tbResList Print — AG Astragalus

Filters: qv=37, qv2=%, rfv=%

Product

AG Astragalus
Description: <a href="https://www.healthline.com/nutrition/astragalus"> <b>Astragalus</b></a> is an herb that has been used in traditional Chinese medicine for centuries.It has many purported health benefits, including immune-boosting, anti-aging and anti-inflammatory effects. <br>
Astragalus (AG; commonly referring to Astragalus membranaceus root; major constituents: astragaloside IV [AS-IV], polysaccharides [APS], flavonoids) is a traditional botanical immunomodulator. Its dominant biology is immune modulation and stress-adaptive signaling, ranking conceptually as: <br>
(1) immune activation/regulation (macrophage, NK, T-cell modulation), <br>
(2) NF-κB and inflammatory pathway tuning, <br>
(3) PI3K/Akt/mTOR and MAPK context-dependent signaling, and <br>
(4) NRF2-mediated cytoprotection/antioxidant effects. <br>
Bioavailability is variable and constituent-dependent; AS-IV has relatively low oral bioavailability, APS are high-molecular-weight and act largely via gut–immune interaction. Many in-vitro cancer studies use purified compounds at concentrations exceeding typical plasma levels. Clinical evidence exists primarily as adjunctive oncology support (quality-of-life, immune parameters); robust standalone anticancer efficacy is not established. Immune stimulation may enhance antitumor surveillance but effects are tumor- and context-dependent.<br>
<br>


<h3>Astragalus (AG; Astragalus membranaceus) — Cancer-Relevant Pathway Effects</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells (↑/↓/↔ + qualifiers)</th>
<th>Normal Cells (↑/↓/↔ + qualifiers)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Immune Activation (NK / T cells / macrophages)</td>
<td>↑ immune-mediated cytotoxicity</td>
<td>↑ immune competence</td>
<td>G</td>
<td>Immunomodulation</td>
<td>APS enhances macrophage and NK activity; relevant as adjunct in oncology.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB Signaling</td>
<td>↓ NF-κB (tumor cells; context-dependent)</td>
<td>↔ / balanced activation</td>
<td>R–G</td>
<td>Inflammatory pathway tuning</td>
<td>May suppress tumor-promoting inflammation while supporting immune signaling.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K/Akt/mTOR</td>
<td>↓ Akt phosphorylation (model-dependent)</td>
<td>↔ / survival support</td>
<td>R–G</td>
<td>Anti-proliferative signaling</td>
<td>Reported in breast, lung, colorectal models; often purified AS-IV ≥10 µM.</td>
</tr>

<tr>
<td>4</td>
<td>MAPK (ERK/JNK/p38)</td>
<td>↓ ERK; ↑ JNK/p38 (stress-induced apoptosis; model-dependent)</td>
<td>↔ adaptive stress response</td>
<td>R</td>
<td>Apoptosis modulation</td>
<td>Context-specific activation of stress kinases.</td>
</tr>

<tr>
<td>5</td>
<td>ROS Modulation</td>
<td>↓ ROS (antioxidant; dose-dependent)</td>
<td>↓ ROS (protective)</td>
<td>P–R</td>
<td>Redox buffering</td>
<td>Flavonoid fraction contributes; may protect normal tissue during therapy.</td>
</tr>

<tr>
<td>6</td>
<td>NRF2 Axis</td>
<td>↑ NRF2 (context-dependent)</td>
<td>↑ NRF2 (cytoprotection)</td>
<td>R–G</td>
<td>Antioxidant gene induction</td>
<td>Potential chemo-protection risk in certain oxidative-therapy contexts.</td>
</tr>

<tr>
<td>7</td>
<td>Ca²⁺ Signaling</td>
<td>↔ / mild ↑ (model-dependent)</td>
<td>↔</td>
<td>—</td>
<td>Secondary</td>
<td>Not a dominant mechanistic axis.</td>
</tr>

<tr>
<td>8</td>
<td>Ferroptosis</td>
<td>↔ / potentially ↓ (antioxidant context)</td>
<td>↔</td>
<td>—</td>
<td>Secondary</td>
<td>Antioxidant nature may counter lipid peroxidation unless combined with pro-oxidant therapy.</td>
</tr>

<tr>
<td>9</td>
<td>Clinical Translation Constraint</td>
<td colspan="2">Constituent variability; low AS-IV bioavailability; adjunct evidence stronger than monotherapy data</td>
<td>—</td>
<td>Heterogeneity / PK</td>
<td>Used clinically as supportive therapy in some regions; lacks robust standalone RCT anticancer efficacy.</td>
</tr>

