tbResList Print — FulvicA Shilajit/Fulvic Acid

Filters: qv=358, qv2=%, rfv=%

Product

FulvicA Shilajit/Fulvic Acid
Description: <b>Fulvic acid</b> is a naturally occurring compound found in soil, compost, and marine sediments. It is a complex mixture of many organic acids and has been studied for its antioxidant, anti-inflammatory, and immune-modulating properties.<br>
Shilajit is a complex mineral–organic exudate found in mountainous regions (e.g., Himalayas). It contains fulvic acids, humic substances, dibenzo-α-pyrones (DBPs), trace minerals, and other low-molecular-weight compounds. Most standardized extracts are characterized by fulvic acid content (often 15–60%).<br>
<br>
AD:<br>
-Fulvic acid may help inhibit tau fibril formatio<br>
-Antioxidant activity<br>
-Anti-inflammatory effects<br>
<br>
Cancer:<br>
-Fulvic acid’s role in reducing drug resistance and improving drug absorption has been suggested<br>
-Synergistic effects with chemotherapy<br>
<br>
<a href="https://nestronics.ca/dbx/tbResList.php?qv=358">Fulvic Acid</a> database results: Note how it is antioxidant for normal cells, but may produce ROS in cancer cells. (explains synergistic effect with chemo)
<br>
<a href="https://buyleafsource.ca/">LeafSource Fulvic Acid</a> note how they use Fulvic Acid to improve bioavailability of berberine.<br>

<br>

<!-- Shilajit / Fulvic Acid — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial function / electron transport support</td>
<td>Bioenergetic modulation (context-dependent)</td>
<td>ATP production support ↑ (reported)</td>
<td>P, R</td>
<td>Mitochondrial optimization</td>
<td>Dibenzo-α-pyrones and fulvic acids are reported to support mitochondrial respiration in non-cancer models.</td>
</tr>

<tr>
<td>2</td>
<td>Nrf2 / antioxidant response</td>
<td>Redox tone modulation (model-dependent)</td>
<td>Nrf2 ↑; antioxidant enzymes ↑</td>
<td>R, G</td>
<td>Redox buffering</td>
<td>Commonly described as antioxidant; tumor-direction effects are not well established.</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB inflammatory signaling</td>
<td>NF-κB ↓ (reported; limited cancer data)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory modulation</td>
<td>Anti-inflammatory effects are better documented than direct tumor cytotoxicity.</td>
</tr>

<tr>
<td>4</td>
<td>ROS modulation</td>
<td>ROS ↓ or stabilized (context-dependent)</td>
<td>Oxidative stress ↓</td>
<td>P, R, G</td>
<td>Antioxidant effect</td>
<td>Acts primarily as redox stabilizer rather than ROS generator.</td>
</tr>

<tr>
<td>5</td>
<td>AMPK / metabolic stress pathways</td>
<td>Metabolic modulation (limited direct tumor evidence)</td>
<td>Energy homeostasis support ↑</td>
<td>R, G</td>
<td>Metabolic adaptation</td>
<td>Some reports suggest improved metabolic efficiency; not a primary oncologic mechanism.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle / apoptosis</td>
<td>Apoptosis ↑ (reported in limited preclinical studies)</td>
<td>↔</td>
<td>G</td>
<td>Conditional cytotoxicity</td>
<td>Data are sparse and largely cell-line based; not a strong, consistent cytotoxic signature.</td>
</tr>

<tr>
<td>7</td>
<td>Immune modulation</td>
<td>Immune tone modulation (context-dependent)</td>
<td>Immune support ↑</td>
<td>R, G</td>
<td>Adaptogenic effect</td>
<td>Traditional use emphasizes immune and vitality support rather than direct anticancer activity.</td>
</tr>

<tr>
<td>8</td>
<td>Metal chelation / mineral transport</td>
<td>Trace mineral transport effects (uncertain tumor relevance)</td>
<td>Mineral absorption modulation</td>
<td>P</td>
<td>Biochemical modulation</td>
<td>Fulvic acid has chelation properties; relevance to oncology unclear.</td>
</tr>

<tr>
<td>9</td>
<td>Quality / contamination risk</td>
<td>Variable depending on preparation</td>
<td>Heavy metal exposure risk if unrefined</td>
<td>—</td>
<td>Safety constraint</td>
<td>Crude shilajit may contain heavy metals; purified standardized extracts preferred.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability variability</td>
<td>Systemic exposure varies by extraction/purification</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Composition varies widely; standardization typically based on fulvic acid content.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid mitochondrial/redox interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling and metabolic shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Bil↝, 1,   Catalase↓, 1,   GSH↑, 1,   lipid-P↑, 1,   ROS↑, 2,   SOD↓, 1,   uricA↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,  

