tbResList Print — Ash Ashwagandha(Withaferin A)

Filters: qv=36, qv2=%, rfv=%

Product

Ash Ashwagandha(Withaferin A)
Description: <b>Withaferin A</b> is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).<br>
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).<br>
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.<br>
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.<br>
*-Ashwagandha is often characterized as an antioxidant.<br>
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.<br>
Pathways:<br>
-Induction of Apoptosis and ROS Generation<br>
-Hsp90 Inhibition and Proteasomal Degradation<br>

<br>
Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).<br>
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.<br>
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.<br>
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.<br>
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.<br>

<br>
-Note <a href="tbResList.php?qv=36&tsv=1109&wNotes=on&exSp=open">half-life</a> 4-6 hrs?.<br>
<a href="tbResList.php?qv=36&tsv=792&wNotes=on&exSp=open">BioAv</a>
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- well-recognized for promoting
<a href="tbResList.php?qv=36&tsv=275&wNotes=on">ROS</a> in cancer cells, while no effect(or reduction) on normal cells.<br>
- ROS↑ related:
<a href="tbResList.php?qv=36&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=36&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=36&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=36&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=36&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>, -->
<a href="tbResList.php?qv=36&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=36&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=36&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=Prx">Prx</a>,<!-- mitochondrial antioxidant enzyme-->

<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Confusing results about Lowering AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=36&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=36&word=Trx&wNotes=on">TrxR↓**</a>,<!-- major antioxidant system -->
<a href="tbResList.php?qv=36&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?qv=36&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=36&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=36&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=36&wNotes=on&word=GPx">GPx↓</a>


<br>




- Raises
<a href="tbResList.php?qv=36&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=36&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=36&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=36&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=36&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=36&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=36&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=36&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=36&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=36&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=36&tsv=908&wNotes=on&word=NLRP3↓">NLRP3↓</a>,
<a href="tbResList.php?qv=36&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=36&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=36&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=36&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=36&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=36&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=36&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=36&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=36&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=36&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=36&tsv=308&wNotes=on">TIMP2</a>,
<!-- <a href="tbResList.php?qv=36&tsv=415&wNotes=on">IGF-1↓</a>, -->
<a href="tbResList.php?qv=36&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=36&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=36&tsv=1284&wNotes=on">ROCK1↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=110&wNotes=on">FAK↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=273&wNotes=on">RhoA↓</a>, -->
<a href="tbResList.php?qv=36&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=36&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=36&tsv=1247&wNotes=on">SDF1↓</a>,
<a href="tbResList.php?qv=36&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=36&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=36&tsv=105&wNotes=on">ERK↓</a>
<!-- <a href="tbResList.php?qv=36&tsv=1178&wNotes=on">MARK4↓</a> --> <!-- contributing to tumor growth, invasion, and metastasis-->
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=36&tsv=140&wNotes=on">HDAC↓</a>(combined with sulfor),
<a href="tbResList.php?qv=36&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=36&tsv=86&wNotes=on">DNMT3A↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=108&wNotes=on">EZH2↓</a>, -->
<a href="tbResList.php?qv=36&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=36&tsv=506&wNotes=on">Sp proteins↓</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=TET">TET↑</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=36&tsv=322&wNotes=on">TumCCA↑</a>,
<!-- <a href="tbResList.php?qv=36&tsv=73&wNotes=on">cyclin D1↓</a>, -->
<a href="tbResList.php?qv=36&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=36&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=36&tsv=894&wNotes=on">CDK4↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=895&wNotes=on">CDK6↓</a>, -->
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=36&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=36&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=36&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>, <!-- encourages invasion, proliferation, EMT, and angiogenesis -->
<!-- <a href="tbResList.php?qv=36&tsv=110&wNotes=on">FAK↓</a>, -->
<a href="tbResList.php?qv=36&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=36&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=36&tsv=1117&wNotes=on">TOP1↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=657&wNotes=on">TET1↓</a>, -->
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=36&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=36&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=36&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=36&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=36&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=36&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=36&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=36&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=36&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=36&tsv=773&wNotes=on">HK2↓</a>,
<!-- <a href="tbResList.php?qv=36&wNotes=on&word=PFK">PFKs↓</a>, -->
<!-- <a href="tbResList.php?qv=36&wNotes=on&word=PDK">PDKs↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=847&wNotes=on">ECAR↓</a>, -->
<a href="tbResList.php?qv=36&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=36&tsv=356&wNotes=on">GRP78↑</a>,
<!-- <a href="tbResList.php?qv=36&tsv=1278&wNotes=on">Glucose↓</a>, -->
<a href="tbResList.php?qv=36&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=36&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=36&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=36&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=NOTCH">Notch↓</a>,
<!-- <a href="tbResList.php?qv=36&wNotes=on&word=FGF">FGF↓</a>, -->
<a href="tbResList.php?qv=36&wNotes=on&word=PDGF">PDGF↓</a>,
<a href="tbResList.php?qv=36&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=36&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=36&tsv=795&wNotes=on">CSC↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=524&wNotes=on">CK2↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=141&wNotes=on">Hh↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=434&wNotes=on">GLi↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=124&wNotes=on">GLi1↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=677&wNotes=on">CD133↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=655&wNotes=on">CD24↓</a>, -->
<a href="tbResList.php?qv=36&tsv=342&wNotes=on">β-catenin↓</a>,
<!--<a href="tbResList.php?qv=36&tsv=357&wNotes=on">n-myc↓</a>, -->
<a href="tbResList.php?qv=36&tsv=656&wNotes=on">sox2↓</a>,
<!--<a href="tbResList.php?qv=36&tsv=222&wNotes=on">notch2↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=1024&wNotes=on">nestin↓</a>, -->
<!-- <a href="tbResList.php?qv=36&tsv=508&wNotes=on">OCT4↓</a>, -->
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=36&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=36&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=36&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=36&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=36&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=36&tsv=9&wNotes=on">AMPK</a>,
<a href="tbResList.php?qv=36&tsv=475&wNotes=on">α↓</a>,
<a href="tbResList.php?qv=36&tsv=105&wNotes=on">ERK↓</a>,
<!-- <a href="tbResList.php?qv=36&tsv=1014&wNotes=on">5↓</a>, -->
<a href="tbResList.php?qv=36&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=36&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=36&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=36&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=36&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=36&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=36&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=36&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=36&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=36&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=36&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=36&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>





