tbResList Print — Carno Carnosine

Filters: qv=351, qv2=%, rfv=%

Product

Carno Carnosine
Description: <p><b>Carnosine</b> (CAR; β-alanyl-L-histidine) is an <b>endogenous dipeptide</b> and <b>dietary supplement</b> (high in meat; also synthesized).<br>
<b>Primary mechanisms (conceptual rank):</b><br>
1) <b>Carbonyl/aldehyde scavenging + anti-glycation (AGE) suppression</b> → proteostasis stress ↓ (P/R)<br>
2) <b>Cancer metabolism interference (Warburg/glycolysis pressure)</b> → proliferation ↓ (model-dependent; often high concentration) (R/G)<br>
3) <b>Metal chelation + ROS/RNS buffering</b> (secondary redox modulation) (P/R; context-dependent)<br>
<b>Bioavailability / PK:</b> Orally absorbed, but <b>rapidly hydrolyzed in human blood by carnosinase (CN1)</b> → very short circulating half-life; sustained systemic CAR exposure is limited vs β-alanine/histidine metabolites.<br>
<b>In-vitro vs realistic exposure:</b> Many anti-proliferative / glycolysis effects are reported at <b>high µM–mM</b> CAR in vitro, commonly exceeding realistic systemic CAR exposure due to rapid serum hydrolysis.<br>
<b>Clinical evidence status (cancer):</b> Predominantly <b>preclinical</b> for direct anti-cancer effects; human oncology evidence is mainly <b>adjunct/supportive</b> (e.g., zinc-L-carnosine for radiation-related symptoms), not established as an anti-tumor monotherapy.</p>

<b>L-Carnosine</b> (usually just called "Carnosine") is a naturally occurring dipeptide composed of L-histidine and β-alanine, found in high concentrations in muscle and brain tissue.<br>
-Source: only found in animals Beef(372mg/100g), ChickenBreast(290mg/100g), Pork(276mg/100g), TurkeyBreast(240mg/100g)<br>
-Anserine is a derivative of carnosine <br>
-Scavenges reactive oxygen species (ROS) <br>
-Inhibits formation of AGEs (advanced glycation end-products), which are linked to aging and neurodegeneration.<br>
-Metal chelator: Binds excess zinc, copper, and iron—important in brain health.<br>
<br>

<br>

<h3>Carnosine (CAR) — Pathway / Axis Effects (Cancer vs Normal)</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells (↑ / ↓ / ↔)</th>
<th>Normal Cells (↑ / ↓ / ↔)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td><b>Carbonyl stress / anti-glycation (AGE)</b></td>
<td>↓ proteotoxic/carbonyl stress (context-dependent)</td>
<td>↓ glycation damage (protective)</td>
<td>P/R</td>
<td>Cell stress buffering</td>
<td>Core “chemoprotective” chemistry: nucleophilic scavenging of reactive carbonyls; cancer-direction depends on whether tumor relies on carbonyl-stress adaptation.</td>
</tr>

<tr>
<td>2</td>
<td><b>Warburg / glycolysis pressure</b></td>
<td>↓ glycolysis flux (model-dependent; high concentration only)</td>
<td>↔</td>
<td>R/G</td>
<td>Anti-proliferative (subset)</td>
<td>Frequently reported in vitro with supraphysiologic CAR; translation constrained by rapid serum hydrolysis in humans.</td>
</tr>

<tr>
<td>3</td>
<td><b>Mitochondrial function / energetic stress</b></td>
<td>↔ / ↑ energetic stress (model-dependent)</td>
<td>↔ / protective (context-dependent)</td>
<td>R</td>
<td>Growth suppression vs resilience</td>
<td>Direction varies by baseline metabolic state and substrate availability; often secondary to carbonyl/redox effects.</td>
</tr>

<tr>
<td>4</td>
<td><b>ROS</b></td>
<td>↓ ROS (secondary; context-dependent)</td>
<td>↓ oxidative damage (protective)</td>
<td>P/R</td>
<td>Redox buffering</td>
<td>Typically described as antioxidant buffering; paradoxical “ROS ↑” cytotoxicity is not a dominant CAR narrative.</td>
</tr>

<tr>
<td>5</td>
<td><b>NRF2 (stress-response axis)</b></td>
<td>↔ / ↑ cytoprotection (context-dependent; resistance risk)</td>
<td>↔ / ↑ protective</td>
<td>G</td>
<td>Adaptive stress signaling</td>
<td>If NRF2 is already oncogenic (e.g., KEAP1/NFE2L2-altered tumors), further cytoprotection could be undesirable.</td>
</tr>

<tr>
<td>6</td>
<td><b>Ca²⁺</b> (ER/mitochondria stress coupling)</td>
<td>↔ (not primary; model-dependent)</td>
<td>↔</td>
<td>R</td>
<td>Stress modulation (secondary)</td>
<td>Include only as a secondary axis: CAR’s dominant reported levers are carbonyl/redox/metabolic rather than direct Ca²⁺ channel control.</td>
</tr>

