFR↓, 1,   EPR↑, 1,   Hif1a↓, 2,   KDR/FLK-1↓, 2,   NO↓, 1,   VEGF↓, 7,   VEGFR2↓, 1,  

Barriers & Transport

GLUT1↓, 3,   P-gp↓, 1,  

Immune & Inflammatory Signaling

CD25+↓, 3,   CD4+↓, 3,   COX2↓, 5,   FOXP3↓, 1,   FoxP3+↓, 3,   IL1↓, 1,   IL10↓, 1,   IL1β↓, 1,   IL4↓, 1,   IL4↑, 1,   IL6↓, 1,   IL8↓, 2,   JAK2↓, 1,   M2 MC↓, 1,   MIP2↓, 1,   NF-kB↓, 7,   PD-1↝, 1,   PD-L1↓, 1,   PGE2↓, 1,   SOCS1↑, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 1,   CDK6↑, 1,   ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

BioAv↝, 2,   BioAv↑, 3,   BioAv↓, 2,   ChemoSen↑, 10,   Dose↝, 1,   eff↑, 21,   eff↓, 6,   eff↝, 1,   Half-Life↓, 2,   RadioS↑, 1,   selectivity↑, 6,  

Clinical Biomarkers

EGFR↓, 2,   p‑EGFR↓, 1,   ERα/ESR1↓, 1,   Ferritin↓, 2,   IL6↓, 1,   Ki-67↓, 2,   LDH↓, 1,   Myc↓, 1,   PD-L1↓, 1,   XIST↓, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 2,   hepatoP↝, 1,   OS↑, 1,   toxicity↓, 2,   toxicity↑, 1,   TumVol↓, 1,  
Total Targets: 258

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 1,   Catalase↓, 1,   Ferroptosis↑, 1,   Ferroptosis↓, 1,   GSH∅, 1,   GSH↓, 1,   HO-1↑, 1,   MDA↑, 1,   NRF2↑, 2,   ROS↑, 1,   ROS↓, 5,   SOD↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,  

Cell Death

Akt↑, 1,   Casp3↓, 1,   Casp9↓, 1,   Ferroptosis↑, 1,   Ferroptosis↓, 1,   iNOS↓, 2,   p‑p38↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 1,   ERK↑, 1,  

Migration

ROCK1↓, 1,   TGF-β↓, 1,   TGF-β↑, 1,  

Angiogenesis & Vasculature

NO↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL1β↓, 1,   IL6↓, 4,   Inflam↓, 6,   IκB↑, 1,   MCP1↓, 2,   MIP2↓, 1,   MyD88↓, 1,   NF-kB↑, 1,   NF-kB↓, 4,   TLR4↓, 2,   TNF-α↓, 3,  

Synaptic & Neurotransmission

BDNF↑, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   Dose↝, 1,   Half-Life↝, 1,   Half-Life↓, 2,  

Clinical Biomarkers

IL6↓, 4,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 2,   memory↑, 2,   neuroP↑, 3,   toxicity↓, 2,  
Total Targets: 52