<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Vimentin (intermediate filament) targeting</td>
<td>↓ vimentin filament integrity (covalent modification)</td>
<td>Cytoskeletal disruption; anti-migration</td>
<td>Shows withaferin A binds vimentin by covalently modifying a cysteine residue and disrupts IF organization; also linked to antiangiogenic/antitumor effects</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3228641/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>NF-κB pathway (IKKβ)</td>
<td>↓ NF-κB activation (IKKβ Cys179 targeting)</td>
<td>Reduced pro-survival / inflammatory transcription</td>
<td>Demonstrates withaferin A targets Cys179 in IKKβ and inhibits NF-κB pathway activation</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/25159986/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Proteasome β5 (chymotrypsin-like activity)</td>
<td>↓ proteasome activity</td>
<td>Proteotoxic stress; growth inhibition</td>
<td>Identifies tumor proteasome β5 as a primary target; shows inhibition of chymotrypsin-like activity and tumor growth reduction in xenografts</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/17093135/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>ROS / oxidative stress</td>
<td>↑ ROS</td>
<td>Upstream stress trigger</td>
<td>Withaferin A induces oxidative stress-mediated cytotoxicity (ROS-dependent) in oral cancer cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5594071/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Mitochondrial dysfunction</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial failure</td>
<td>Same oral-cancer work includes mitochondrial dysfunction (ΔΨm disruption) as part of ROS-mediated killing</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5594071/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Intrinsic apoptosis</td>
<td>↑ apoptosis (caspase/PARP cleavage markers)</td>
<td>Programmed cell death</td>
<td>Withaferin A triggers apoptosis downstream of oxidative stress and mitochondrial dysfunction (apoptosis markers shown)</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5594071/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>AKT / mTOR axis</td>
<td>↓ AKT / ↓ mTOR signaling</td>
<td>Reduced survival &amp; growth signaling</td>
<td>Demonstrates inhibition of AKT/mTOR signaling axis by withaferin A in colorectal cancer model context</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4924683/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Autophagy flux (lysosomal activity)</td>
<td>↓ autophagic flux (lysosomal inhibition)</td>
<td>Energetic impairment; apoptosis coupling</td>
<td>Shows withaferin A inhibits lysosomal activity, blocks autophagic flux, and induces apoptosis in breast cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/30698683/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis (in vivo antiangiogenic activity)</td>
<td>↓ angiogenesis</td>
<td>Reduced tumor vascular support</td>
<td>Withaferin A is shown to be a potent inhibitor of angiogenesis in vivo (dose-responsive antiangiogenic effect)</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/15516832/">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>ER stress / UPR linked to proteasome inhibition</td>
<td>↑ ER stress / ↑ ubiquitinated proteins</td>
<td>Proteostasis collapse</td>
<td>Withaferin A inhibits proteasome activity with accumulation of ubiquitinated proteins and ER stress/heat shock responses</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3511540/">(ref)</a></td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   antiOx↓, 1,   ATF3↑, 1,   Ferroptosis↑, 4,   GPx↑, 1,   GPx4↓, 2,   GSH↓, 2,   GSR↑, 1,   HO-1↑, 5,   ICD↑, 1,   Iron↑, 1,   Keap1↑, 2,   Keap1↓, 1,   lipid-P↑, 2,   lipid-P↓, 1,   MDA↑, 1,   NQO1↑, 2,   NRF2↓, 3,   NRF2↑, 3,   OXPHOS↓, 3,   Prx↓, 1,   ROS↑, 28,   ROS↓, 1,   mt-ROS↑, 1,   SIRT3↑, 1,   SOD↑, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

