tbResList Print — CoQ10 Coenzyme Q10

Filters: qv=356, qv2=%, rfv=%

Product

CoQ10 Coenzyme Q10
Description: <b>Coenzyme Q10 (CoQ10)</b>, also known as ubiquinone, is a fat-soluble antioxidant and a critical component of the mitochondrial electron transport chain, essential for ATP production. Its potential role in Alzheimer’s disease (AD) and cancer has been increasingly studied, mainly due to its effects on oxidative stress, mitochondrial function, and cellular energy metabolism.<br>
<br>
Two types: ubiquinone(standard) vs ubiquinol(more bioavailable) <br>
<br>
-high content in beef heart
-Acts as an antioxidant, reducing ROS<br>
-Some preclinical studies suggest CoQ10 may reduce Aβ-induced neurotoxicity<br>
-CoQ10 is sometimes used with chemotherapy to reduce cardiotoxicity (especially with doxorubicin).<br>
-Essential for ATP (energy) production.<br>
<br>
-CoQ10 levels may drop by 25–40% in people taking statins.<br>
-May support mitochondrial function in neurodegenerative diseases, including Alzheimer’s and Parkinson’s<br>
<br>
<pre>
Coenzyme Q10 exists in three redox states:
Form Name Abbreviation Redox state
Oxidized Ubiquinone CoQ10 Oxidized (labeled “Coenzyme Q10”, “CoQ10”)
Semiquinone Ubiquinol radical CoQ10•– Intermediate (labeled “Ubiquinol”, “Reduced CoQ10”)
Reduced Ubiquinol CoQ10H₂ Reduced

Most supplements = ubiquinol (reduced, antioxidant)
Ubiquinol is often preferred for cardiovascular, aging, and antioxidant-focused use.
BPM31510 = ubiquinone (oxidized) (might raise ROS in cancer cells)

<b>>80–95% of circulating CoQ10 is ubiquinol, regardless of whether ubiquinone or ubiquinol was ingested</b>
</pre>
<br>
-CoQ10 is fat-soluble, so take it alongside meals that include nutrient-dense fats like coconut oil, butter or tallow in moderation<br>
-initial 200-300mg/day (split during day) down to 100mg after 21 days<br>
<br>
BPM31510: Pharmaceutical oxidized CoQ10<br>
BPM31510 = oxidized CoQ10 (ubiquinone) in a specialized lipid formulation.<br>
BPM31510 increases Mitochondrial ROS in cancer cells. That increase is intentional, central to its mechanism, and relatively selective for tumor cells.<br>
BPM31510 Studies report in cancer cells:<br>
↑ mitochondrial ROS<br>
↑ lipid peroxidation<br>
↓ NADPH/NADP⁺ ratio<br>
↓ GSH/GSSG ratio<br>
Activation of oxidative stress pathways<br>
Cell death without classic antioxidant rescue<br>
Importantly: Trolox, NAC, or GSH can partially blunt BPM31510 effects, confirming ROS dependence<br>
<br>


Coenzyme Q10 (CoQ10 / Ubiquinone) — Cancer vs Normal Cell Effects
<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial electron transport (ETC)</td>
<td>↔ or ↓ metabolic advantage</td>
<td>↑ ETC efficiency</td>
<td>Driver</td>
<td>Mitochondrial bioenergetic support</td>
<td>CoQ10 improves electron transport and ATP efficiency primarily in normal cells</td>
</tr>

<tr>
<td>2</td>
<td>Reactive oxygen species (ROS)</td>
<td>↓ ROS (antioxidant)</td>
<td>↓ ROS (strong buffering)</td>
<td>Driver</td>
<td>Antioxidant dominance</td>
<td>CoQ10 limits lipid peroxidation and mitochondrial ROS production</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial membrane stability</td>
<td>↔ stabilized (may reduce stress signaling)</td>
<td>↑ membrane protection</td>
<td>Secondary</td>
<td>Mitochondrial resilience</td>
<td>Stabilization favors normal cells and may blunt oxidative stress-based cancer therapies</td>
</tr>