Research papers

Year Title Authors PMID Link Flag
2018Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)Bita Mousavi29361855https://pubmed.ncbi.nlm.nih.gov/29361855/0
2018Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancerNafiseh Nafisi Fardhttps://www.tandfonline.com/doi/10.1080/21691401.2018.15289830
2025Dihydroartemisinin inhibits galectin-1–induced ferroptosis resistance and peritoneal metastasis of gastric cancer via the Nrf2–HO-1 pathwayQingzhu Dinghttps://www.sciencedirect.com/science/article/pii/S09447113250105300
2025Artemisinin Ameliorates the Neurotoxic Effect of 3-Nitropropionic Acid: A Possible Involvement of the ERK/BDNF/Nrf2/HO-1 Signaling PathwayRichmond Arthur39313657pubmed.ncbi.nlm.nih.gov/39313657/0
2024Artemisinin and Its Derivatives in Cancer CareCCNM researchhttps://thechi.ca/wp-content/uploads/2024/05/Artesunate-Monograph-Healthcare-Provider-Resource-January-2024.pdf0
2024Research Progress of Warburg Effect in Hepatocellular CarcinomaYanguang Yanghttps://www.imrpress.com/journal/FBL/29/5/10.31083/j.fbl2905178/htm0
2024Dihydroartemisinin alleviates doxorubicin-induced cardiotoxicity and ferroptosis by activating Nrf2 and regulating autophagyZhi-Hui Lin38775792https://pubmed.ncbi.nlm.nih.gov/38775792/0
2024Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer TreatmentYouke Wanghttps://worldscientific.com/doi/10.1142/S0192415X245000710
2024Dihydroartemisinin Regulates Self-Renewal of Human Melanoma-Initiating Cells by Targeting PKM2/LDHARelated GlycolysisZhen Lihttps://accscience.com/journal/EJMO/8/2/10.14744/ejmo.2024.708030
2023Dihydroartemisinin Increases the Sensitivity of Acute Myeloid Leukemia Cells to Cytarabine via the Nrf2/HO-1 Anti-Oxidant Signaling PathwayQiong Suhttps://www.imrpress.com/journal/ijp/19/5/10.3923/ijp.2023.632.6410
2023Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathwayFei YangPMC10085032https://pmc.ncbi.nlm.nih.gov/articles/PMC10085032/0
2023Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 AxisYingqian WangPMC10794272https://pmc.ncbi.nlm.nih.gov/articles/PMC10794272/0
2022Artemisinin Attenuates Amyloid-Induced Brain Inflammation and Memory Impairments by Modulating TLR4/NF-κB SignalingXia ZhaoPMC9181281https://pmc.ncbi.nlm.nih.gov/articles/PMC9181281/0
2022Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levelsMiao WangPMC9660076https://pmc.ncbi.nlm.nih.gov/articles/PMC9660076/0
2022Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cellsRui-Hong Gonghttps://www.researchgate.net/publication/357497952_Cell_death_mechanisms_induced_by_synergistic_effects_of_halofuginone_and_artemisinin_in_colorectal_cancer_cells0
2022Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitisLei Huahttps://www.sciencedirect.com/science/article/abs/pii/S156757692200916X0
2022The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of CancerYingying HuPMC8752222https://pmc.ncbi.nlm.nih.gov/articles/PMC8752222/0
2021Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclaxBlake S. Moseshttps://ashpublications.org/bloodadvances/article/5/3/711/475059/Antileukemic-efficacy-of-a-potent-artemisinin0
2021Ferroptosis: The Silver Lining of Cancer TherapyZhengming TangPMC8667274https://pmc.ncbi.nlm.nih.gov/articles/PMC8667274/0
2021Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLCUyanga BatboldPMC8658962https://pmc.ncbi.nlm.nih.gov/articles/PMC8658962/0
2021Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?Zhaowu MaPMC8758560https://pmc.ncbi.nlm.nih.gov/articles/PMC8758560/0
2021Dihydroartemisinin inhibits IL-6-induced epithelial–mesenchymal transition in laryngeal squamous cell carcinoma via the miR-130b-3p/STAT3/β-catenin signaling pathwayYajing SunPMC8586195https://pmc.ncbi.nlm.nih.gov/articles/PMC8586195/0
2021Dihydroartemisinin: A Potential Natural Anticancer Drughttps://www.ijbs.com/v17p0603.htm0
2021Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expressionZhiwei WangPMC8485000https://pmc.ncbi.nlm.nih.gov/articles/PMC8485000/0
2021Interaction of artemisinin protects the activity of antioxidant enzyme catalase: A biophysical studyRashmi R Samal33460658https://pubmed.ncbi.nlm.nih.gov/33460658/0
2021Effects of Caffeine-Artemisinin Combination on Liver Function and Oxidative Stress in Selected Organs in 7,12-Dimethylbenzanthracene-Treated RatsTitilope Modupe Dokunmuhttps://www.researchgate.net/publication/354691732_Effects_of_Caffeine-Artemisinin_Combination_on_Liver_Function_and_Oxidative_Stress_in_Selected_Organs_in_712-Dimethylbenzanthracene-Treated_Rats0