ATP∅, 1,   ATP↓, 2,   BCR-ABL↓, 1,   CDC2↓, 1,   CDC2↑, 1,   compIII↑, 1,   mitResp↓, 3,   MMP↓, 9,   Mortalin↓, 1,   XIAP↓, 3,  

Core Metabolism/Glycolysis

ACC1↓, 1,   ACLY↓, 2,   ALDOAiso2↓, 1,   AMPK↑, 2,   cMyc↓, 4,   CPT1A↓, 1,   FASN↓, 2,   GlucoseCon↓, 1,   Glycolysis↓, 5,   HK2↓, 1,   IDH1↑, 1,   lactateProd↓, 2,   LDH↓, 1,   p‑LDH↓, 1,   LDHA↓, 2,   NADPH↑, 1,   PGK1↓, 1,   PKM2↓, 2,   SREBP1↓, 1,   TCA↓, 2,   Warburg↓, 1,  

Cell Death

Akt↓, 6,   Akt↑, 1,   p‑Akt↓, 1,   Apoptosis↑, 18,   BAD↑, 1,   Bak↑, 3,   BAX↑, 9,   Bax:Bcl2↑, 1,   Bcl-2↓, 6,   Bcl-2↑, 1,   BIM↑, 1,   cl‑Casp3↑, 5,   Casp3↑, 6,   cl‑Casp8↑, 1,   cl‑Casp9↑, 4,   Chk2↓, 1,   Cyt‑c↑, 3,   DR5↑, 4,   Ferroptosis↑, 4,   HEY1↓, 2,   JNK↝, 1,   JNK↑, 1,   MAPK↑, 2,   Mcl-1↓, 1,   p27↑, 1,   p38↑, 2,   Paraptosis↑, 2,   Proteasome↓, 2,   p‑RSK↑, 1,   survivin↓, 3,   TumCD↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   p70S6↓, 1,   RET↓, 1,   Sp1/3/4↓, 2,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 1,   H3↑, 1,   other↓, 1,   pRB↑, 1,   tumCV↓, 3,   YMcells↓, 1,  

Protein Folding & ER Stress

CHOP↑, 6,   p‑eIF2α↑, 2,   eIF2α↓, 1,   ER Stress↝, 1,   ER Stress↑, 7,   GRP78/BiP↑, 1,   GRP94↑, 1,   HSF1↓, 1,   HSP70/HSPA5↑, 3,   HSP90↓, 6,   HSPs↑, 1,   PERK↑, 1,   XBP-1↑, 1,  