<tr>
<td>7</td>
<td><b>Ferroptosis</b></td>
<td>↔ (context-dependent)</td>
<td>↔</td>
<td>R/G</td>
<td>Unclear / secondary</td>
<td>CAR’s anti-lipid-peroxidation tendency could oppose ferroptosis in some contexts; evidence is not central vs carbonyl/AGE chemistry.</td>
</tr>

<tr>
<td>8</td>
<td><i>Clinical Translation Constraint</i></td>
<td colspan="2">Human systemic CAR exposure is constrained by rapid serum hydrolysis (CN1); much in-vitro anti-cancer work uses high µM–mM. Strongest human oncology signal is adjunct/supportive use (e.g., zinc-L-carnosine symptom prevention), not proven tumor regression.</td>
<td>—</td>
<td>PK-limited; adjunct-only</td>
<td>Consider delivery strategies/analogs (e.g., carnosinase-resistant histidine dipeptides) if pursuing systemic pharmacology.</td>
</tr>
</table>

<p><b>TSF legend:</b> P: 0–30 min (primary/rapid effects; direct enzyme/redox interactions) · R: 30 min–3 hr (acute signaling + stress responses) · G: &gt;3 hr (gene-regulatory adaptation; phenotype outcomes)</p>

Pathway results for Effect on Cancer / Diseased Cells

Metal & Cofactor Biology

IronCh↑, 1,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,  

Cell Death

p‑Akt↓, 1,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 1,  

Functional Outcomes

AntiTum↑, 1,  
Total Targets: 8

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 5,   HNE↓, 1,   lipid-P↓, 2,   NOX4↓, 1,   ROS↓, 7,   SOD↑, 1,  

Metal & Cofactor Biology

IronCh↑, 6,  

Core Metabolism/Glycolysis

CREB↑, 1,  

Transcription & Epigenetics

other↑, 1,  

Migration

Vim↓, 1,  

Angiogenesis & Vasculature

NO↓, 2,  

Immune & Inflammatory Signaling

IL1β↓, 1,   IL6↓, 1,   Inflam↓, 3,   TNF-α↓, 1,  

Synaptic & Neurotransmission

BDNF↑, 1,   GABA↝, 1,   NGF↑, 1,  

Protein Aggregation

Aβ↓, 5,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

AntiAge↑, 2,   cognitive↑, 5,   memory∅, 1,   memory↑, 1,   neuroP↑, 4,   toxicity↓, 1,   toxicity∅, 2,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 29

Research papers

Year Title Authors PMID Link Flag
2022Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position PaperGiuseppe CarusoPMC9143376https://pmc.ncbi.nlm.nih.gov/articles/PMC9143376/0
2022Effects of zinc and carnosine on aggregation kinetics of Amyloid-β40 peptideFengyun ShenPMC9464885https://pmc.ncbi.nlm.nih.gov/articles/PMC9464885/0
2022Swimming exercise versus L-carnosine supplementation for Alzheimer’s dementia in rats: implication of circulating and hippocampal FNDC5/irisinMaha A. Hegazyhttps://link.springer.com/article/10.1007/s13105-021-00845-60
2021Carnosine, Small but Mighty—Prospect of Use as Functional Ingredient for Functional Food FormulationIvana JukićPMC8300828https://pmc.ncbi.nlm.nih.gov/articles/PMC8300828/0
2021Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative StressGiuseppe CarusoPMC8146816https://pmc.ncbi.nlm.nih.gov/articles/PMC8146816/0
2021Ionophore Ability of Carnosine and Its Trehalose Conjugate Assists Copper Signal in Triggering Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Activation In VitroIrina NaletovaPMC8706131https://pmc.ncbi.nlm.nih.gov/articles/PMC8706131/0
2021The Therapeutic Potential of Carnosine/Anserine Supplementation against Cognitive Decline: A Systematic Review with Meta-AnalysisGiuseppe CarusoPMC7998783https://pmc.ncbi.nlm.nih.gov/articles/PMC7998783/0
2018EFFECT OF ANSERINE/CARNOSINE SUPPLEMENTATION ON THE PREVENTION OF ALZHEIMER'S DISEASE IN PATIENTS WITH MILD COGNITIVE IMPAIRMENTNobutaka Masuokahttps://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2018.06.25950
2015Daily Carnosine and Anserine Supplementation Alters Verbal Episodic Memory and Resting State Network Connectivity in Healthy Elderly AdultsJaroslav Rokickihttps://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2015.00219/full0
2014Safety and Efficacy Evaluation of Carnosine, An Endogenous Neuroprotective Agent for Ischemic StrokeOk-Nam BaePMC3678096https://pmc.ncbi.nlm.nih.gov/articles/PMC3678096/0
2011Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD miceCarlo CoronaPMC3058055https://pmc.ncbi.nlm.nih.gov/articles/PMC3058055/0
2009Carnosine, diabetes and Alzheimer's diseaseAlan Roger Hipkisshttps://www.researchgate.net/publication/24377639_Carnosine_diabetes_and_Alzheimer's_disease0
2007Could carnosine or related structures suppress Alzheimer's disease?Alan R Hipkiss17522447https://pubmed.ncbi.nlm.nih.gov/17522447/0