2021Progress on the study of the anticancer effects of artesunateXiulan YangPMC8436334https://pmc.ncbi.nlm.nih.gov/articles/PMC8436334/0
2021Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in microgliaShao-peng LinPMC8209200https://pmc.ncbi.nlm.nih.gov/articles/PMC8209200/0
2021Dihydroartemisinin Inhibits mTORC1 Signaling by Activating the AMPK Pathway in Rhabdomyosarcoma Tumor CellsJun LuoPMC8226784https://pmc.ncbi.nlm.nih.gov/articles/PMC8226784/0
2021Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinomaMingxia Jianghttps://www.sciencedirect.com/science/article/abs/pii/S00092797210034220
2020Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancersBowen Lihttps://www.sciencedirect.com/science/article/pii/S07533322203090330
2020Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposingYolanda AugustinPMC7564301https://pmc.ncbi.nlm.nih.gov/articles/PMC7564301/0
2020Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisininQiang Mahttps://link.springer.com/article/10.1186/s13020-020-00318-w0
2020Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic GlycolysisPeng GaoPMC7261662https://pmc.ncbi.nlm.nih.gov/articles/PMC7261662/0
2020Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibitionRenxin YiPMC7313443https://pmc.ncbi.nlm.nih.gov/articles/PMC7313443/0
2020Artemisinin and its derivatives: a promising cancer therapy Bushra Hafeez Kiani 32710388https://pubmed.ncbi.nlm.nih.gov/32710388/0
2020Artemisinin improves the efficiency of anti-PD-L1 therapy in T-cell lymphomaDehong Yanhttps://www.researchgate.net/publication/342877026_Artemisinin_improves_the_efficiency_of_anti-PD-L1_therapy_in_T-cell_lymphoma0
2019Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cellsYibing Chen,https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1413-70
2019Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2Shumin Li31004604https://pubmed.ncbi.nlm.nih.gov/31004604/0
2019Keap1 Cystenine 151 as a Potential Target for Artemisitene-Induced Nrf2 ActivationShanshan LiuPMC6815614https://pmc.ncbi.nlm.nih.gov/articles/PMC6815614/0
2018Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancerYuyuan YaoPMC6258160https://pmc.ncbi.nlm.nih.gov/articles/PMC6258160/0
2018Artemisinin: A Promising Adjunct for Cancer TherapyYamna Waseemhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6347441/0
2018Artemisinin B Improves Learning and Memory Impairment in AD Dementia Mice by Suppressing NeuroinflammationWeijie Qiang30399421https://pubmed.ncbi.nlm.nih.gov/30399421/0
2018Artemisinin and Its Synthetic Derivatives as a Possible Therapy for CancerEnrique Konstat-Korzennyhttps://www.mdpi.com/2076-3271/6/1/190
2017Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicineYulin Zhanghttps://cmjournal.biomedcentral.com/articles/10.1186/s13020-017-0140-20
2017Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action Yin Kwan Wong 28643446https://pubmed.ncbi.nlm.nih.gov/28643446/0
2017Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathwaysKe Si Wang28000518https://pubmed.ncbi.nlm.nih.gov/28000518/0
2017Dihydroartemisinin Induces Apoptosis in Human Bladder Cancer Cell Lines Through Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cytochrome C PathwayFarhad PoupelPMC5651661https://pmc.ncbi.nlm.nih.gov/articles/PMC5651661/0
2017Dihydroartemisinin Exerts Anti-Tumor Activity by Inducing Mitochondrion and Endoplasmic Reticulum Apoptosis and Autophagic Cell Death in Human Glioblastoma CellsChengbin Quhttps://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2017.00310/full0
2017Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer ActivityJigang Wanghttps://pubs.acs.org/doi/full/10.1021/acscentsci.7b001560
2017Cancer combination therapies with artemisinin-type drugsThomas Efferthhttps://www.sciencedirect.com/science/article/abs/pii/S00062952173018180
2017Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectivesArchana Bhaw-Luximonhttps://link.springer.com/article/10.1007/s00280-017-3251-70
2016Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 SignalingLifeng JiaPMC4718674https://pmc.ncbi.nlm.nih.gov/articles/PMC4718674/0
2016Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell ProteomeYiqing Zhouhttps://www.researchgate.net/publication/293634627_Profiling_of_Multiple_Targets_of_Artemisinin_Activated_by_Hemin_in_Cancer_Cell_Proteome0
2016Artesunate as an Anti-Cancer Agent Targets Stat-3 and Favorably Suppresses Hepatocellular CarcinomaM Ilamathi 26873192https://pubmed.ncbi.nlm.nih.gov/26873192/0
2016High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolismAmit Subedihttps://www.sciencedirect.com/science/article/abs/pii/S0006291X163105550