Autophagy & Lysosomes

autoF↓, 1,   LC3B↑, 1,   lysosome↓, 1,   TumAuto↑, 2,  

DNA Damage & Repair

CHK1↓, 1,   DNA-PK↑, 1,   DNAdam↑, 5,   DNMT1↓, 1,   DNMT3A↓, 1,   DNMTs↓, 3,   m-FAM72A↓, 1,   p‑P53↑, 1,   P53↑, 5,   cl‑PARP↑, 6,   PARP↑, 1,   cl‑PARP1↑, 1,   PCNA↓, 2,   p‑γH2AX↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 1,   CDK4↓, 2,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 1,   CycB/CCNB1↑, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↑, 2,   p‑RB1↓, 1,   Securin↓, 1,   TumCCA↑, 11,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 2,   CD34↓, 1,   CD44↓, 2,   cFos↑, 1,   cFos↓, 1,   cMET↓, 1,   cMYB↓, 1,   CSCs↓, 10,   CTSB↓, 1,   CTSD↓, 1,   CTSL↑, 1,   EMT↓, 7,   EMT↑, 1,   ERK↓, 1,   FOXO3↑, 2,   HDAC↓, 2,   mTOR↓, 4,   Nanog↓, 1,   NOTCH↓, 1,   NOTCH1↓, 3,   NOTCH3↓, 1,   OCT4↓, 1,   p85S6K↓, 1,   PI3K↓, 2,   SOX2↓, 1,   STAT3↓, 8,   TOP1∅, 1,   TumCG↓, 5,   Wnt↓, 2,  

Migration

Alix/AIP‑1↓, 1,   annexin II↓, 1,   AP-1↓, 2,   CXCL12↓, 1,   ER-α36↓, 1,   F-actin↓, 1,   ITGB1↓, 1,   Ki-67↓, 1,   MMP2↓, 2,   MMP9↓, 2,   MMPs↓, 1,   N-cadherin↓, 2,   PDGF↓, 1,   PKCδ↓, 1,   ROCK1↓, 1,   Slug↓, 2,   p‑SMAD2↓, 2,   p‑SMAD3↓, 1,   Snail↓, 2,   TGF-β↓, 2,   TIMP2↑, 1,   TumCI↓, 6,   TumCMig↓, 6,   TumCP↓, 9,   TumMeta↓, 2,   uPA↓, 3,   Vim↓, 6,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 7,   ATF4↑, 1,   EGFR↓, 1,   Hif1a↓, 3,   NO↓, 1,   PDGFR-BB↓, 1,   VEGF↓, 3,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   CXCR4↓, 2,   ICAM-1↓, 1,   IKKα↓, 2,   IKKα↑, 1,   IL1β↓, 1,   IL6↓, 2,   Inflam↓, 6,   JAK↓, 1,   MCP1↓, 1,   NF-kB↓, 11,   p‑NF-kB↓, 1,   PD-L1↑, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   BioAv↓, 1,   BioAv↝, 1,   ChemoSen↑, 8,   Dose?, 1,   Dose↝, 2,   eff↓, 10,   eff↑, 14,   eff↝, 1,   Half-Life↝, 1,   RadioS↑, 2,   selectivity↑, 4,  

Clinical Biomarkers

AR↓, 1,   BG↓, 1,   E6↓, 4,   E7↓, 4,   EGFR↓, 1,   ERα/ESR1↓, 1,   IL6↓, 2,   Ki-67↓, 1,   LDH↓, 1,   p‑LDH↓, 1,   PD-L1↑, 1,  

Functional Outcomes

AntiTum↑, 3,   chemoP↑, 1,   neuroP↑, 1,   OS↑, 1,   radioP↑, 1,   RenoP↑, 1,   Strength↑, 1,   toxicity↓, 1,   TumVol↓, 3,   TumW↓, 2,  
Total Targets: 258