Cell Death

Apoptosis↑, 2,   Cyt‑c↑, 1,  

Transcription & Epigenetics

miR-21↓, 1,   other↝, 1,   tumCV↓, 4,  

Cell Cycle & Senescence

TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

CTNNB1↓, 1,   EMT↓, 1,   NOTCH1↓, 1,   Src↓, 1,   TumCG↓, 1,  

Migration

E-cadherin↑, 1,   miR-22↑, 1,   TGF-β↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   TumMeta↓, 1,   Twist↓, 1,   uPA↓, 1,  

Angiogenesis & Vasculature

NO↑, 1,  

Immune & Inflammatory Signaling

CXCc↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 2,   Dose↝, 3,   selectivity↑, 3,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   Bil↝, 1,   creat↓, 1,  

Functional Outcomes

chemoP↑, 1,   toxicity↝, 1,  
Total Targets: 42

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 4,   Catalase↑, 1,   GPx↑, 1,   Keap1↓, 1,   lipid-P↓, 2,   NRF2↑, 1,   ROS↓, 1,   SOD↑, 2,   VitC↑, 1,  

Transcription & Epigenetics

other↝, 1,   other↑, 1,  

DNA Damage & Repair

PCNA↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 5,   PGE2↓, 1,  

Synaptic & Neurotransmission

tau↓, 5,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   BioEnh↑, 2,   Dose↝, 1,  

Clinical Biomarkers

GutMicro↑, 1,  

Functional Outcomes

AntiAge↑, 1,   chemoP↑, 1,   cognitive↑, 3,   memory↑, 2,   neuroP↑, 4,   Strength↑, 1,   toxicity↝, 1,   toxicity↑, 1,  
Total Targets: 29

Research papers

Year Title Authors PMID Link Flag
2024Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nanoparticles on the Amyloid Fibril AggregationsDalia Jomehpourhttps://ieeexplore.ieee.org/document/101024880
2024Shilajit (Mumio) Elicits Apoptosis and Suppresses Cell Migration in Oral Cancer Cells through Targeting Urokinase-type Plasminogen Activator and Its Receptor and Chemokine Signaling PathwaysAbdullah Alqarnihttps://journals.sagepub.com/doi/10.1177/097312962412757400
2024ANTI-CARCINOGENIC ACTIVITY OF SHILAJIT REGARDING TO APOPTOSIS ASSAY IN CANCER CELLS: A SYSTEMATIC REVIEW OF IN-VITRO STUDIESSohail D. Mullahttps://www.journalijar.com/article/51410/anti-carcinogenic-activity-of-shilajit-regarding-to-apoptosis-assay-in-cancer-cells:-a-systematic-review-of-in-vitro-studies/0
2024Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signalingArti RajpootPMC11362644https://pmc.ncbi.nlm.nih.gov/articles/PMC11362644/0
2023Scaling the Andean Shilajit: A Novel Neuroprotective Agent for Alzheimer’s DiseaseVíctor AndradePMC10383824https://pmc.ncbi.nlm.nih.gov/articles/PMC10383824/0
2022Shilajit potentiates the effect of chemotherapeutic drugs and mitigates metastasis induced liver and kidney damages in osteosarcoma ratsEbtihaj J JambiPMC9358466https://pmc.ncbi.nlm.nih.gov/articles/PMC9358466/0
2021Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatmentT. Kloskowskihttps://www.nature.com/articles/s41598-021-01996-80
2020Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer CellsSolmaz Rahmani BaroujiPMC8343979https://pmc.ncbi.nlm.nih.gov/articles/PMC8343979/0
2018Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and DiabetesJohn WinklerPMC6151376https://pmc.ncbi.nlm.nih.gov/articles/PMC6151376/0
2016Shilajitin Cancer Treatment: Probable Mode of ActionAkhilesh Vermahttps://www.researchgate.net/publication/305765448_Shilajitin_Cancer_Treatment_Probable_Mode_of_Action0
2016Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cellsKishor PantPMC4882837https://pmc.ncbi.nlm.nih.gov/articles/PMC4882837/0
2012Shilajit: A Natural Phytocomplex with Potential Procognitive ActivityCarlos Carrasco-GallardoPMC3296184https://pmc.ncbi.nlm.nih.gov/articles/PMC3296184/0
2012Can nutraceuticals prevent Alzheimer's disease? Potential therapeutic role of a formulation containing shilajit and complex B vitaminsCarlos Carrasco-Gallardo23131823https://pubmed.ncbi.nlm.nih.gov/23131823/0
2012Natural products as a rich source of tau-targeting drugs for Alzheimer’s diseaseLaurent CalculPMC3575183https://pmc.ncbi.nlm.nih.gov/articles/PMC3575183/0
2011Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer's diseaseAlberto Cornejo21785188https://pubmed.ncbi.nlm.nih.gov/21785188/0