2016Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescenceNancy BertePMC5341871https://pmc.ncbi.nlm.nih.gov/articles/PMC5341871/0
2016Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signalingYunli Tonghttps://www.researchgate.net/publication/301686301_Artemisinin_and_its_derivatives_can_significantly_inhibit_lung_tumorigenesis_and_tumor_metastasis_through_Wntb-catenin_signaling0
2016Mechanism-Guided Design and Synthesis of a Mitochondria-Targeting Artemisinin Analogue with Enhanced Anticancer ActivityChong-Jing Zhang27709833https://pubmed.ncbi.nlm.nih.gov/27709833/0
2015Effects of Antioxidants and Pro-oxidants on Cytotoxicity of Dihydroartemisinin to Molt-4 Human Leukemia CellsTHOMAS GERHARDT25862840https://pubmed.ncbi.nlm.nih.gov/25862840/0
2015Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2Ping ZhangPMC4406257https://pmc.ncbi.nlm.nih.gov/articles/PMC4406257/0
2015Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10Cheng Cui 25978851https://pubmed.ncbi.nlm.nih.gov/25978851/0
2015Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cellsYan-jun MiPMC4370589https://pmc.ncbi.nlm.nih.gov/articles/PMC4370589/0
2015An Untargeted Proteomics and Systems-based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial CellsKodihalli C RavindraPMC5480315https://pmc.ncbi.nlm.nih.gov/articles/PMC5480315/0
2015Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse modelChulwon KimPMC4414170https://pmc.ncbi.nlm.nih.gov/articles/PMC4414170/0
2015Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathwayJunyan Chen 25301262https://pubmed.ncbi.nlm.nih.gov/25301262/0
2014Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3 Liu Cao 25985565https://pubmed.ncbi.nlm.nih.gov/25985565/0
2014Synergic effects of artemisinin and resveratrol in cancer cellsPeichun Li25048878https://pubmed.ncbi.nlm.nih.gov/25048878/0
2014Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesisFengyun Donghttps://www.tandfonline.com/doi/full/10.4161/15384047.2014.9557280
2014Dihydroartemisinin induces autophagy by suppressing NF-κB activationWei Hu24099910https://pubmed.ncbi.nlm.nih.gov/24099910/0
2014Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression Li-Xin Zhang 24446394https://pubmed.ncbi.nlm.nih.gov/24446394/0
2013The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in VivoWei Jiang24083713https://pubmed.ncbi.nlm.nih.gov/24083713/0
2012Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cellsCansheng ZhuPMC3325975https://pmc.ncbi.nlm.nih.gov/articles/PMC3325975/0
2012Dihydroartemisinin Exerts Its Anticancer Activity through Depleting Cellular Iron via Transferrin Receptor-1Qian Bahttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00427030
2011Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase Cδ/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophagesYue Wang21039753https://pubmed.ncbi.nlm.nih.gov/21039753/0
2011Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivoShokoofe Noorihttps://www.sciencedirect.com/science/article/abs/pii/S00088749110014680
2011Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo Vida Farsam 21824530https://pubmed.ncbi.nlm.nih.gov/21824530/0
2011Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer DrugMaria P Crespo-OrtizPMC3228295https://pmc.ncbi.nlm.nih.gov/articles/PMC3228295/0
2010Discovery, mechanisms of action and combination therapy of artemisininLiwang CuiPMC2778258https://pmc.ncbi.nlm.nih.gov/articles/PMC2778258/0
2009Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cellsYing-Ying LuPMC2653522https://pmc.ncbi.nlm.nih.gov/articles/PMC2653522/0
2008Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cellsShyam N SundarPMC2639250https://pmc.ncbi.nlm.nih.gov/articles/PMC2639250/0
2007Evidence for the Involvement of Carbon-centered Radicals in the Induction of Apoptotic Cell Death by Artemisinin CompoundsAmy E. Mercehttps://www.jbc.org/article/S0021-9258%2819%2933590-2/fulltext0
2005A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extractionToufigh GordiPMC1884742https://pmc.ncbi.nlm.nih.gov/articles/PMC1884742/0
2005Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cellsNarendra P Singh16309236https://pubmed.ncbi.nlm.nih.gov/16309236/0
2004Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1Huan-Huan Chen15051917https://pubmed.ncbi.nlm.nih.gov/15051917/0
2006Curcumin-Artemisinin Combination Therapy for MalariaDalavaikodihalli Nanjaiah Nandakumarhttps://journals.asm.org/doi/full/10.1128/aac.50.5.1859-1860.20060