<tr>
<td>4</td>
<td>Inflammatory signaling (NF-κB / cytokines)</td>
<td>↓ inflammatory microenvironment</td>
<td>↓ inflammation</td>
<td>Secondary</td>
<td>Anti-inflammatory milieu</td>
<td>Reduced inflammation may limit tumor promotion but is not directly cytotoxic</td>
</tr>

<tr>
<td>5</td>
<td>Cell proliferation</td>
<td>↔ or mildly ↓</td>
<td>↔</td>
<td>Phenotypic</td>
<td>Growth neutrality</td>
<td>CoQ10 does not strongly inhibit proliferation in most cancer models</td>
</tr>

<tr>
<td>6</td>
<td>Apoptosis</td>
<td>↓ apoptosis (stress protection)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Cytoprotection</td>
<td>Anti-apoptotic effect reflects antioxidant and mitochondrial protection</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↓, 1,   Ferroptosis↑, 1,   H2O2↓, 1,   ROS↑, 7,  

Mitochondria & Bioenergetics

MMP↓, 2,   OCR↓, 1,  

Core Metabolism/Glycolysis

LDHA↓, 1,   PDH↑, 1,  

Cell Death

Akt↓, 3,   Apoptosis↑, 6,   Apoptosis∅, 1,   BAX↑, 1,   Bax:Bcl2↑, 2,   Bcl-2↓, 1,   Casp3↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 1,   p27↑, 1,   survivin↓, 1,   TumCD↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   HER2/EBBR2↓, 1,  

Transcription & Epigenetics

other↝, 1,   other↑, 2,   tumCV↓, 2,  

Protein Folding & ER Stress

ERStress↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 2,   LC3II↑, 1,   LC3s↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

cl‑PARP↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   mTOR↓, 2,   PI3K↓, 1,   PTEN↑, 1,   TumCG↓, 6,   TumCG∅, 2,   Wnt↓, 1,  

Migration

Akt2↓, 1,   MMP2↓, 1,   MMPs↓, 2,   TumCP↓, 2,   TumMeta↓, 3,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   ECM/TCF↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Drug Metabolism & Resistance

ChemoSen∅, 3,   ChemoSen↑, 2,   ChemoSen↓, 1,   Dose↝, 2,   Dose?, 1,   eff↝, 1,   eff↑, 2,   eff↓, 2,   RadioS↑, 1,   selectivity↑, 2,  

Clinical Biomarkers

HER2/EBBR2↓, 1,  

Functional Outcomes

AntiCan↑, 4,   antiNeop∅, 1,   cardioP↑, 3,   chemoP↑, 3,   chemoPv↑, 1,   hepatoP↑, 1,   Risk↓, 4,   toxicity↓, 1,  
Total Targets: 70

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 9,   HDL↑, 1,   lipid-P↓, 2,   lipid-P?, 1,   MDA↓, 1,   ROS↓, 10,   SOD↑, 2,  

Mitochondria & Bioenergetics

ETC↝, 1,  

Core Metabolism/Glycolysis

LDL↓, 1,  

Cell Death

Akt↑, 1,   Apoptosis↓, 1,  

Transcription & Epigenetics

other∅, 2,   other?, 1,   other↑, 1,   other↝, 2,   other↓, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

IGF-1↑, 1,   IGFBP1↑, 1,   mTOR↑, 1,   PI3K↑, 1,   SOX2↑, 1,  

Immune & Inflammatory Signaling

IL6↓, 2,   Inflam↓, 4,   TNF-α↓, 3,  

Synaptic & Neurotransmission

BDNF↑, 2,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 2,   Dose↝, 1,   eff↑, 2,  

Clinical Biomarkers

BP↓, 1,   IL6↓, 2,  

Functional Outcomes

AntiAge↑, 2,   AntiCan↓, 1,   cardioP↑, 2,   cognitive↑, 3,   memory↑, 1,   neuroP↑, 3,   QoL↑, 1,   RenoP↑, 1,   toxicity↓, 1,   toxicity↝, 1,  
Total Targets: 43