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 4,   Catalase↑, 2,   GPx↑, 3,   GSH↑, 4,   GSH↓, 1,   GSR↑, 1,   GSTs↓, 1,   GSTs↑, 1,   HO-1↑, 3,   lipid-P↓, 3,   MDA↓, 1,   NRF2↑, 5,   Prx↓, 1,   Prx↑, 2,   ROS∅, 4,   ROS↓, 9,   SOD↑, 3,   SOD2↑, 1,   uricA↓, 1,   VitC↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   mtDam↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   AMPK↑, 2,   BUN↓, 1,   LDH↓, 1,   p‑PPARγ↓, 1,   PPARγ↑, 1,  

Cell Death

Apoptosis↓, 4,   Casp3?, 1,   Casp3↓, 1,   cl‑Casp3↓, 1,   iNOS↓, 1,  

Kinase & Signal Transduction

Sp1/3/4↓, 1,  

Transcription & Epigenetics

Ach↑, 1,  

Protein Folding & ER Stress

HSPs↝, 1,   UPR↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,   cl‑PARP1↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,  

Migration

TumCP↓, 1,   Vim↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CRP↓, 1,   IKKα↓, 1,   IL18↓, 1,   IL1β↓, 3,   IL6↓, 3,   IL8↓, 2,   Inflam↓, 10,   MCP1↓, 2,   NF-kB↓, 3,   RANTES↓, 1,   TNF-α↓, 3,  

Cellular Microenvironment

NOX↓, 1,  

Synaptic & Neurotransmission

AChE↓, 2,   BChE↓, 1,   ChAT↑, 1,   tau↓, 2,  

Protein Aggregation

Aβ↓, 5,   BACE↓, 1,   NLRP3↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↝, 1,   Dose↑, 1,   Half-Life↝, 2,  

Clinical Biomarkers

ALAT↓, 1,   ascitic↓, 1,   AST↓, 1,   creat↓, 1,   CRP↓, 1,   IL6↓, 3,   LDH↓, 1,  

Functional Outcomes

cachexia↑, 1,   cardioP↑, 3,   chemoPv↑, 1,   cognitive↑, 7,   hepatoP↑, 4,   memory↑, 4,   neuroP↑, 9,   OS↑, 1,   radioP↑, 1,   RenoP↑, 2,   Sleep↑, 2,   Strength↑, 2,   toxicity↓, 6,  
Total Targets: 90