</table>

<div><b>TSF Legend:</b> P: 0–30 min &nbsp; R: 30 min–3 hr &nbsp; G: &gt;3 hr</div>




<br>
<h3>Astragalus (AG) — Alzheimer’s Disease (AD)-Relevant Effects</h3>
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>AD Context (↑/↓/↔ + qualifiers)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Oxidative Stress (ROS)</td>
<td>↓ neuronal ROS</td>
<td>P–R</td>
<td>Neuroprotection</td>
<td>Flavonoids and saponins contribute antioxidant activity.</td>
</tr>

<tr>
<td>2</td>
<td>Neuroinflammation (NF-κB)</td>
<td>↓ microglial activation</td>
<td>R–G</td>
<td>Anti-inflammatory</td>
<td>Polysaccharides modulate cytokine signaling.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K/Akt Survival Pathway</td>
<td>↑ neuronal survival signaling</td>
<td>G</td>
<td>Neurotrophic support</td>
<td>Reported in ischemia and neurodegeneration models.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial Function</td>
<td>↑ mitochondrial stability (model-dependent)</td>
<td>R–G</td>
<td>Energy metabolism support</td>
<td>Preclinical models suggest improved mitochondrial dynamics.</td>
</tr>

<tr>
<td>5</td>
<td>Clinical Translation Constraint</td>
<td>No robust AD RCT efficacy data</td>
<td>—</td>
<td>Evidence gap</td>
<td>Evidence primarily preclinical or small-scale adjunct trials.</td>
</tr>

</table>

<div><b>TSF Legend:</b> P: 0–30 min &nbsp; R: 30 min–3 hr &nbsp; G: &gt;3 hr</div>

Pathway results for Effect on Cancer / Diseased Cells

Core Metabolism/Glycolysis

Glycolysis↓, 1,   p‑GS3Kβ↓, 1,   lactateProd↓, 1,   PIK3CA↓, 1,  

Cell Death

p‑Akt↓, 1,   Akt↓, 1,   Apoptosis↑, 4,   BAX↑, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   Bcl-xL↓, 1,   Casp3↑, 1,   Casp9↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

p‑mTOR↓, 1,   p‑PI3K↓, 1,   TumCG↓, 1,   Wnt↓, 1,  

Migration

E-cadherin↑, 1,   Ki-67↓, 1,   miR-133a-3p↝, 1,   Snail↓, 1,   TumCI↓, 2,   TumCMig↓, 1,   TumCP↓, 2,   Vim↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 1,   p50↓, 1,   PD-L1↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 2,  

Clinical Biomarkers

Ki-67↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiTum↑, 1,   Symptoms↓, 1,  
Total Targets: 37

Pathway results for Effect on Normal Cells

Proliferation, Differentiation & Cell State

EMT↓, 1,  

Migration

E-cadherin↑, 1,   Smad7↑, 1,   Vim↓, 1,   α-SMA↓, 1,   β-catenin/ZEB1↓, 1,  

Immune & Inflammatory Signaling

IFN-γ↑, 1,   IL2↑, 1,   TNF-α↑, 1,  
Total Targets: 9

Research papers

Year Title Authors PMID Link Flag
2024Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung CancerZhenyu LiPMC11287463https://pmc.ncbi.nlm.nih.gov/articles/PMC11287463/0
2022Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCCLihua HePMC9467620https://pmc.ncbi.nlm.nih.gov/articles/PMC9467620/0
2020Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulationWenfang Li31669273https://pubmed.ncbi.nlm.nih.gov/31669273/0
2020Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathwayShuo YangPMC7057808https://pmc.ncbi.nlm.nih.gov/articles/PMC7057808/0
2019Astragalus saponins inhibit cell growth, aerobic glycolysis and attenuate the inflammatory response in a DSS-induced colitis modelHailong Guo30569176https://pubmed.ncbi.nlm.nih.gov/30569176/0
2019The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological MethodCun LiuPMC6802460https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2019.01171/full0
2018Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-CateninManshu Yu30562743https://pubmed.ncbi.nlm.nih.gov/30562743/0
2018Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathwayRuijuan Zhou29523109https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-018-2148-20
2017Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and CaspasesZhen ZhouPMC5291085https://pmc.ncbi.nlm.nih.gov/articles/PMC5291085/0