Research papers

Year Title Authors PMID Link Flag
2025Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulationAkhmed Aslamhttps://link.springer.com/content/pdf/10.1186/s43046-025-00261-7.pdf0
2025CoQ10 Is Key for Cellular Energy and Cancer SupportDr. Joseph Mercolahttps://media.mercola.com/ImageServer/Public/2025/February/PDF/coq10-key-for-cellular-energy-cancer-support-pdf.pdf0
2025Dietary intake of coenzyme Q10 reduces oxidative stress in patients with acute ischemic stroke: a double-blind, randomized placebo-controlled studyAli Mojaver39999976https://pubmed.ncbi.nlm.nih.gov/39999976/0
2025Coenzyme Q10Brittany Sood30285386https://pubmed.ncbi.nlm.nih.gov/30285386/0
2024The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancersGhazal Ghasempour Dabaghihttps://www.sciencedirect.com/science/article/abs/pii/S01470272240000470
2024Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathwayShikha Upretihttps://www.nature.com/articles/s41598-024-76135-00
2024Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancerGiovanni Tosihttps://www.nature.com/articles/s41467-024-52523-y0
2023The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cellsHsin-Ling Yanghttps://www.sciencedirect.com/science/article/pii/S17564646230005430
2022Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer's diseaseMohsen Sheykhhasanhttps://www.sciencedirect.com/science/article/pii/S07533322220061380
2021Elevated levels of mitochondrial CoQ10 induce ROS-mediated apoptosis in pancreatic cancerTulin Dadalihttps://www.nature.com/articles/s41598-021-84852-z0
2020Role of coenzymes in cancer metabolismMaheshwor Thapahttps://www.sciencedirect.com/science/article/pii/S10849521193007090
2018Coenzyme Q10 Supplementation in Aging and DiseaseJuan D. Hernández-Camachohttps://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.00044/full0
2017Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathwayRan XuePMC5696182https://pmc.ncbi.nlm.nih.gov/articles/PMC5696182/0
2016Coenzyme Q and Its Role in the Dietary Therapy against AgingAlfonso Varela-LópezPMC6273282https://pmc.ncbi.nlm.nih.gov/articles/PMC6273282/0
2015Coenzyme Q10 Protects Astrocytes from ROS-Induced Damage through Inhibition of Mitochondria-Mediated Cell Death PathwayLi JingPMC4278255https://pmc.ncbi.nlm.nih.gov/articles/PMC4278255/0
2012Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimer’s DiseaseMagali Dumont,PMC3267988https://pmc.ncbi.nlm.nih.gov/articles/PMC32679880
2012Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell CulturesHeather GreenleePMC3840161https://pmc.ncbi.nlm.nih.gov/articles/PMC3840161/0
2010Evaluation of Coenzyme Q as an Antioxidant Strategy for Alzheimer’s DiseaseTeri L WadsworthPMC2931577https://pmc.ncbi.nlm.nih.gov/articles/PMC2931577/0
2010Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cellsHanna Bessler20354351https://pubmed.ncbi.nlm.nih.gov/20354351/0
2007Effects of Coenzyme Q10 on TNF-alpha secretion in human and murine monocytic cell linesConstance Schmelzer18806307https://pubmed.ncbi.nlm.nih.gov/18806307/0
2006Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell linesGloria Brea-Calvohttps://www.sciencedirect.com/science/article/abs/pii/S08915849050071120
2006Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagyYou-Cheng Hseuhttps://www.nature.com/articles/s41598-017-08659-70
2004Efficacy of Coenzyme Q10 for Improved Tolerability of Cancer Treatments: A Systematic ReviewLiz Roffehttps://ascopubs.org/doi/10.1200/JCO.2004.02.0340
2000Serum levels of coenzyme Q10 in patients with Alzheimer's diseaseF de Bustos10847562https://pubmed.ncbi.nlm.nih.gov/10847562/0
1997Activities of Vitamin Q10in Animal Models and a Serious Deficiency in Patients with CancerKarl Folkershttps://www.sciencedirect.com/science/article/abs/pii/S0006291X97965220?via%3Dihub0