Research papers

Year Title Authors PMID Link Flag
2025Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer TherapyMaroua Jaloulihttps://www.mdpi.com/1422-0067/26/4/17520
2024Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast CancerRenata KołodziejskaPMC11275341https://pmc.ncbi.nlm.nih.gov/articles/PMC11275341/0
2024Unlocking the epigenetic code: new insights into triple-negative breast cancerGowthami MahendranPMC11688480https://pmc.ncbi.nlm.nih.gov/articles/PMC11688480/0
2024Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling AxisXiangyang Zhou38804345https://pubmed.ncbi.nlm.nih.gov/38804345/0
2024Withaferin A decreases glycolytic reprogramming in breast cancerAsifa KhanPMC11452501https://www.nature.com/articles/s41598-024-72221-50
2024Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin ARenata SzydlakPMC11430445https://pmc.ncbi.nlm.nih.gov/articles/PMC11430445/0
2024Withaferin A, a natural thioredoxin reductase 1 (TrxR1) inhibitor, synergistically enhances the antitumor efficacy of sorafenib through ROS-mediated ER stress and DNA damage in hepatocellular carcinoma cellsXi Chen38537439https://pubmed.ncbi.nlm.nih.gov/38537439/0
2023Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary TumorsKrishna B SinghPMC9812931https://pmc.ncbi.nlm.nih.gov/articles/PMC9812931/0
2023Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative ReviewPaulina MikulskaPMC10147008https://pmc.ncbi.nlm.nih.gov/articles/PMC10147008/0
2023Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axisRahul Checker36716864https://pubmed.ncbi.nlm.nih.gov/36716864/0
2023Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) DunalSuneel Kumarhttps://pmc.ncbi.nlm.nih.gov/articles/PMC9966696/0
2023Pharmacokinetics and bioequivalence of Withania somnifera (Ashwagandha) extracts – A double blind, crossover study in healthy adultsHeliyonPMC10746415https://pmc.ncbi.nlm.nih.gov/articles/PMC10746415/0
2023Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung CancerRoukiah KhalilPMC10295988https://pmc.ncbi.nlm.nih.gov/articles/PMC10295988/0
2023Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and MechanismsZhichao XingPMC10519218https://pmc.ncbi.nlm.nih.gov/articles/PMC10519218/0
2022Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosisYigang Zhanghttps://www.tandfonline.com/doi/full/10.1080/15376516.2022.2075297#abstract0
2022Withaferin A inhibits ferroptosis and protects against intracerebral hemorrhageZi-Xian ZhouPMC9838153https://pmc.ncbi.nlm.nih.gov/articles/PMC9838153/0
2022Withaferin A downregulates COX-2/NF-κB signaling and modulates MMP-2/9 in experimental endometriosisWang Danhttps://www.semanticscholar.org/paper/Withaferin-A-downregulates-COX-2-NF-%CE%BAB-signaling-9-Dan-Yiling/e7c493e6bb0c1bc5aec6f5e9a097a80ea0f59a0a0
2022Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil ApoptosisRosemary L BaylessPMC9247543https://pmc.ncbi.nlm.nih.gov/articles/PMC9247543/0
2022Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosisLan Li35235278https://pubmed.ncbi.nlm.nih.gov/35235278/0
2021Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell modelJeerang Wongtrakulhttps://www.cell.com/heliyon/fulltext/S2405-8440(21)02275-10
2021Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle MassAlex R. Straughnhttps://www.researchgate.net/publication/349592134_Withaferin_A_and_Ovarian_Cancer_Antagonistically_Regulate_Skeletal_Muscle_Mass0
2021Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in AfricaHenok Kessete AfewerkyPMC8529567https://pmc.ncbi.nlm.nih.gov/articles/PMC8529567/0
2021Role of Withaferin A and Its Derivatives in the Management of Alzheimer’s Disease: Recent Trends and Future PerspectivesRajib DasPMC8234716https://pmc.ncbi.nlm.nih.gov/articles/PMC8234716/0
2021Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3Yangliu XiaPMC7878893https://pmc.ncbi.nlm.nih.gov/articles/PMC7878893/0
2021Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signallingKejun XuPMC8192617https://pmc.ncbi.nlm.nih.gov/articles/PMC8192617/0
2021Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanismsXia ZhaoPMC8806220https://pmc.ncbi.nlm.nih.gov/articles/PMC8806220/0
2021Withaferin a Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative StressTsu-Ming ChienPMC8300680https://pmc.ncbi.nlm.nih.gov/articles/PMC8300680/0
2021Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCCVarsha D. Shiragannavarhttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.628506/full0
2020Neurodegenerative diseases and Withania somnifera (L.): An updateNawab John Dar32240781https://pubmed.ncbi.nlm.nih.gov/32240781/0
2020Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its DerivativesTapan BehlPMC7762146https://pmc.ncbi.nlm.nih.gov/articles/PMC7762146/0
2020Withania somnifera showed neuroprotective effect and increase longevity in Drosophila Alzheimer’s disease modelMardani Abdul Halimhttps://www.biorxiv.org/content/10.1101/2020.04.27.063107v10
2020Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somniferaVishnu Sankar Sivasankarapillaihttps://link.springer.com/article/10.1007/s11356-020-09028-00
2020Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drugBehrouz Hassanniahttps://www.sciencedirect.com/science/article/abs/pii/S00062952193029280
2020Ashwagandha in brain disorders: A review of recent developmentsSultan Zahiruddin32305638https://pubmed.ncbi.nlm.nih.gov/32305638/0
2019An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cellsParvaiz A Dar31121227https://pubmed.ncbi.nlm.nih.gov/31121227/0
2019Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanismsKendra J RoystonPMC6733260https://pmc.ncbi.nlm.nih.gov/articles/PMC6733260/0
2019Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical StudyJaysing SalvePMC6979308https://pmc.ncbi.nlm.nih.gov/articles/PMC6979308/0
2019Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung CancerJade H-M HsuPMC6678286https://pmc.ncbi.nlm.nih.gov/articles/PMC6678286/0
2019Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cellsNethaji MunirajPMC10893887https://pmc.ncbi.nlm.nih.gov/articles/PMC10893887/0
2018Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastomaBehrouz Hassanniahttps://www.jci.org/articles/view/990320
2018Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced NeuroinflammationMuskan Gupta29846872https://pubmed.ncbi.nlm.nih.gov/29846872/0
2018Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer CellsAl Hassan KyakulagaPMC6200817https://pmc.ncbi.nlm.nih.gov/articles/PMC6200817/0
2018Withaferin A Suppresses Beta Amyloid in APP Expressing Cells: Studies for Tat and Cocaine Associated Neurological DysfunctionsSneham TiwariPMC6190869https://pmc.ncbi.nlm.nih.gov/articles/PMC6190869/0
2018Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cellsShuxian Xia29966656https://pubmed.ncbi.nlm.nih.gov/29966656/0
2017Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin AChandra Sekhar Chirumamillahttps://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/molecular-insights-into-cancer-therapeutic-effects-of-the-dietary-medicinal-phytochemical-withaferin-a/C02A1496B90BBCA89B83E4A58F88CDF00
2017Withania somnifera: from prevention to treatment of cancerDushani L PalliyaguruPMC4899165https://pmc.ncbi.nlm.nih.gov/articles/PMC4899165/0
2017A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer CellsKendra J RoystonPMC5455001https://pmc.ncbi.nlm.nih.gov/articles/PMC5455001/0
2017Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane PotentialHui-Liang ZhangPMC5551376https://pmc.ncbi.nlm.nih.gov/articles/PMC5551376/0
2017Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen speciesXi Liu28365961https://pubmed.ncbi.nlm.nih.gov/28365961/0
2017Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’Aine Brigette HenleyPMC52713860
2017Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cellsSham S KakarPMC5650357https://pmc.ncbi.nlm.nih.gov/articles/PMC5650357/0
2017Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer CellsHsueh-Wei ChangPMC5594071https://pmc.ncbi.nlm.nih.gov/articles/PMC5594071/0
2016Withaferin-A suppress AKT induced tumor growth in colorectal cancer cellsSuman SumanPMC4924683https://pmc.ncbi.nlm.nih.gov/articles/PMC4924683/0
2016Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231Kamalini GhoshPMC5199013https://pmc.ncbi.nlm.nih.gov/articles/PMC5199013/0
2016Withaferin A blocks formation of IFN-γ-induced metastatic cancer stem cells through inhibition of the CXCR4/CXCL12 pathway in the UP-LN1 carcinoma cell modelAndy Shau-Bin Chouhttps://discovery.researcher.life/article/abstract-1729-withaferin-a-blocks-formation-of-ifn--induced-metastatic-cancer-stem-cells-through-inhibition-of-the-cxcr4-cxcl12-pathway-in-the-up-ln1-carcinoma-cell-model/ef147ec04be1334ab2c5daa93f5c9ebc0
2016Withaferin A targeting both cancer stem cells and metastatic cancer stem cells in the UP-LN1 carcinoma cell modelLai-Lei Tinghttps://www.researchgate.net/publication/287388804_Withaferin_A_targeting_both_cancer_stem_cells_and_metastatic_cancer_stem_cells_in_the_UP-LN1_carcinoma_cell_model0
2016Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cellsGreen Kim26647855https://pubmed.ncbi.nlm.nih.gov/26647855/0
2015Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast CellsYukihiro NishikawaPMC4521694https://pmc.ncbi.nlm.nih.gov/articles/PMC4521694/0
2015Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cellsElizabeth Grunz-BorgmannPMC4678649https://pmc.ncbi.nlm.nih.gov/articles/PMC4678649/0
2015Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional ActivityBu Young ChoiPMC4597807https://pmc.ncbi.nlm.nih.gov/articles/PMC4597807/0
2015Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic ratsMahmood Ahmad Khan25803089https://pubmed.ncbi.nlm.nih.gov/25803089/0
2015Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin IQian Zhaohttps://www.sciencedirect.com/org/science/article/pii/S20416520150034050
2014Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cellMayuko Nishihttps://www.researchgate.net/publication/265733276_Induced_cancer_stem-like_cells_as_a_model_for_biological_screening_and_discovery_of_agents_targeting_phenotypic_traits_of_cancer_stem_cell0
2014Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem CellsSham S. Kakarhttps://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.01075960
2014Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβKaren Heyninck25159986https://pubmed.ncbi.nlm.nih.gov/25159986/0
2014Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathwaysPatrick T GroganPMC3677827https://pmc.ncbi.nlm.nih.gov/articles/PMC3677827/0
2013Ashwagandha (Withania somnifera) Reverses β-Amyloid1-42 Induced Toxicity in Human Neuronal Cells: Implications in HIV-Associated Neurocognitive Disorders (HAND)Kesava Rao Venkata KurapatiPMC3797707https://pmc.ncbi.nlm.nih.gov/articles/PMC3797707/0
2013Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse ModelEun-Ryeong HahmPMC3735460https://pmc.ncbi.nlm.nih.gov/articles/PMC3735460/0
2012Withaferin A Synergizes the Therapeutic Effect of Doxorubicin through ROS-Mediated Autophagy in Ovarian CancerMiranda Y FongPMC3408484https://pmc.ncbi.nlm.nih.gov/articles/PMC3408484/0
2012Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer CellsEun-Ryeong HahmPMC3129407https://pmc.ncbi.nlm.nih.gov/articles/PMC3129407/0
2012Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cellsHee Jung Um22982675https://pubmed.ncbi.nlm.nih.gov/22982675/0
2012Withania somnifera reverses Alzheimer's disease pathology by enhancing low-density lipoprotein receptor-related protein in liverNeha SehgalPMC3295277https://pmc.ncbi.nlm.nih.gov/articles/PMC3295277/0
2012Withaferin A Induces Proteasome Inhibition, Endoplasmic Reticulum Stress, the Heat Shock Response and Acquisition of ThermotoleranceSaad KhanPMC3511540https://pmc.ncbi.nlm.nih.gov/articles/PMC3511540/0
2012Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In VivoHuanjie YangPMC3422308https://pmc.ncbi.nlm.nih.gov/articles/PMC3422308/0
2011Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cellsMin Jung Choi21266191https://pubmed.ncbi.nlm.nih.gov/21266191/0
2011Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen SpeciesEun-Ryeong HahmPMC3154436https://pmc.ncbi.nlm.nih.gov/articles/PMC3154436/0
2011An overview on ashwagandha: a Rasayana (rejuvenator) of AyurvedaNarendra SinghPMC3252722https://pmc.ncbi.nlm.nih.gov/articles/PMC3252722/0
2011The Tumor Inhibitor and Antiangiogenic Agent Withaferin A Targets the Intermediate Filament Protein VimentinPaola Bargagna-MohanPMC3228641https://pmc.ncbi.nlm.nih.gov/articles/PMC3228641/0
2010Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer's diseasBolleddula Jayaprakasam19957250https://pubmed.ncbi.nlm.nih.gov/19957250/0
2010Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS SignalingNashi WidodoPMC2958829https://pmc.ncbi.nlm.nih.gov/articles/PMC2958829/0
2009Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factorPrasanna K Santhekaduhttps://www.researchgate.net/publication/224902414_Withaferin_A_suppresses_the_expression_of_vascular_endothelial_growth_factor_in_Ehrlich_ascites_tumor_cells_via_Sp1_transcription_factor0
2007Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteineFayaz Malik17874299https://pubmed.ncbi.nlm.nih.gov/17874299/0
2007The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry"Huanjie Yang25814535https://pubmed.ncbi.nlm.nih.gov/17093135/0
2007Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complexNilkantha Senhttps://www.researchgate.net/publication/6944804_Apoptosis_is_induced_in_leishmanial_cells_by_a_novel_protein_kinase_inhibitor_withaferin_A_and_is_facilitated_by_apoptotic_topoisomerase_I-DNA_complex0
2006Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncologyMarie Winters17176166https://pubmed.ncbi.nlm.nih.gov/17176166/0
2004Withaferin A is a potent inhibitor of angiogenesisRoyce Mohan15516832https://pubmed.ncbi.nlm.nih.gov/15516832/0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290